4 One sided, Polar geometry

In the polar domain r [0,1], we provide a general formulation of orthogonal basis functions that satisfy a given set of M boundary conditions involving derivatives up to degree N - 1. An unnormalised basis set may be written

            N∑+1
Ψn (r) = rl+1    ciP (α+N,l+1∕2)(2r2 - 1),   n ≥ N - M  + 1
            i=1    n+M -i

for any α > -1. The ‘starting’ functions Ψi for i N - M are also given.

Each set of basis functions satisfies the orthogonality condition

∫ 1                 2 α
   Ψn (r)Ψm (r)(1 - r ) dr = 0,n ⁄= m.
 0

4.1 f(1) = 0

This common boundary condition produces the basis set,

 l+1     2   (α+2,l+1∕2)   2
r   (1- r )Pn- 1      (2r - 1),    n ≥ 1

which, using the generalised machinery, can be written as

            ∑3     (α+2,l+1∕2)
Ψn (r) = rl+1   ciPn+1- i    (2r2 - 1),   n ≥ 2
            i=1

for any α > -1 and Ψ1 = rl+1(1 -r2). The 3 coefficients ci are determined up to an arbitrary normalisation by imposing

c[1] = (2l + 1 + 2α + 4n)(2l + 5 + 2α + 2n)n
c[2] = -(2α2 + 2+ 4+ 7α + 5 + 4nl + 2l + 4n2 + 6n)(2l + 3 + 2α + 4n)
c[3] = (2n - 1 + 2l)(n + 1 + α)(2l + 5 + 2α + 4n)

Expressions for all quantities involved are provided below.

 
c[1]:=(2*l+1+2*alpha+4*n)*(2*l+5+2*alpha+2*n)*n;  
 
c[2]:=-(2*alpha^2+2*l*alpha+4*n*alpha+7*alpha+5+4*n*l+2*l+4*n^2+6*n)*(2*l+3+2*alpha+4*n);  
 
c[3]:=(2*n-1+2*l)*(n+1+alpha)*(2*l+5+2*alpha+4*n);  


PIC

Figure 5: The first four basis functions that satisfy Ψn(1) = 0 with α = -12, each normalised to have unit 2-norm.


4.2 f(1) = 0

This boundary condition arises in electromagnetism where a full-sphere magnetic field, written in terms of spherical harmonics, is in contact with a perfect electrical conductor in r 1. The basis can be written

         3
        ∑      (α+2,l+1∕2)   2
Ψn (r) =    ciPn+1- i    (2r - 1),    n ≥ 2
        i=1

where Ψ1 is given by

Ψ1 = - rl+1(- 6α - 2lα + 2αr2+ 2lαr2 + 9r2- 15l- 27- 2l2+ 11lr2+ 2l2r2)

c[1] = n(2l + 5 + 2α + 2n)(2l + 1 + 2α + 4n)(3 - 5n + l2α3 - 2l + 6α + 4nlα3 - 6- 8n2 - 16- 10nl + 4n2α3 + 4α2 - 3n2α - 142 + 8n3 - 8lαn - 2l2 + α3 + 62l + 28n2αl + 8n3+ 12n22 + 8l2αn + 4nl2α2 + 4n2l2α + 8n2l - 62 - l2α - 43 + 16n3l + 20n3α + 8n2α2 - 2α3l + 4n4α + 8n2l2 + 8n3α2 + 2l2α2 + 8n4)
c[2] = -(2l + 3 + 2α + 4n)(-44 - 24n + 33l2α3 - 30l - 30α + 166nlα3 + 2l3α4 - 84 - 79- 52n2 - 109- 88nl + 194n2α3 + 15l2α4 + 3083n2 + 312n3l2α + 72n2l3α + 32n3l3 + 216n3α3 + 68n2α4 + 2α5l2 - 67α2 + 7n2α - 1252 + 60n3 - 80lαn + 16n3l3α - 42l2 - 12l3 - 52α3 - 17α4 + 1222l + 450n2αl + 812n3+ 44l3+ 650n22 + 78l2αn + 212nl2α2 + 408n2l2α + 12n2l + 112n3α3l + 32n3α4 + 56n4α3 + 336n4l - 60nl2 + 48n2α4l + 8n2α5 + 85l - 742 + 544n3α2l - 2α5 + 284n4α2 + 48n5α2 - 59l2α + 96n3α2l2 + 120n4α2l + 68l2α3n2 + 308n2α2l2 + 482l3 + 20l2α4n + 24n2α2l3 - 543 + 328n3l + 394n3α + 10l3α3 + 144n5 + 12l33 + 32n6 + 408n4+ 16n6α + 96n4l2 + 168n5α + 96n5l + 197n2α2 - 29α3l + 10l3α2 + 240n3l2 + 448n4α + 48n5+ 48n4l2α + 120n2l2 + 48l3n2 + 488n3α2 - 10l3α + 3l2α2 - 8nl3 + 118l2α3n + 644n + 200n4)
c[3] = (2n - 1 + 2l)(n + 1 + α)(2l + 5 + 2α + 4n)(6 + 35n + l2α3 + 12l + 11α + 4nlα3 + 22+ 64n2 + 54+ 54nl + 4n2α3 + 6α2 + 81n2α + 262 + 40n3 + 72lαn + 6l2 + α3 + 302l + 52n2αl + 8n3+ 12n22 + 16l2αn + 4nl2α2 + 4n2l2α + 56n2l + 16nl2 + 122 + 11l2α + 43 + 16n3l + 36n3α + 32n2α2 + 2α3l + 4n4α + 8n2l2 + 8n3α2 + 6l2α2 + 8n4)

Expressions for all quantities involved are provided below.

 
Psi_1:=-r^(l+1)*(-6*alpha-2*l*alpha+2*alpha*r^2+2*l*alpha*r^2+9*r^2-15*l-27-2*l^2+11*l*r^2+2*l^2*r^2);  
 
c[1]:=n*(2*l+5+2*alpha+2*n)*(2*l+1+2*alpha+4*n)*(3-5*n+l^2*alpha^3-2*l+6*alpha+4*n*l*alpha^3-6*l*alpha-8*n^2-16*n*alpha-10*n*l+4*n^2*alpha^3+4*alpha^2-3*n^2*alpha-14*n*alpha^2+8*n^3-8*l*alpha*n-2*l^2+alpha^3+6*n*alpha^2*l+28*n^2*alpha*l+8*n^3*l*alpha+12*n^2*l*alpha^2+8*l^2*alpha*n+4*n*l^2*alpha^2+4*n^2*l^2*alpha+8*n^2*l-6*l*alpha^2-l^2*alpha-4*n*alpha^3+16*n^3*l+20*n^3*alpha+8*n^2*alpha^2-2*alpha^3*l+4*n^4*alpha+8*n^2*l^2+8*n^3*alpha^2+2*l^2*alpha^2+8*n^4);  
 
c[2]:=-(2*l+3+2*alpha+4*n)*(-4*l*alpha^4-24*n+33*l^2*alpha^3-30*l-30*alpha+166*n*l*alpha^3+2*l^3*alpha^4-8*n*alpha^4-79*l*alpha-52*n^2-109*n*alpha-88*n*l+194*n^2*alpha^3+15*l^2*alpha^4+308*l*alpha^3*n^2+312*n^3*l^2*alpha+72*n^2*l^3*alpha+32*n^3*l^3+216*n^3*alpha^3+68*n^2*alpha^4+2*alpha^5*l^2-67*alpha^2+7*n^2*alpha-125*n*alpha^2+60*n^3-80*l*alpha*n+16*n^3*l^3*alpha-42*l^2-12*l^3-52*alpha^3-17*alpha^4+122*n*alpha^2*l+450*n^2*alpha*l+812*n^3*l*alpha+44*l^3*n*alpha+650*n^2*l*alpha^2+78*l^2*alpha*n+212*n*l^2*alpha^2+408*n^2*l^2*alpha+12*n^2*l+112*n^3*alpha^3*l+32*n^3*alpha^4+56*n^4*alpha^3+336*n^4*l-60*n*l^2+48*n^2*alpha^4*l+8*n^2*alpha^5+8*n*alpha^5*l-74*l*alpha^2+544*n^3*alpha^2*l-2*alpha^5+284*n^4*alpha^2+48*n^5*alpha^2-59*l^2*alpha+96*n^3*alpha^2*l^2+120*n^4*alpha^2*l+68*l^2*alpha^3*n^2+308*n^2*alpha^2*l^2+48*n*alpha^2*l^3+20*l^2*alpha^4*n+24*n^2*alpha^2*l^3-54*n*alpha^3+328*n^3*l+394*n^3*alpha+10*l^3*alpha^3+144*n^5+12*l^3*n*alpha^3+32*n^6+408*n^4*l*alpha+16*n^6*alpha+96*n^4*l^2+168*n^5*alpha+96*n^5*l+197*n^2*alpha^2-29*alpha^3*l+10*l^3*alpha^2+240*n^3*l^2+448*n^4*alpha+48*n^5*l*alpha+48*n^4*l^2*alpha+120*n^2*l^2+48*l^3*n^2+488*n^3*alpha^2-10*l^3*alpha+3*l^2*alpha^2-8*n*l^3+118*l^2*alpha^3*n+64*l*alpha^4*n+200*n^4);  
 
c[3]:=(2*n-1+2*l)*(n+1+alpha)*(2*l+5+2*alpha+4*n)*(6+35*n+l^2*alpha^3+12*l+11*alpha+4*n*l*alpha^3+22*l*alpha+64*n^2+54*n*alpha+54*n*l+4*n^2*alpha^3+6*alpha^2+81*n^2*alpha+26*n*alpha^2+40*n^3+72*l*alpha*n+6*l^2+alpha^3+30*n*alpha^2*l+52*n^2*alpha*l+8*n^3*l*alpha+12*n^2*l*alpha^2+16*l^2*alpha*n+4*n*l^2*alpha^2+4*n^2*l^2*alpha+56*n^2*l+16*n*l^2+12*l*alpha^2+11*l^2*alpha+4*n*alpha^3+16*n^3*l+36*n^3*alpha+32*n^2*alpha^2+2*alpha^3*l+4*n^4*alpha+8*n^2*l^2+8*n^3*alpha^2+6*l^2*alpha^2+8*n^4);  

4.3 f(1) + lf(1) = 0

This boundary condition arises in electromagnetism where a full-sphere magnetic field, written in terms of spherical harmonics, is in contact with a perfect electrical insulator in r 1. The basis can be written

        ∑3     (α+2,l+1∕2)   2
Ψn (r) =    ciPn+1- i    (2r - 1),    n ≥ 2
        i=1

        l+1                 2     2          2      2    22    2
Ψ1 = - r  (- 6α - 4lα + 4lαr + 2αr  - 24l+ 9r + 20lr + 4lr  - 4l - 27)

c[1] = n(2l + 5 + 2α + 2n)(22 + 22 - α2 + 2n2α + 5- 3α + 6+ 2lαn - 3 + 4n2 + 2l + 4nl + 2n)(2l + 1 + 2α + 4n)
c[2] = -(1 + 2n + 2l)(n + 2 + α)(2l + 3 + 2α + 4n)(2α3 + 22 + 42 + 11α2 + 15α + 4n2α + 14+ 6+ 4lαn + 8n2 + 8nl + 12n)
c[3] = (1 + 2n + 2l)(n + 2 + α)(α2 + 22 + 22 + 4α + 8+ 2n2α + 2lαn + 9+ 6l + 4nl + 4n2 + 3 + 10n)(2l + 5 + 2α + 4n)

Expressions for all quantities involved are provided below.

 
Psi_1:=-r^(l+1)*(-6*alpha-4*l*alpha+4*l*alpha*r^2+2*alpha*r^2-24*l+9*r^2+20*l*r^2+4*l^2*r^2-4*l^2-27);  
 
c[1]:=n*(2*l+5+2*alpha+2*n)*(2*n*alpha^2+2*l*alpha^2-alpha^2+2*n^2*alpha+5*n*alpha-3*alpha+6*l*alpha+2*l*alpha*n-3+4*n^2+2*l+4*n*l+2*n)*(2*l+1+2*alpha+4*n);  
 
c[2]:=-(1+2*n+2*l)*(n+2+alpha)*(2*l+3+2*alpha+4*n)*(2*alpha^3+2*l*alpha^2+4*n*alpha^2+11*alpha^2+15*alpha+4*n^2*alpha+14*n*alpha+6*l*alpha+4*l*alpha*n+8*n^2+8*n*l+12*n);  
 
c[3]:=(1+2*n+2*l)*(n+2+alpha)*(alpha^2+2*n*alpha^2+2*l*alpha^2+4*alpha+8*l*alpha+2*n^2*alpha+2*l*alpha*n+9*n*alpha+6*l+4*n*l+4*n^2+3+10*n)*(2*l+5+2*alpha+4*n);  

4.4 f(1) - 2f(1) = 0

This boundary condition arises in full-sphere stress-free convection, when the flow is expanded in a toroidal/poloidal decomposition and spherical harmonics. The basis can be written

        ∑3     (α+2,l+1∕2)   2
Ψn (r) =    ciPn+1- i    (2r - 1),    n ≥ 2
        i=1

        l+1                 2      2     2             2     2    2 2
Ψ1 = - r  (- 2lα- 2α - 2αr  + 2lαr  - 9r - 9 - 11l- 2l + 7lr + 2l r )

c[1] = n(2l + 1 + 2α + 4n)(2l + 5 + 2α + 2n)(39 - 17n + l2α3 - 2l + 78α + 4nlα3 - 18- 32n2 - 56- 34nl + 4n2α3 + 48α2 - 35n2α - 502 + 8n3 - 40lαn - 2l2 + 9α3 - 22l + 28n2αl + 8n3+ 12n22 + 8l2αn + 4nl2α2 + 4n2l2α + 8n2l - 222 - l2α - 123 + 16n3l + 20n3α - 6α3l + 4n4α + 8n2l2 + 8n3α2 + 2l2α2 + 8n4)
c[2] = -(2l + 3 + 2α + 4n)(60 - 644 - 24n - 15l2α3 - 6l + 224α - 146nlα3 + 2l3α4 - 1364 - 107- 268n2 - 289- 232nl - 134n2α3 + 7l2α4 + 2123n2 + 312n3l2α + 72n2l3α + 32n3l3 + 152n3α3 + 20n2α4 + 2α5l2 + 305α2 - 689n2α - 5572 - 228n3 - 632lαn + 16n3l3α - 42l2 - 12l3 + 190α3 + 55α4 - 5502l - 350n2αl + 556n3+ 44l3+ 138n22 - 146l2αn + 52nl2α2 + 280n2l2α - 16α5n - 8α5l - 372n2l + 112n3α3l + 32n3α4 + 56n4α3 + 336n4l - 156nl2 + 48n2α4l + 8n2α5 + 85l - 2302 + 480n3α2l + 6α5 + 252n4α2 + 48n5α2 - 107l2α + 96n3α2l2 + 120n4α2l + 68l2α3n2 + 276n2α2l2 + 482l3 + 20l2α4n + 24n2α2l3 - 4183 + 136n3l - 182n3α + 10l3α3 + 144n5 + 12l33 + 32n6 + 408n4+ 16n6α + 96n4l2 + 168n5α + 96n5l - 563n2α2 - 185α3l + 10l3α2 + 240n3l2 + 320n4α + 48n5+ 48n4l2α + 24n2l2 + 48l3n2 + 136n3α2 - 10l3α - 85l2α2 - 8nl3 + 86l2α3n + 164n + 104n4)
c[3] = (2n - 1 + 2l)(n + 1 + α)(2l + 5 + 2α + 4n)(6 - 25n + l2α3 - 12l + 11α + 4nlα3 - 22+ 40n2 - 50+ 30nl + 4n2α3 + 6α2 + 49n2α - 262 + 40n3 + 40lαn + 6l2 + α3 + 222l + 52n2αl + 8n3+ 12n22 + 16l2αn + 4nl2α2 + 4n2l2α + 56n2l + 16nl2 - 122 + 11l2α - 43 + 16n3l + 36n3α + 24n2α2 - 2α3l + 4n4α + 8n2l2 + 8n3α2 + 6l2α2 + 8n4)

Expressions for all quantities involved are provided below.

 
Psi_1:=-r^(l+1)*(-2*l*alpha-2*alpha-2*alpha*r^2+2*l*alpha*r^2-9*r^2-9-11*l-2*l^2+7*l*r^2+2*l^2*r^2);  
 
c[1]:=n*(2*l+1+2*alpha+4*n)*(2*l+5+2*alpha+2*n)*(39-17*n+l^2*alpha^3-2*l+78*alpha+4*n*l*alpha^3-18*l*alpha-32*n^2-56*n*alpha-34*n*l+4*n^2*alpha^3+48*alpha^2-35*n^2*alpha-50*n*alpha^2+8*n^3-40*l*alpha*n-2*l^2+9*alpha^3-2*n*alpha^2*l+28*n^2*alpha*l+8*n^3*l*alpha+12*n^2*l*alpha^2+8*l^2*alpha*n+4*n*l^2*alpha^2+4*n^2*l^2*alpha+8*n^2*l-22*l*alpha^2-l^2*alpha-12*n*alpha^3+16*n^3*l+20*n^3*alpha-6*alpha^3*l+4*n^4*alpha+8*n^2*l^2+8*n^3*alpha^2+2*l^2*alpha^2+8*n^4);  
 
c[2]:=-(2*l+3+2*alpha+4*n)*(60-64*l*alpha^4-24*n-15*l^2*alpha^3-6*l+224*alpha-146*n*l*alpha^3+2*l^3*alpha^4-136*n*alpha^4-107*l*alpha-268*n^2-289*n*alpha-232*n*l-134*n^2*alpha^3+7*l^2*alpha^4+212*l*alpha^3*n^2+312*n^3*l^2*alpha+72*n^2*l^3*alpha+32*n^3*l^3+152*n^3*alpha^3+20*n^2*alpha^4+2*alpha^5*l^2+305*alpha^2-689*n^2*alpha-557*n*alpha^2-228*n^3-632*l*alpha*n+16*n^3*l^3*alpha-42*l^2-12*l^3+190*alpha^3+55*alpha^4-550*n*alpha^2*l-350*n^2*alpha*l+556*n^3*l*alpha+44*l^3*n*alpha+138*n^2*l*alpha^2-146*l^2*alpha*n+52*n*l^2*alpha^2+280*n^2*l^2*alpha-16*alpha^5*n-8*alpha^5*l-372*n^2*l+112*n^3*alpha^3*l+32*n^3*alpha^4+56*n^4*alpha^3+336*n^4*l-156*n*l^2+48*n^2*alpha^4*l+8*n^2*alpha^5+8*n*alpha^5*l-230*l*alpha^2+480*n^3*alpha^2*l+6*alpha^5+252*n^4*alpha^2+48*n^5*alpha^2-107*l^2*alpha+96*n^3*alpha^2*l^2+120*n^4*alpha^2*l+68*l^2*alpha^3*n^2+276*n^2*alpha^2*l^2+48*n*alpha^2*l^3+20*l^2*alpha^4*n+24*n^2*alpha^2*l^3-418*n*alpha^3+136*n^3*l-182*n^3*alpha+10*l^3*alpha^3+144*n^5+12*l^3*n*alpha^3+32*n^6+408*n^4*l*alpha+16*n^6*alpha+96*n^4*l^2+168*n^5*alpha+96*n^5*l-563*n^2*alpha^2-185*alpha^3*l+10*l^3*alpha^2+240*n^3*l^2+320*n^4*alpha+48*n^5*l*alpha+48*n^4*l^2*alpha+24*n^2*l^2+48*l^3*n^2+136*n^3*alpha^2-10*l^3*alpha-85*l^2*alpha^2-8*n*l^3+86*l^2*alpha^3*n+16*l*alpha^4*n+104*n^4);  
 
c[3]:=(2*n-1+2*l)*(n+1+alpha)*(2*l+5+2*alpha+4*n)*(6-25*n+l^2*alpha^3-12*l+11*alpha+4*n*l*alpha^3-22*l*alpha+40*n^2-50*n*alpha+30*n*l+4*n^2*alpha^3+6*alpha^2+49*n^2*alpha-26*n*alpha^2+40*n^3+40*l*alpha*n+6*l^2+alpha^3+22*n*alpha^2*l+52*n^2*alpha*l+8*n^3*l*alpha+12*n^2*l*alpha^2+16*l^2*alpha*n+4*n*l^2*alpha^2+4*n^2*l^2*alpha+56*n^2*l+16*n*l^2-12*l*alpha^2+11*l^2*alpha-4*n*alpha^3+16*n^3*l+36*n^3*alpha+24*n^2*alpha^2-2*alpha^3*l+4*n^4*alpha+8*n^2*l^2+8*n^3*alpha^2+6*l^2*alpha^2+8*n^4);  

4.5 f(1) = f(1) = 0

This common boundary condition produces the basis set,

             (α+4,l+1∕2)
rl+1(1 - r2)2P n-1      (2r2 - 1 ),   n ≥ 1

which, using the generalised machinery, can be written as

        ∑3
Ψn (r) =    ciPn(α++22-,l+i1∕2)(2r2 - 1),   n ≥ 1
        i=1

with

c[1] = (n + 1)n(2l + 5 + 2α + 4n)
c[2] = -2n(n + α + 3)(2α + 4n + 7 + 2l)
c[3] = (n + α + 3)(n + 2 + α)(2l + 9 + 2α + 4n)

Expressions for all quantities involved are provided below.

 
c[1]:=(n+1)*n*(2*l+5+2*alpha+4*n);  
 
c[2]:=-2*n*(n+alpha+3)*(2*alpha+4*n+7+2*l);  
 
c[3]:=(n+alpha+3)*(n+2+alpha)*(2*l+9+2*alpha+4*n);  

4.6 f(1) = f′′(1) - 2f(1) = 0

This boundary condition arises in full-sphere stress-free convection, when the flow is expanded in a toroidal/poloidal decomposition and spherical harmonics. The basis can be written

         4
        ∑      (α+3,l+1∕2)   2
Ψn (r) =    ciPn+2- i    (2r - 1),    n ≥ 2
        i=1

where Ψ1 is given by

Ψ1 = rl+1(715+526l+240 α- 858r2+136lα+20 α2 - 288αr2+116l2+8l3 - 860lr2+104l αr4+8lα2+16l2 α- 240lαr2- 32l2αr2 - 16lα2r2+16l2αr4+8l α2r4- 24α2r2+4 α2r4+334lr4- 216l2r2+100l2r4&#x

c[1] = (2α + 9 + 2l + 2n)(2l + 5 + 2α + 4n)(-3α + 2+ 4- 11 + 2l + 10n + 4nl + 4n2)(-3α + 2+ 4- 9 + 6l + 10n + 4nl + 4n2)n(2l + 3 + 2α + 4n)(n + 1)
c[2] = -(2l + 9 + 2α + 4n)(825 - 324 - 6939n + 168l2α3 - 3078l + 1166α + 640nlα3 - 644 - 3972- 666n2 - 8808- 1482nl + 672n2α3 + 16l2α4 + 3843n2 + 640n3l2α + 160n2l3α + 96n3l3 + 256n3α3 + 64n2α4 + 615α2 + 2308n2α - 41052 + 6540n3 + 1472lαn - 132l2 + 216l3 + 142α3 + 12α4 + 20022l + 9912n2αl + 5376n3+ 512l3+ 3480n22 + 3744l2αn + 1396nl2α2 + 3120n2l2α + 8496n2l + 2688n4l + 2844nl2 - 19062 + 832n3α2l + 416n4α2 + 616l2α + 504n2α2l2 + 882l3 - 8403 + 8328n3l + 7136n3α + 16l3α3 + 1104n5 + 96n6 + 800n4+ 288n4l2 + 320n5α + 288n5l + 2286n2α2 - 404α3l + 136l3α2 + 2064n3l2 + 2768n4α + 4536n2l2 + 480l3n2 + 2400n3α2 + 336l3α + 580l2α2 + 648nl3 + 160l2α3n + 644n + 4440n4)n(2l + 3 + 2α + 4n)
c[3] = (n + α + 3)(2l + 11 + 2α + 4n)(-540 - 84 - 2427n + 92l2α3 - 1200l - 813α + 368nlα3 - 164 - 1510- 246n2 - 3164- 690nl + 384n2α3 + 8l2α4 + 1923n2 + 512n3l2α + 128n2l3α + 96n3l3 + 128n3α3 + 32n2α4 - 406α2 + 1728n2α - 13932 + 2700n3 + 1280lαn - 240l2 - 83α3 - 6α4 + 13222l + 4704n2αl + 3328n3+ 320l3+ 1752n22 + 1680l2αn + 692nl2α2 + 1920n2l2α + 3240n2l + 2208n4l + 828nl2 - 6642 + 512n3α2l + 256n4α2 + 292l2α + 312n2α2l2 + 562l3 - 2523 + 5064n3l + 3456n3α + 8l3α3 + 912n5 + 96n6 + 640n4+ 288n4l2 + 256n5α + 288n5l + 1470n2α2 - 122α3l + 64l3α2 + 1680n3l2 + 1728n4α + 2664n2l2 + 384l3n2 + 1216n3α2 + 120l3α + 328l2α2 + 360nl3 + 80l2α3n + 324n + 2760n4)(2l + 5 + 2α + 4n)
c[4] = -(2n - 1 + 2l)(n + α + 3)(n + 2 + α)(2+ 4+ α + 5 + 10l + 18n + 4nl + 4n2)(2l + 11 + 2α + 4n)(2l + 9 + 2α + 4n)(2+ 4+ α + 3 + 6l + 18n + 4nl + 4n2)

Expressions for all quantities involved are provided below.

 
Psi_1:=r^(l+1)*(715+526*l+240*alpha-858*r^2+136*l*alpha+20*alpha^2-288*alpha*r^2+116*l^2+8*l^3-860*l*r^2+104*l*alpha*r^4+8*l*alpha^2+16*l^2*alpha-240*l*alpha*r^2-32*l^2*alpha*r^2-16*l*alpha^2*r^2+16*l^2*alpha*r^4+8*l*alpha^2*r^4-24*alpha^2*r^2+4*alpha^2*r^4+334*l*r^4-216*l^2*r^2+100*l^2*r^4-16*l^3*r^2+8*l^3*r^4+143*r^4+48*alpha*r^4);  
 
c[1]:=(2*alpha+9+2*l+2*n)*(2*l+5+2*alpha+4*n)*(-3*alpha+2*l*alpha+4*n*alpha-11+2*l+10*n+4*n*l+4*n^2)*(-3*alpha+2*l*alpha+4*n*alpha-9+6*l+10*n+4*n*l+4*n^2)*n*(2*l+3+2*alpha+4*n)*(n+1);  
 
c[2]:=-(2*l+9+2*alpha+4*n)*(825-32*l*alpha^4-6939*n+168*l^2*alpha^3-3078*l+1166*alpha+640*n*l*alpha^3-64*n*alpha^4-3972*l*alpha-666*n^2-8808*n*alpha-1482*n*l+672*n^2*alpha^3+16*l^2*alpha^4+384*l*alpha^3*n^2+640*n^3*l^2*alpha+160*n^2*l^3*alpha+96*n^3*l^3+256*n^3*alpha^3+64*n^2*alpha^4+615*alpha^2+2308*n^2*alpha-4105*n*alpha^2+6540*n^3+1472*l*alpha*n-132*l^2+216*l^3+142*alpha^3+12*alpha^4+2002*n*alpha^2*l+9912*n^2*alpha*l+5376*n^3*l*alpha+512*l^3*n*alpha+3480*n^2*l*alpha^2+3744*l^2*alpha*n+1396*n*l^2*alpha^2+3120*n^2*l^2*alpha+8496*n^2*l+2688*n^4*l+2844*n*l^2-1906*l*alpha^2+832*n^3*alpha^2*l+416*n^4*alpha^2+616*l^2*alpha+504*n^2*alpha^2*l^2+88*n*alpha^2*l^3-840*n*alpha^3+8328*n^3*l+7136*n^3*alpha+16*l^3*alpha^3+1104*n^5+96*n^6+800*n^4*l*alpha+288*n^4*l^2+320*n^5*alpha+288*n^5*l+2286*n^2*alpha^2-404*alpha^3*l+136*l^3*alpha^2+2064*n^3*l^2+2768*n^4*alpha+4536*n^2*l^2+480*l^3*n^2+2400*n^3*alpha^2+336*l^3*alpha+580*l^2*alpha^2+648*n*l^3+160*l^2*alpha^3*n+64*l*alpha^4*n+4440*n^4)*n*(2*l+3+2*alpha+4*n);  
 
c[3]:=(n+alpha+3)*(2*l+11+2*alpha+4*n)*(-540-8*l*alpha^4-2427*n+92*l^2*alpha^3-1200*l-813*alpha+368*n*l*alpha^3-16*n*alpha^4-1510*l*alpha-246*n^2-3164*n*alpha-690*n*l+384*n^2*alpha^3+8*l^2*alpha^4+192*l*alpha^3*n^2+512*n^3*l^2*alpha+128*n^2*l^3*alpha+96*n^3*l^3+128*n^3*alpha^3+32*n^2*alpha^4-406*alpha^2+1728*n^2*alpha-1393*n*alpha^2+2700*n^3+1280*l*alpha*n-240*l^2-83*alpha^3-6*alpha^4+1322*n*alpha^2*l+4704*n^2*alpha*l+3328*n^3*l*alpha+320*l^3*n*alpha+1752*n^2*l*alpha^2+1680*l^2*alpha*n+692*n*l^2*alpha^2+1920*n^2*l^2*alpha+3240*n^2*l+2208*n^4*l+828*n*l^2-664*l*alpha^2+512*n^3*alpha^2*l+256*n^4*alpha^2+292*l^2*alpha+312*n^2*alpha^2*l^2+56*n*alpha^2*l^3-252*n*alpha^3+5064*n^3*l+3456*n^3*alpha+8*l^3*alpha^3+912*n^5+96*n^6+640*n^4*l*alpha+288*n^4*l^2+256*n^5*alpha+288*n^5*l+1470*n^2*alpha^2-122*alpha^3*l+64*l^3*alpha^2+1680*n^3*l^2+1728*n^4*alpha+2664*n^2*l^2+384*l^3*n^2+1216*n^3*alpha^2+120*l^3*alpha+328*l^2*alpha^2+360*n*l^3+80*l^2*alpha^3*n+32*l*alpha^4*n+2760*n^4)*(2*l+5+2*alpha+4*n);  
 
c[4]:=-(2*n-1+2*l)*(n+alpha+3)*(n+2+alpha)*(2*l*alpha+4*n*alpha+alpha+5+10*l+18*n+4*n*l+4*n^2)*(2*l+11+2*alpha+4*n)*(2*l+9+2*alpha+4*n)*(2*l*alpha+4*n*alpha+alpha+3+6*l+18*n+4*n*l+4*n^2);  

4.7 f(1) = f′′(1) = 0

This boundary condition arises in electromagnetism where a full-sphere magnetic field, written in terms of spherical harmonics, is in contact with a perfect electrical conductor in r 1. The basis can be written

        ∑4
Ψn (r) =    ciPn(α++23-,l+i1∕2)(2r2 - 1),   n ≥ 2
        i=1

where Ψ1 is given by

      l+1                       2            2     2   3        2    2     2         4       2    2   2     2 2     2  4    2 4       4       2     2 4     2 2      4      2 2     2 4    3 2   3 4      4
Ψ1 = r   (1001+622l+336 α- 1430r +152lα+28 α  +124l +8l - 1052lr +8lα +16l α+120l αr - 272lαr - 32lαr  - 16lα r +16l αr +8lα r +144 αr - 480αr +12 α r - 40α r +430lr - 232l r+108l  r 

c[1] = n(n + 1)(2l + 9 + 2α + 2n)(2l + 5 + 2α + 4n)(36 - 200n + 4l2α3 - 96l + 27α + 16nlα3 - 92+ 320n2 - 200+ 240nl + 16n2α3 + 8α2 + 372n2α - 682 + 320n3 + 320lαn + 48l2 + α3 + 1282l + 304n2αl + 32n3+ 48n22 + 96l2αn + 16nl2α2 + 16n2l2α + 448n2l + 128nl2 - 322 + 76l2α - 83 + 128n3l + 208n3α + 136n2α2 - 4α3l + 16n4α + 64n2l2 + 32n3α2 + 32l2α2 + 64n4)(2l + 3 + 2α + 4n)
c[2] = -(2l + 9 + 2α + 4n)(-1260 + 284 + 4764n + 1700l2α3 + 648l - 2883α + 7386nlα3 + 16l3α4 + 564 + 1746+ 31536n2 + 6253+ 25272nl + 7854n2α3 + 264l2α4 + 53523n2 + 4624n3l2α + 1120n2l3α + 384n3l3 + 3648n3α3 + 1120n2α4 + 16α5l2 - 2006α2 + 46966n2α + 31162 + 38160n3 + 40366lαn + 96n3l3α + 3312l2 + 864l3 - 605α3 - 82α4 + 247442l + 62400n2αl + 31368n3+ 2696l3+ 27672n22 + 22316l2αn + 10576nl2α2 + 17784n2l2α + 51264n2l + 832n3α3l + 256n3α4 + 416n4α3 + 10752n4l + 16656nl2 + 384n2α4l + 64n2α5 + 645l + 11882 + 8896n3α2l - 4α5 + 4528n4α2 + 320n5α2 + 7260l2α + 640n3α2l2 + 800n4α2l + 504l2α3n2 + 5232n2α2l2 + 8642l3 + 160l2α4n + 160n2α2l3 + 6873 + 36192n3l + 44844n3α + 200l3α3 + 4416n5 + 88l33 + 384n6 + 5888n4+ 96n6α + 1152n4l2 + 2384n5α + 1152n5l + 27364n2α2 + 310α3l + 880l3α2 + 8256n3l2 + 16280n4α + 288n5+ 288n4l2α + 19584n2l2 + 1920l3n2 + 19328n3α2 + 1560l3α + 5208l2α2 + 2592nl3 + 2148l2α3n + 10884n + 19200n4)n(2l + 3 + 2α + 4n)
c[3] = (n + α + 3)(2l + 11 + 2α + 4n)(1264 + 3132n + 904l2α3 - 1620α + 4146nlα3 + 8l3α4 + 2604 + 1800+ 13056n2 + 6405+ 9240nl + 4398n2α3 + 140l2α4 + 27603n2 + 3728n3l2α + 896n2l3α + 384n3l3 + 1888n3α3 + 608n2α4 + 8α5l2 - 1629α2 + 23514n2α + 47282 + 18960n3 + 19590lαn + 96n3l3α - 606α3 - 99α4 + 134802l + 31800n2αl + 19912n3+ 1640l3+ 14400n22 + 10540l2αn + 5312nl2α2 + 11112n2l2α + 16α5n + 8α5l + 24480n2l + 512n3α3l + 128n3α4 + 256n4α3 + 8832n4l + 6672nl2 + 192n2α4l + 32n2α5 + 325l + 18902 + 5568n3α2l - 6α5 + 2848n4α2 + 256n5α2 + 2640l2α + 512n3α2l2 + 640n4α2l + 312l2α3n2 + 3264n2α2l2 + 5442l3 + 80l2α4n + 128n2α2l3 + 16153 + 23136n3l + 23276n3α + 96l3α3 + 3648n5 + 56l33 + 384n6 + 4768n4+ 96n6α + 1152n4l2 + 1936n5α + 1152n5l + 14976n2α2 + 736α3l + 376l3α2 + 6720n3l2 + 10440n4α + 288n5+ 288n4l2α + 12096n2l2 + 1536l3n2 + 10144n3α2 + 480l3α + 2548l2α2 + 1440nl3 + 1092l2α3n + 5924n + 12480n4)(2l + 5 + 2α + 4n)
c[4] = -(2n - 1 + 2l)(n + α + 3)(n + 2 + α)(2l + 11 + 2α + 4n)(2l + 9 + 2α + 4n)(540 + 1656n + 4l2α3 + 720l + 423α + 16nlα3 + 564+ 1664n2 + 1232+ 1520nl + 16n2α3 + 108α2 + 1092n2α + 3002 + 576n3 + 1024lαn + 240l2 + 9α3 + 2242l + 400n2αl + 32n3+ 48n22 + 128l2αn + 16nl2α2 + 16n2l2α + 832n2l + 256nl2 + 1442 + 188l2α + 243 + 128n3l + 272n3α + 232n2α2 + 12α3l + 16n4α + 64n2l2 + 32n3α2 + 48l2α2 + 64n4)

Expressions for all quantities involved are provided below.

 
Psi_1:=r^(l+1)*(1001+622*l+336*alpha-1430*r^2+152*l*alpha+28*alpha^2-480*alpha*r^2-1052*l*r^2-40*alpha^2*r^2-32*l^2*alpha*r^2+124*l^2-16*l*alpha^2*r^2+8*l^3-272*l*alpha*r^2+8*l*alpha^2+16*l^2*alpha*r^4+8*l*alpha^2*r^4+16*l^2*alpha+144*alpha*r^4+430*l*r^4+12*alpha^2*r^4+108*l^2*r^4-232*l^2*r^2-16*l^3*r^2+8*l^3*r^4+120*l*alpha*r^4+429*r^4);  
 
c[1]:=n*(n+1)*(2*l+9+2*alpha+2*n)*(2*l+5+2*alpha+4*n)*(36-200*n+4*l^2*alpha^3-96*l+27*alpha+16*n*l*alpha^3-92*l*alpha+320*n^2-200*n*alpha+240*n*l+16*n^2*alpha^3+8*alpha^2+372*n^2*alpha-68*n*alpha^2+320*n^3+320*l*alpha*n+48*l^2+alpha^3+128*n*alpha^2*l+304*n^2*alpha*l+32*n^3*l*alpha+48*n^2*l*alpha^2+96*l^2*alpha*n+16*n*l^2*alpha^2+16*n^2*l^2*alpha+448*n^2*l+128*n*l^2-32*l*alpha^2+76*l^2*alpha-8*n*alpha^3+128*n^3*l+208*n^3*alpha+136*n^2*alpha^2-4*alpha^3*l+16*n^4*alpha+64*n^2*l^2+32*n^3*alpha^2+32*l^2*alpha^2+64*n^4)*(2*l+3+2*alpha+4*n);  
 
c[2]:=-(2*l+9+2*alpha+4*n)*(-1260+28*l*alpha^4+4764*n+1700*l^2*alpha^3+648*l-2883*alpha+7386*n*l*alpha^3+16*l^3*alpha^4+56*n*alpha^4+1746*l*alpha+31536*n^2+6253*n*alpha+25272*n*l+7854*n^2*alpha^3+264*l^2*alpha^4+5352*l*alpha^3*n^2+4624*n^3*l^2*alpha+1120*n^2*l^3*alpha+384*n^3*l^3+3648*n^3*alpha^3+1120*n^2*alpha^4+16*alpha^5*l^2-2006*alpha^2+46966*n^2*alpha+3116*n*alpha^2+38160*n^3+40366*l*alpha*n+96*n^3*l^3*alpha+3312*l^2+864*l^3-605*alpha^3-82*alpha^4+24744*n*alpha^2*l+62400*n^2*alpha*l+31368*n^3*l*alpha+2696*l^3*n*alpha+27672*n^2*l*alpha^2+22316*l^2*alpha*n+10576*n*l^2*alpha^2+17784*n^2*l^2*alpha+51264*n^2*l+832*n^3*alpha^3*l+256*n^3*alpha^4+416*n^4*alpha^3+10752*n^4*l+16656*n*l^2+384*n^2*alpha^4*l+64*n^2*alpha^5+64*n*alpha^5*l+1188*l*alpha^2+8896*n^3*alpha^2*l-4*alpha^5+4528*n^4*alpha^2+320*n^5*alpha^2+7260*l^2*alpha+640*n^3*alpha^2*l^2+800*n^4*alpha^2*l+504*l^2*alpha^3*n^2+5232*n^2*alpha^2*l^2+864*n*alpha^2*l^3+160*l^2*alpha^4*n+160*n^2*alpha^2*l^3+687*n*alpha^3+36192*n^3*l+44844*n^3*alpha+200*l^3*alpha^3+4416*n^5+88*l^3*n*alpha^3+384*n^6+5888*n^4*l*alpha+96*n^6*alpha+1152*n^4*l^2+2384*n^5*alpha+1152*n^5*l+27364*n^2*alpha^2+310*alpha^3*l+880*l^3*alpha^2+8256*n^3*l^2+16280*n^4*alpha+288*n^5*l*alpha+288*n^4*l^2*alpha+19584*n^2*l^2+1920*l^3*n^2+19328*n^3*alpha^2+1560*l^3*alpha+5208*l^2*alpha^2+2592*n*l^3+2148*l^2*alpha^3*n+1088*l*alpha^4*n+19200*n^4)*n*(2*l+3+2*alpha+4*n);  
 
c[3]:=(n+alpha+3)*(2*l+11+2*alpha+4*n)*(126*l*alpha^4+3132*n+904*l^2*alpha^3-1620*alpha+4146*n*l*alpha^3+8*l^3*alpha^4+260*n*alpha^4+1800*l*alpha+13056*n^2+6405*n*alpha+9240*n*l+4398*n^2*alpha^3+140*l^2*alpha^4+2760*l*alpha^3*n^2+3728*n^3*l^2*alpha+896*n^2*l^3*alpha+384*n^3*l^3+1888*n^3*alpha^3+608*n^2*alpha^4+8*alpha^5*l^2-1629*alpha^2+23514*n^2*alpha+4728*n*alpha^2+18960*n^3+19590*l*alpha*n+96*n^3*l^3*alpha-606*alpha^3-99*alpha^4+13480*n*alpha^2*l+31800*n^2*alpha*l+19912*n^3*l*alpha+1640*l^3*n*alpha+14400*n^2*l*alpha^2+10540*l^2*alpha*n+5312*n*l^2*alpha^2+11112*n^2*l^2*alpha+16*alpha^5*n+8*alpha^5*l+24480*n^2*l+512*n^3*alpha^3*l+128*n^3*alpha^4+256*n^4*alpha^3+8832*n^4*l+6672*n*l^2+192*n^2*alpha^4*l+32*n^2*alpha^5+32*n*alpha^5*l+1890*l*alpha^2+5568*n^3*alpha^2*l-6*alpha^5+2848*n^4*alpha^2+256*n^5*alpha^2+2640*l^2*alpha+512*n^3*alpha^2*l^2+640*n^4*alpha^2*l+312*l^2*alpha^3*n^2+3264*n^2*alpha^2*l^2+544*n*alpha^2*l^3+80*l^2*alpha^4*n+128*n^2*alpha^2*l^3+1615*n*alpha^3+23136*n^3*l+23276*n^3*alpha+96*l^3*alpha^3+3648*n^5+56*l^3*n*alpha^3+384*n^6+4768*n^4*l*alpha+96*n^6*alpha+1152*n^4*l^2+1936*n^5*alpha+1152*n^5*l+14976*n^2*alpha^2+736*alpha^3*l+376*l^3*alpha^2+6720*n^3*l^2+10440*n^4*alpha+288*n^5*l*alpha+288*n^4*l^2*alpha+12096*n^2*l^2+1536*l^3*n^2+10144*n^3*alpha^2+480*l^3*alpha+2548*l^2*alpha^2+1440*n*l^3+1092*l^2*alpha^3*n+592*l*alpha^4*n+12480*n^4)*(2*l+5+2*alpha+4*n);  
 
c[4]:=-(2*n-1+2*l)*(n+alpha+3)*(n+2+alpha)*(2*l+11+2*alpha+4*n)*(2*l+9+2*alpha+4*n)*(540+1656*n+4*l^2*alpha^3+720*l+423*alpha+16*n*l*alpha^3+564*l*alpha+1664*n^2+1232*n*alpha+1520*n*l+16*n^2*alpha^3+108*alpha^2+1092*n^2*alpha+300*n*alpha^2+576*n^3+1024*l*alpha*n+240*l^2+9*alpha^3+224*n*alpha^2*l+400*n^2*alpha*l+32*n^3*l*alpha+48*n^2*l*alpha^2+128*l^2*alpha*n+16*n*l^2*alpha^2+16*n^2*l^2*alpha+832*n^2*l+256*n*l^2+144*l*alpha^2+188*l^2*alpha+24*n*alpha^3+128*n^3*l+272*n^3*alpha+232*n^2*alpha^2+12*alpha^3*l+16*n^4*alpha+64*n^2*l^2+32*n^3*alpha^2+48*l^2*alpha^2+64*n^4);  

4.8 1st order, 1 generalised boundary condition.

In the polar domain r [0,1], we provide an orthogonal basis functions that satisfies the generalised boundary conditions

           ′
f(1)+ λ1,1f(1) = 0.                       (25)

An unnormalised basis set may be written

             3
Ψ (x) = rl+1 ∑  c P(α+2,l+1∕2)(x ),     n ≥ 2
 n              i n+1- i
            i=1

for any α > -1. The function Ψ1 is given explicitly below. The 3 coefficients ci are determined up to an arbitrary normalisation by imposing

The ‘starting’ functions are given by

Ψ1 = - rl+1(- 6λ1,1α+2 λ1,1lαr2 - 2α+2 λ1,1αr2- 2 λ1,1lα+2 αr2+2lr2+9 λ1,1r2- 9+11λ1,1lr2+2 λ1,1l2r2- 2l- 15λ1,1l- 27λ1,1- 2λ1,1l2+9r2)

c[1] = n(2α + 1 + 2l + 4n)(5 + 2α + 2l + 2n)(6 + 11α + 12λ1,12n22 + 4λ 1,12n2l2α + 6α2 + α3 + 6λ 1,1- 8λ1,12n2 + 4λ 1,12α2 + 6λ 1,12α + λ 1,12α3 - 2λ 1,12l2 - 2λ 1,12l - 2λ 1,1α3 + 6λ 1,1n + 12λ1,1n2 - 10λ 1,1α2 + 2λ 1,12l2α2 - 6λ 1,122 - λ 1,12l2α - 6λ 1,12- 2λ 1,123 - 6λ 1,1 - 14λ1,1α + 4λ1,123n + 8λ 1,12n3 + 8λ 1,12n4 + λ 1,12l2α3
+ 4λ1,12α3n2 - 4λ 1,12α3n + 20λ 1,12n3α + 16λ 1,12n3l + 4λ 1,12n4α - 16λ 1,12- 10λ 1,12nl + 8λ 1,12n2l2 + 8λ 1,12n2l - 3λ 1,12n2α - 5λ 1,12n + 3λ 1,12 + 28λ 1,12n2+ 8λ 1,12n3+ 4λ 1,12l2α2n + 6λ 1,122n + 8λ 1,12l2αn - 8λ 1,12lαn
+ 4λ1,12n + 16λ 1,1lαn + 4λ1,13 + 12λ 1,1nl + 20λ1,1+ 2λ1,13 + 4λ 1,1n2α2 + 16λ 1,1n2α + 8λ 1,12 + 18λ 1,12 + 8λ 1,12n3α2 - 14λ 1,122 + 8λ 1,12n2α2)
c[2] = -(4n + 3 + 2l + 2α)(30 + 36n + 12l + 97α + 308λ1,12n2l2α2 + 650λ 1,12n22 + 408λ 1,12n2l2α + 48λ 1,12n24 + 112λ 1,12n33 + 72λ 1,12n2l3α + 24n2 + 119α2 + 8α5λ 1,1n + 2α5 + 69α3 + 19α4 + 82λ 1,1+ 4nlα3 - 52λ 1,12n2 - 12λ 1,12l3 - 67λ 1,12α2 - 30λ 1,12α - 17λ 1,12α4 - 52λ 1,12α3 - 42λ 1,12l2 - 30λ 1,12l - 2λ 1,12α5 + 17λ 1,1α3 + 72λ 1,1n + 156λ1,1n2 + 52λ 1,1α2 + 144λ 1,1n3 + 48λ 1,1n4 + 4α5λ 1,1l + 24α4λ 1,1n2 + 3λ 1,12l2α2 - 74λ 1,122 - 59λ 1,12l2α
- 79λ1,12- 4λ 1,124 - 29λ 1,123 + 15λ 1,12l2α4 + 30λ 1,1 + 12λ1,1l + 67λ1,1α + 14α3l + 30α3n + 34α2l + 4α4n + 12λ 1,12α3l3n + 8λ 1,125n + 20λ 1,12l2α4n + 24 + 68λ 1,12l2n2α3 + 118λ 1,12l2α3n + 64λ 1,124n + 308λ 1,123n2 + 166λ 1,123n + 24α4λ 1,1ln + 16l2λ 1,13 + 2λ 1,1α4 + 60λ 1,12n3 + 200λ 1,12n4 + 144λ 1,12n5 + 32λ 1,12n6 + 33λ 1,12l2α3 + 4α4l2λ 1,1 - 8λ1,12α4n + 194λ 1,12α3n2 - 54λ 1,12α3n + 394λ 1,12n3α
+ 328λ1,12n3l + 96λ 1,12n4l2 + 32λ 1,12n3l3 + 240λ 1,12n3l2 + 16λ 1,12n6α + 336λ 1,12n4l + 448λ 1,12n4α + 96λ 1,12n5l + 168λ 1,12n5α - 109λ 1,12- 88λ 1,12nl + 120λ 1,12n2l2 + 48λ 1,12n2l3 - 8λ 1,12nl3 - 60λ 1,12nl2 + 12λ 1,12n2l + 7λ 1,12n2α + 72λ 1,1α4n + 24λ 1,1l2α3 + 216λ 1,12α3n3 + 56λ 1,12α3n4 + 32λ 1,12α4n3 + 8λ 1,12α5n2 + 68λ 1,12α4n2
- 24λ1,12n + 16α2n4λ 1,1 + 48λ1,1l2n2 + 172n2λ 1,1α3 + 34λ 1,14 + 176n3λ 1,1α2 + 64λ 1,1n4α + 44λ 1,1α2l2 + 24λ 1,1αl2 + 48 1,1l2 + 96λ 1,12n3l2α2 + 24λ 1,12n2l3α2 + 16λ 1,12n3l3α + 450λ 1,12n2+ 812λ 1,12n3+ 408λ 1,12n4+ 48λ 1,12n5+ 48n2λ 1,13 + 44αn2 + 90αn + 80α2n + 24n2α2 + 24nl + 34+ 44αnl + 24α2nl + 312λ 1,12n3l2α + 544λ 1,12n32 + 48λ 1,12n4l2α + 120λ 1,12n42 + 212λ 1,12l2α2n + 122λ 1,122n + 78λ 1,12l2αn + 48λ 1,12l3α2n - 80λ 1,12lαn + 32λ 1,12n3 + 44λ 1,12l3αn + 16λ 1,1l2α2n2
+ 1641,13 + 400λ 1,1n2+ 384λ 1,12n + 364λ 1,1lαn + 256n2λ 1,12 + 112 1,1l2α + 80 1,1l2α2 + 128λ 1,1lαn3 + 64λ 1,1l2αn2 + 4n2α3 + 32n3λ 1,1α3 + 242λ 1,13 + 288λ 1,1n3α + 120λ 1,1nl + 270λ1,1+ 106λ1,13 + 192λ 1,1n2l + 428λ 1,1n2α2 + 96λ 1,1n3l + 436λ 1,1n2α + 146λ 1,12 + 376λ 1,12 + 10λ 1,12α3l3 + 10λ 1,12α2l3 + 2λ 1,12α5l2 + 2λ 1,12α4l3 - 10λ 1,12l3α + 488λ 1,12n3α2 + 284λ 1,12n4α2 + 48λ 1,12n5α2 - 125λ 1,122 + 197λ 1,12n2α2)
c[3] = (-1 + 2n + 2l)(n + α + 1)(4n + 5 + 2l + 2α)(6 + 11α + 12λ1,12n22 + 4λ 1,12n2l2α + 6α2 + α3 + 22λ 1,1+ 64λ1,12n2 + 6λ 1,12α2 + 11λ 1,12α + λ 1,12α3 + 6λ 1,12l2 + 12λ 1,12l + 2λ 1,1α3 + 30λ 1,1n + 12λ1,1n2 + 12λ 1,1α2 + 6λ 1,12l2α2 + 12λ 1,122 + 11λ 1,12l2α + 22λ 1,12+ 2λ 1,123 + 12λ 1,1 + 12λ1,1l + 22λ1,1α + 4λ1,123n + 40λ 1,12n3 + 8λ 1,12n4 + λ 1,12l2α3 + 4λ 1,12α3n2 + 4λ 1,12α3n + 36λ 1,12n3α + 16λ 1,12n3l + 4λ 1,12n4α
+ 54λ1,12+ 54λ 1,12nl + 8λ 1,12n2l2 + 16λ 1,12nl2 + 56λ 1,12n2l + 81λ 1,12n2α + 35λ 1,12n + 6λ 1,12 + 52λ 1,12n2+ 8λ 1,12n3+ 4λ 1,12l2α2n + 30λ 1,122n + 16λ 1,12l2αn
+ 72λ1,12lαn + 4λ 1,12n + 16λ 1,1lαn + 4λ1,13 + 12λ 1,1nl + 52λ1,1+ 2λ1,13 + 4λ 1,1n2α2 + 16λ 1,1n2α + 12λ 1,12 + 26λ 1,12 + 8λ 1,12n3α2 + 26λ 1,122 + 32λ 1,12n2α2)

Expressions for all quantities involved are provided below.

 
Psi_1:=-r^(l+1)*(-6*lambda[1,1]*alpha-2*alpha-2*lambda[1,1]*l*alpha+2*lambda[1,1]*alpha*r^2+2*lambda[1,1]*l*alpha*r^2+2*alpha*r^2-27*lambda[1,1]-15*lambda[1,1]*l-9+9*lambda[1,1]*r^2+11*lambda[1,1]*l*r^2+9*r^2+2*l*r^2-2*l-2*lambda[1,1]*l^2+2*lambda[1,1]*l^2*r^2);  
 
c[1]:=n*(2*alpha+1+2*l+4*n)*(5+2*alpha+2*l+2*n)*(6+11*alpha+12*lambda[1,1]^2*n^2*l*alpha^2+4*lambda[1,1]^2*n^2*l^2*alpha+6*alpha^2+alpha^3+6*lambda[1,1]*l*alpha-8*lambda[1,1]^2*n^2+4*lambda[1,1]^2*alpha^2+6*lambda[1,1]^2*alpha+lambda[1,1]^2*alpha^3-2*lambda[1,1]^2*l^2-2*lambda[1,1]^2*l-2*lambda[1,1]*alpha^3+6*lambda[1,1]*n+12*lambda[1,1]*n^2-10*lambda[1,1]*alpha^2+2*lambda[1,1]^2*l^2*alpha^2-6*lambda[1,1]^2*l*alpha^2-lambda[1,1]^2*l^2*alpha-6*lambda[1,1]^2*l*alpha-2*lambda[1,1]^2*l*alpha^3-6*lambda[1,1]-14*lambda[1,1]*alpha+4*lambda[1,1]^2*l*alpha^3*n+8*lambda[1,1]^2*n^3+8*lambda[1,1]^2*n^4+lambda[1,1]^2*l^2*alpha^3+4*lambda[1,1]^2*alpha^3*n^2-4*lambda[1,1]^2*alpha^3*n+20*lambda[1,1]^2*n^3*alpha+16*lambda[1,1]^2*n^3*l+4*lambda[1,1]^2*n^4*alpha-16*lambda[1,1]^2*n*alpha-10*lambda[1,1]^2*n*l+8*lambda[1,1]^2*n^2*l^2+8*lambda[1,1]^2*n^2*l-3*lambda[1,1]^2*n^2*alpha-5*lambda[1,1]^2*n+3*lambda[1,1]^2+28*lambda[1,1]^2*n^2*l*alpha+8*lambda[1,1]^2*n^3*l*alpha+4*lambda[1,1]^2*l^2*alpha^2*n+6*lambda[1,1]^2*l*alpha^2*n+8*lambda[1,1]^2*l^2*alpha*n-8*lambda[1,1]^2*l*alpha*n+4*lambda[1,1]*l*alpha^2*n+16*lambda[1,1]*l*alpha*n+4*lambda[1,1]*n*alpha^3+12*lambda[1,1]*n*l+20*lambda[1,1]*n*alpha+2*lambda[1,1]*l*alpha^3+4*lambda[1,1]*n^2*alpha^2+16*lambda[1,1]*n^2*alpha+8*lambda[1,1]*l*alpha^2+18*lambda[1,1]*n*alpha^2+8*lambda[1,1]^2*n^3*alpha^2-14*lambda[1,1]^2*n*alpha^2+8*lambda[1,1]^2*n^2*alpha^2);  
 
c[2]:=-(4*n+3+2*l+2*alpha)*(30+36*n+12*l+97*alpha+308*lambda[1,1]^2*n^2*l^2*alpha^2+650*lambda[1,1]^2*n^2*l*alpha^2+408*lambda[1,1]^2*n^2*l^2*alpha+48*lambda[1,1]^2*n^2*l*alpha^4+112*lambda[1,1]^2*n^3*l*alpha^3+72*lambda[1,1]^2*n^2*l^3*alpha+24*n^2+119*alpha^2+8*alpha^5*lambda[1,1]*n+2*alpha^5+69*alpha^3+19*alpha^4+82*lambda[1,1]*l*alpha+4*n*l*alpha^3-52*lambda[1,1]^2*n^2-12*lambda[1,1]^2*l^3-67*lambda[1,1]^2*alpha^2-30*lambda[1,1]^2*alpha-17*lambda[1,1]^2*alpha^4-52*lambda[1,1]^2*alpha^3-42*lambda[1,1]^2*l^2-30*lambda[1,1]^2*l-2*lambda[1,1]^2*alpha^5+17*lambda[1,1]*alpha^3+72*lambda[1,1]*n+156*lambda[1,1]*n^2+52*lambda[1,1]*alpha^2+144*lambda[1,1]*n^3+48*lambda[1,1]*n^4+4*alpha^5*lambda[1,1]*l+24*alpha^4*lambda[1,1]*n^2+3*lambda[1,1]^2*l^2*alpha^2-74*lambda[1,1]^2*l*alpha^2-59*lambda[1,1]^2*l^2*alpha-79*lambda[1,1]^2*l*alpha-4*lambda[1,1]^2*l*alpha^4-29*lambda[1,1]^2*l*alpha^3+15*lambda[1,1]^2*l^2*alpha^4+30*lambda[1,1]+12*lambda[1,1]*l+67*lambda[1,1]*alpha+14*alpha^3*l+30*alpha^3*n+34*alpha^2*l+4*alpha^4*n+12*lambda[1,1]^2*alpha^3*l^3*n+8*lambda[1,1]^2*l*alpha^5*n+20*lambda[1,1]^2*l^2*alpha^4*n+2*l*alpha^4+68*lambda[1,1]^2*l^2*n^2*alpha^3+118*lambda[1,1]^2*l^2*alpha^3*n+64*lambda[1,1]^2*l*alpha^4*n+308*lambda[1,1]^2*l*alpha^3*n^2+166*lambda[1,1]^2*l*alpha^3*n+24*alpha^4*lambda[1,1]*l*n+16*l^2*lambda[1,1]*n*alpha^3+2*lambda[1,1]*alpha^4+60*lambda[1,1]^2*n^3+200*lambda[1,1]^2*n^4+144*lambda[1,1]^2*n^5+32*lambda[1,1]^2*n^6+33*lambda[1,1]^2*l^2*alpha^3+4*alpha^4*l^2*lambda[1,1]-8*lambda[1,1]^2*alpha^4*n+194*lambda[1,1]^2*alpha^3*n^2-54*lambda[1,1]^2*alpha^3*n+394*lambda[1,1]^2*n^3*alpha+328*lambda[1,1]^2*n^3*l+96*lambda[1,1]^2*n^4*l^2+32*lambda[1,1]^2*n^3*l^3+240*lambda[1,1]^2*n^3*l^2+16*lambda[1,1]^2*n^6*alpha+336*lambda[1,1]^2*n^4*l+448*lambda[1,1]^2*n^4*alpha+96*lambda[1,1]^2*n^5*l+168*lambda[1,1]^2*n^5*alpha-109*lambda[1,1]^2*n*alpha-88*lambda[1,1]^2*n*l+120*lambda[1,1]^2*n^2*l^2+48*lambda[1,1]^2*n^2*l^3-8*lambda[1,1]^2*n*l^3-60*lambda[1,1]^2*n*l^2+12*lambda[1,1]^2*n^2*l+7*lambda[1,1]^2*n^2*alpha+72*lambda[1,1]*alpha^4*n+24*lambda[1,1]*l^2*alpha^3+216*lambda[1,1]^2*alpha^3*n^3+56*lambda[1,1]^2*alpha^3*n^4+32*lambda[1,1]^2*alpha^4*n^3+8*lambda[1,1]^2*alpha^5*n^2+68*lambda[1,1]^2*alpha^4*n^2-24*lambda[1,1]^2*n+16*alpha^2*n^4*lambda[1,1]+48*lambda[1,1]*l^2*n^2+172*n^2*lambda[1,1]*alpha^3+34*lambda[1,1]*l*alpha^4+176*n^3*lambda[1,1]*alpha^2+64*lambda[1,1]*n^4*alpha+44*lambda[1,1]*alpha^2*l^2+24*lambda[1,1]*alpha*l^2+48*n*lambda[1,1]*l^2+96*lambda[1,1]^2*n^3*l^2*alpha^2+24*lambda[1,1]^2*n^2*l^3*alpha^2+16*lambda[1,1]^2*n^3*l^3*alpha+450*lambda[1,1]^2*n^2*l*alpha+812*lambda[1,1]^2*n^3*l*alpha+408*lambda[1,1]^2*n^4*l*alpha+48*lambda[1,1]^2*n^5*l*alpha+48*n^2*lambda[1,1]*l*alpha^3+44*alpha*n^2+90*alpha*n+80*alpha^2*n+24*n^2*alpha^2+24*n*l+34*l*alpha+44*alpha*n*l+24*alpha^2*n*l+312*lambda[1,1]^2*n^3*l^2*alpha+544*lambda[1,1]^2*n^3*l*alpha^2+48*lambda[1,1]^2*n^4*l^2*alpha+120*lambda[1,1]^2*n^4*l*alpha^2+212*lambda[1,1]^2*l^2*alpha^2*n+122*lambda[1,1]^2*l*alpha^2*n+78*lambda[1,1]^2*l^2*alpha*n+48*lambda[1,1]^2*l^3*alpha^2*n-80*lambda[1,1]^2*l*alpha*n+32*lambda[1,1]*l*alpha^2*n^3+44*lambda[1,1]^2*l^3*alpha*n+16*lambda[1,1]*l^2*alpha^2*n^2+164*n*lambda[1,1]*l*alpha^3+400*lambda[1,1]*n^2*l*alpha+384*lambda[1,1]*l*alpha^2*n+364*lambda[1,1]*l*alpha*n+256*n^2*lambda[1,1]*l*alpha^2+112*n*lambda[1,1]*l^2*alpha+80*n*lambda[1,1]*l^2*alpha^2+128*lambda[1,1]*l*alpha*n^3+64*lambda[1,1]*l^2*alpha*n^2+4*n^2*alpha^3+32*n^3*lambda[1,1]*alpha^3+242*lambda[1,1]*n*alpha^3+288*lambda[1,1]*n^3*alpha+120*lambda[1,1]*n*l+270*lambda[1,1]*n*alpha+106*lambda[1,1]*l*alpha^3+192*lambda[1,1]*n^2*l+428*lambda[1,1]*n^2*alpha^2+96*lambda[1,1]*n^3*l+436*lambda[1,1]*n^2*alpha+146*lambda[1,1]*l*alpha^2+376*lambda[1,1]*n*alpha^2+10*lambda[1,1]^2*alpha^3*l^3+10*lambda[1,1]^2*alpha^2*l^3+2*lambda[1,1]^2*alpha^5*l^2+2*lambda[1,1]^2*alpha^4*l^3-10*lambda[1,1]^2*l^3*alpha+488*lambda[1,1]^2*n^3*alpha^2+284*lambda[1,1]^2*n^4*alpha^2+48*lambda[1,1]^2*n^5*alpha^2-125*lambda[1,1]^2*n*alpha^2+197*lambda[1,1]^2*n^2*alpha^2);  
 
c[3]:=(-1+2*n+2*l)*(n+alpha+1)*(4*n+5+2*l+2*alpha)*(6+11*alpha+12*lambda[1,1]^2*n^2*l*alpha^2+4*lambda[1,1]^2*n^2*l^2*alpha+6*alpha^2+alpha^3+22*lambda[1,1]*l*alpha+64*lambda[1,1]^2*n^2+6*lambda[1,1]^2*alpha^2+11*lambda[1,1]^2*alpha+lambda[1,1]^2*alpha^3+6*lambda[1,1]^2*l^2+12*lambda[1,1]^2*l+2*lambda[1,1]*alpha^3+30*lambda[1,1]*n+12*lambda[1,1]*n^2+12*lambda[1,1]*alpha^2+6*lambda[1,1]^2*l^2*alpha^2+12*lambda[1,1]^2*l*alpha^2+11*lambda[1,1]^2*l^2*alpha+22*lambda[1,1]^2*l*alpha+2*lambda[1,1]^2*l*alpha^3+12*lambda[1,1]+12*lambda[1,1]*l+22*lambda[1,1]*alpha+4*lambda[1,1]^2*l*alpha^3*n+40*lambda[1,1]^2*n^3+8*lambda[1,1]^2*n^4+lambda[1,1]^2*l^2*alpha^3+4*lambda[1,1]^2*alpha^3*n^2+4*lambda[1,1]^2*alpha^3*n+36*lambda[1,1]^2*n^3*alpha+16*lambda[1,1]^2*n^3*l+4*lambda[1,1]^2*n^4*alpha+54*lambda[1,1]^2*n*alpha+54*lambda[1,1]^2*n*l+8*lambda[1,1]^2*n^2*l^2+16*lambda[1,1]^2*n*l^2+56*lambda[1,1]^2*n^2*l+81*lambda[1,1]^2*n^2*alpha+35*lambda[1,1]^2*n+6*lambda[1,1]^2+52*lambda[1,1]^2*n^2*l*alpha+8*lambda[1,1]^2*n^3*l*alpha+4*lambda[1,1]^2*l^2*alpha^2*n+30*lambda[1,1]^2*l*alpha^2*n+16*lambda[1,1]^2*l^2*alpha*n+72*lambda[1,1]^2*l*alpha*n+4*lambda[1,1]*l*alpha^2*n+16*lambda[1,1]*l*alpha*n+4*lambda[1,1]*n*alpha^3+12*lambda[1,1]*n*l+52*lambda[1,1]*n*alpha+2*lambda[1,1]*l*alpha^3+4*lambda[1,1]*n^2*alpha^2+16*lambda[1,1]*n^2*alpha+12*lambda[1,1]*l*alpha^2+26*lambda[1,1]*n*alpha^2+8*lambda[1,1]^2*n^3*alpha^2+26*lambda[1,1]^2*n*alpha^2+32*lambda[1,1]^2*n^2*alpha^2);  

4.9 2nd order, 1 generalised boundary condition.

In the polar domain r [0,1], we provide anorthogonal basis functions that satisfies the generalised boundary conditions

f (1)+ λ  f ′(1)+ λ   f′′(1) = 0.                 (26)
        1,1         1,2

An unnormalised basis set may be written

            ∑4
Ψn(x) = rl+1    ciP(nα++13-,l+i1∕2)(x ),     n ≥ 3
            i=1

for any α > -1. The function Ψ1 is given explicitly below. The 4 coefficients ci are determined up to an arbitrary normalisation by imposing

A generalised set ci for arbitrary α is too complex. However, we present results for α = 0, α = -12 and α = 12 below.

Case(i) α = -12

The ‘starting’ functions are given by

Ψ1 = -2rl+1(-5 - 8λ 1,1l - 15λ1,1 - 31λ1,2l - 10λ1,2l2 - 30λ 1,2 + 5r2 + lr2 - l + 6λ 1,1lr2 + λ 1,1l2r2 - λ 1,1l2 + 5λ 1,1r2 + 5λ 1,2lr2 + 6λ 1,2l2r2 + λ 1,2l3r2 - λ 1,2l3)
Ψ2 = rl+1(270 + 44λ 1,2l5 + 28λ 1,1l4 + 166λ 1,22l7 + 54λ 1,12l5 + 279l + 4010λ 1,1λ1,2l5 + 34296λ 1,1λ1,2l4 + 150280λ 1,1λ1,2l3 + 355336λ 1,1λ1,2l2 + 429150λ 1,1λ1,2l + 204981λ1,22l4 + 206100λ 1,1λ1,2 + 75l2 + 5452λ 1,2l3 + 794λ 1,2l4 - 990r2 + 3960λ 1,1 + 16020λ1,2 + 5352λ1,1l + 17776λ1,2l2 + 27534λ 1,2l + 38899λ1,22l5 + 25051λ 1,12l2 + 438λ 1,1l3 + 3951λ 1,22l6 + 7341λ 1,12l3 + 40125λ 1,12l + 2402λ 1,1l2 + 623155λ 1,22l3 + 1016100λ 1,22l + 1090668λ 1,22l2 + 1019λ 1,12l4 - 57150λ 1,12r2 + 29520λ 1,12r4 - 691200λ 1,22r2 + 207360λ 1,22r4 + 444lr4 + 90l2r4 - 165l2r2 + 6l3r4 - 12l3r2 + 7200λ 1,1r4 + 17280λ 1,2r4 - 723lr2 - 12060λ 1,1r2 - 41760λ 1,2r2 + 3916λ 1,1λ1,2l5r4 + 188λ 1,1λ1,2l6r4 - 291054λ 1,1λ1,2l3r2 + 136100λ 1,1λ1,2l3r4 - 685842λ 1,1λ1,2l2r2 + 304584λ 1,1λ1,2l2r4 - 833940λ 1,1λ1,2lr2 + 345024λ 1,1λ1,2lr4 + 23850λ 1,12 + 388800λ 1,22 + 188λ 1,1λ1,2l6 - 5404λ 1,1l2r2 - 63252λ 1,2lr2 - 38230λ 1,2l2r2 - 11300λ 1,2l3r2 - 7653λ 1,22l6r2 - 410400λ 1,1λ1,2r2 + 155520λ 1,1λ1,2r4 - 1610λ 1,2l4r2 + 5740λ 1,2l3r4 + 816λ 1,2l4r4 + 44λ 1,2l5r4 - 88λ 1,2l5r2 + 7800λ 1,1lr4 + 2972λ 1,1l2r4 + 29376λ 1,2lr4 + 18984λ 1,2l2r4 + 6l3 + 32428λ 1,1λ1,2l4r4 - 376λ 1,1λ1,2l6r2 - 7926λ 1,1λ1,2l5r2 - 67022λ 1,1λ1,2l4r2 + 720r4 - 13482λ 1,1lr2 + 480λ 1,1l3r4 - 918λ 1,1l3r2 + 166λ 1,22l7r4 - 332λ 1,22l7r2 - 53405λ 1,12l2r2 - 15177λ 1,12l3r2 + 27634λ 1,12l2r4 + 7782λ 1,12l3r4 + 1046λ 1,12l4r4 - 2065λ 1,12l4r2 - 56λ 1,1l4r2 + 28λ 1,1l4r4 - 373329λ 1,22l4r2 - 72965λ 1,22l5r2 + 162546λ 1,22l4r4 + 33734λ 1,22l5r4 + 3702λ 1,22l6r4 + 54λ 1,12l5r4 - 108λ 1,12l5r2 - 89655λ 1,12lr2 + 46524λ 1,12lr4 - 1108763λ 1,22l3r2 + 447468λ 1,22l3r4 - 1781280λ 1,22lr2 - 1914198λ 1,22l2r2 + 594432λ 1,22lr4 + 706032λ 1,22l2r4)
c[1] = 8n(l + 2n)(n + 3 + l)(2835 - 7560n2λ 1,12 - 32640n6λ 1,22 + 9072n4λ 1,12 + 44016n4λ 1,22 - 24080n2λ 1,22 + 270λ 1,1λ1,2l3 + 4644λ 1,1λ1,2l2 + 702λ 1,1λ1,2l + 1155λ1,22l4 - 3672λ 1,1λ1,2 + 8960λ1,22n8 + 6048λ 1,2n4 - 7560λ 1,2n2 + 7560λ 1,1n2 - 1890λ 1,1 + 1512λ1,2 + 22680n2λ 1,1λ1,2 + 17280n6λ 1,1λ1,2 - 1890λ1,1l + 2646λ1,2l2 + 4158λ 1,2l - 1701λ1,12l2 - 378λ 1,12l + 750λ 1,22l3 - 1704λ 1,22l - 5853λ 1,22l2 - 26880n5λ 1,22l2 - 97920n5λ 1,22l + 53760n6λ 1,22l2 - 8960n6λ 1,22l + 35840n7λ 1,22l + 44480n3λ 1,22l2 - 96800n4λ 1,22l2 + 22240n4λ 1,22l + 560λ 1,22l4n + 35840λ 1,22l3n5 + 88032n3λ 1,22l + 8960λ 1,22l4n4 - 26880λ 1,22l3n4 - 30400λ 1,22l3n3 + 22800λ 1,22l3n2 - 8960λ 1,22l4n3 + 1120λ 1,22l4n2 + 3560λ 1,22l3n + 15984 1,1λ1,2l2 - 72576n3λ 1,1λ1,2l - 25920n3λ 1,1λ1,2l2 + 51840n4λ 1,1λ1,2l2 + 17280n3λ 1,1λ1,2l3 - 12960n4λ 1,1λ1,2l + 51840n5λ 1,1λ1,2l + 1323λ1,12 + 15984n2λ 1,1λ1,2l - 35208n2λ 1,1λ1,2l2 + 22680 1,1λ1,2l - 12960λ1,1λ1,2l3n2 + 3744λ 1,22 - 36288n4λ 1,1λ1,2 - 13448n2λ 1,22l - 24080λ 1,22ln - 13448λ 1,22l2n + 47576λ 1,22l2n2 + 6048λ 1,2n2l2 - 3024λ 1,2n2l + 12096λ 1,2n3l - 3024λ 1,2nl2 - 7560λ 1,2nl + 7560λ1,1nl + 1080λ1,1λ1,2l3n - 4536nλ 1,12l2 - 7560nλ 1,12l + 9072n2λ 1,12l2 - 4536n2λ 1,12l + 18144n3λ 1,12l)(l - 1 + 2n)(n + 2 + l)
c[2] = -12(l - 1 + 2n)(n + 2 + l)(2 + l + 2n)(2835 - 20034n2λ 1,12 + 18144n6λ 1,12 - 32928n6λ 1,22 + 3213nλ 1,12 + 30240n4λ 1,12 + 39312n5λ 1,12 - 22680n3λ 1,12 - 2800n4λ 1,22 + 3744nλ 1,22 - 27440n3λ 1,22 + 2448n2λ 1,22 + 74256n5λ 1,22 - 113280n7λ 1,22 + 4725n + 945l + 630λ 1,1λ1,2l4 + 3150λ 1,1λ1,2l3 + 4410λ 1,1λ1,2l2 + 1890λ 1,1λ1,2l + 13545λ1,22l4 + 17920λ 1,22n10 + 62720λ 1,22n9 + 15360λ 1,22n8 + 1512λ 1,2n + 15120λ1,2n4 + 17640λ 1,2n3 + 40824λ 1,2n2 + 26208λ 1,2n5 + 22680λ 1,1n3 + 12096λ 1,2n6 + 15120λ 1,1n4 + 1890λ 1,1n + 18900λ1,1n2 + 5670n2 + 4410λ 1,2l3 + 5670λ 1,1 + 216n2λ 1,1λ1,2 + 48384n6λ 1,1λ1,2 + 37801,1l2 + 18144n3λ 1,12l3 - 3780λ 1,1l + 13860λ1,2l2 + 1890λ 1,2l + 3465λ1,22l5 - 10395λ 1,12l2 - 2835λ 1,12l3 - 4725λ 1,12l - 1890λ 1,1l2 + 9135λ 1,22l3 - 945λ 1,22l2 + 8960λ 1,22l5n4 + 179200λ 1,22l3n7 + 304640λ 1,22l3n6 - 561440n5λ 1,22l2 - 29504n5λ 1,22l - 120640n6λ 1,22l2 - 416320n6λ 1,22l - 1280n7λ 1,22l + 223944n3λ 1,22l2 + 80496n4λ 1,22l2 + 207296n4λ 1,22l + 412160n7λ 1,22l2 + 28905λ 1,22l4n - 200640λ 1,22l3n5 + 34560λ 1,2n8λ 1,1 + 89600λ1,22n9l + 17920λ 1,22l5n5 + 89600λ 1,22l4n6 + 2792n3λ 1,22l + 98560λ 1,22l4n5 + 54432n5λ 1,12l + 54432n4λ 1,12l2 - 24640λ 1,22l5n3 - 121280λ 1,22l4n4 - 322560λ 1,22l3n4 + 121712λ 1,22l3n3 + 111724λ 1,22l3n2 + 4480λ 1,22l5n2 - 59680λ 1,22l4n3 + 3990λ 1,22l5n + 48630λ 1,22l4n2 + 49104λ 1,22l3n - 76608n5λ 1,1λ1,2 + 34560n4λ 1,1λ1,2l4 + 26208 1,1λ1,2l2 - 4176n3λ 1,1λ1,2l - 228312n3λ 1,1λ1,2l2 - 29808n4λ 1,1λ1,2l2 - 81216n3λ 1,1λ1,2l3 + 141120n4λ 1,1λ1,2l3 - 232128n4λ 1,1λ1,2l + 5670nl + 308160n6λ 1,1λ1,2l + 138240n7λ 1,1λ1,2l + 336960n5λ 1,1λ1,2l2 + 71712n5λ 1,1λ1,2l + 26460λ1,1n2l + 2835λ 1,12 + 46764n2λ 1,1λ1,2l + 32832n2λ 1,1λ1,2l2 + 207360n6λ 1,1λ1,2l2 + 138240n5λ 1,1λ1,2l3 + 2178 1,1λ1,2l + 14400λ1,1λ1,2l4n3 - 69732λ 1,1λ1,2l3n2 + 3060λ 1,1λ1,2l4n - 15120n4λ 1,1λ1,2 + 232n2λ 1,22l + 744λ 1,22ln + 27720n3λ 1,1λ1,2 + 84672n4λ 1,12l + 21189λ 1,22l2n + 47646λ 1,22l2n2 + 2268λ 1,2n2l2 + 34272λ 1,2n3l2 + 30240λ 1,1n3l + 36288λ 1,2n5l + 36288λ 1,2n4l2 + 23436λ 1,2n2l + 17136λ 1,2n3l + 17262λ 1,2nl2 + 46242λ 1,2nl + 13230λ1,1nl + 4032n2λ 1,2l3 + 12096n3λ 1,2l3 + 252 1,2l3 + 56448λ 1,2n4l - 28080λ 1,1λ1,2l4n2 + 23418λ 1,1λ1,2l3n + 15120n2λ 1,1l2 + 179200λ 1,22n8l2 + 259840λ 1,22n8l + 97920n7λ 1,1λ1,2 - 10962nλ1,12l3 - 38367nλ 1,12l2 - 24192nλ 1,12l + 6048n2λ 1,12l3 - 378n2λ 1,12l2 - 53676n2λ 1,12l + 51408n3λ 1,12l2 + 40824n3λ 1,12l - 3672 1,1λ1,2)
c[3] = 6(l + 2n + 3)(2l + 2n - 1)(3780 + 108486n2λ 1,12 + 18144n6λ 1,12 - 315168n6λ 1,22 + 58023nλ 1,12 + 105840n4λ 1,12 + 69552n5λ 1,12 + 113400n3λ 1,12 + 32480n4λ 1,22 + 33984nλ 1,22 + 322000n3λ 1,22 + 188928n2λ 1,22 - 419664n5λ 1,22 + 128640n7λ 1,22 + 6615n + 1890l - 7560λ 1,1λ1,2l4 - 18900λ 1,1λ1,2l3 + 7560λ 1,1λ1,2l2 + 41580λ 1,1λ1,2l - 18900λ1,22l4 + 22680λ 1,1λ1,2 + 17920λ1,22n10 + 116480λ 1,22n9 + 257280λ 1,22n8 + 29232λ 1,2n + 65520λ1,2n4 + 22680λ 1,2n3 - 2016λ 1,2n2 + 46368λ 1,2n5 + 37800λ 1,1n3 + 12096λ 1,2n6 + 15120λ 1,1n4 + 28350λ 1,1n + 41580λ1,1n2 + 5670n2 - 3780λ 1,2l3 + 15120λ 1,1 + 22680λ1,2 + 229536n2λ 1,1λ1,2 + 330624n6λ 1,1λ1,2 + 113401,1l2 + 18144n3λ 1,12l3 + 7560λ 1,1l - 7560λ1,2l2 + 11340λ 1,2l - 5670λ1,22l5 - 1890λ 1,12l3 + 13230λ 1,12l - 5670λ 1,22l3 + 22680λ 1,22l + 30240λ 1,22l2 + 35840λ 1,22l5n4 + 179200λ 1,22l3n7 + 680960λ 1,22l3n6 - 30560n5λ 1,22l2 - 1071104n5λ 1,22l + 1196480n6λ 1,22l2 + 242240n6λ 1,22l + 912640n7λ 1,22l - 1071336n3λ 1,22l2 - 1431504n4λ 1,22l2 - 1044304n4λ 1,22l + 842240n7λ 1,22l2 - 99405λ 1,22l4n + 686400λ 1,22l3n5 + 34560λ 1,2n8λ 1,1 + 89600λ1,22n9l + 17920λ 1,22l5n5 + 89600λ 1,22l4n6 - 5608n3λ 1,22l + 259840λ 1,22l4n5 + 54432n5λ 1,12l + 54432n4λ 1,12l2 + 2240λ 1,22l5n3 + 147520λ 1,22l4n4 - 305760λ 1,22l3n4 - 903088λ 1,22l3n3 - 520796λ 1,22l3n2 - 32480λ 1,22l5n2 - 194080λ 1,22l4n3 - 17850λ 1,22l5n - 245370λ 1,22l4n2 - 129396λ 1,22l3n + 245952n5λ 1,1λ1,2 + 34560n4λ 1,1λ1,2l4 - 36792 1,1λ1,2l2 + 26064n3λ 1,1λ1,2l + 119448n3λ 1,1λ1,2l2 + 726192n4λ 1,1λ1,2l2 + 201024n3λ 1,1λ1,2l3 + 342720n4λ 1,1λ1,2l3 + 423072n4λ 1,1λ1,2l + 5670nl + 590400n6λ 1,1λ1,2l + 138240n7λ 1,1λ1,2l + 699840n5λ 1,1λ1,2l2 + 857952n5λ 1,1λ1,2l + 49140λ1,1n2l + 11340λ 1,12 + 129924n2λ 1,1λ1,2l - 156168n2λ 1,1λ1,2l2 + 207360n6λ 1,1λ1,2l2 + 138240n5λ 1,1λ1,2l3 + 157158 1,1λ1,2l + 54720λ1,1λ1,2l4n3 - 82332λ 1,1λ1,2l3n2 - 24660λ 1,1λ1,2l4n + 85680n4λ 1,1λ1,2 + 328672n2λ 1,22l + 129264λ 1,22ln + 153720n3λ 1,1λ1,2 + 160272n4λ 1,12l + 47439λ 1,22l2n - 185874λ 1,22l2n2 + 47628λ 1,2n2l2 + 74592λ 1,2n3l2 + 30240λ 1,1n3l + 36288λ 1,2n5l + 36288λ 1,2n4l2 + 15876λ 1,2n2l + 107856λ 1,2n3l - 6678λ 1,2nl2 - 10458λ 1,2nl + 32130λ1,1nl + 14112n2λ 1,2l3 + 12096n3λ 1,2l3 + 5292 1,2l3 + 106848λ 1,2n4l + 2160λ 1,1λ1,2l4n2 - 93762λ 1,1λ1,2l3n + 15120n2λ 1,1l2 + 179200λ 1,22n8l2 + 501760λ 1,22n8l + 178560n7λ 1,1λ1,2 - 3402nλ1,12l3 + 16443nλ 1,12l2 + 77868nλ 1,12l + 21168n2λ 1,12l3 + 67662n2λ 1,12l2 + 127764n2λ 1,12l + 111888n3λ 1,12l2 + 176904n3λ 1,12l + 124848 1,1λ1,2)(l + 2n)
c[4] = -(1 + 2n)(2l + 2n - 1)(2l - 3 + 2n)(l + 2n + 3)(2 + l + 2n)(2835 + 46872n2λ 1,12 + 218240n6λ 1,22 + 21168nλ 1,12 + 9072n4λ 1,12 + 36288n3λ 1,12 + 181616n4λ 1,22 + 3744nλ 1,22 + 25024n3λ 1,22 + 1296n2λ 1,22 + 305920n5λ 1,22 + 71680n7λ 1,22 + 5670λ 1,1λ1,2l3 + 11340λ 1,1λ1,2l2 + 5670λ 1,1λ1,2l + 2835λ1,22l4 + 8960λ 1,22n8 + 9072λ 1,2n + 6048λ1,2n4 + 24192λ 1,2n3 + 28728λ 1,2n2 + 15120λ 1,1n + 7560λ1,1n2 + 5670λ 1,1 + 64152n2λ 1,1λ1,2 + 17280n6λ 1,1λ1,2 + 5670λ1,1l + 5670λ1,2l2 + 5670λ 1,2l + 2835λ1,12l2 + 5670λ 1,12l + 5670λ 1,22l3 + 2835λ 1,22l2 + 295680n5λ 1,22l2 + 600960n5λ 1,22l + 53760n6λ 1,22l2 + 241920n6λ 1,22l + 35840n7λ 1,22l + 463680n3λ 1,22l2 + 575200n4λ 1,22l2 + 652640n4λ 1,22l + 11760λ 1,22l4n + 35840λ 1,22l3n5 + 272992n3λ 1,22l + 8960λ 1,22l4n4 + 152320λ 1,22l3n4 + 220480λ 1,22l3n3 + 128720λ 1,22l3n2 + 26880λ 1,22l4n3 + 28000λ 1,22l4n2 + 29640λ 1,22l3n + 103680n5λ 1,1λ1,2 + 751681,1λ1,2l2 + 393984n3λ 1,1λ1,2l + 181440n3λ 1,1λ1,2l2 + 51840n4λ 1,1λ1,2l2 + 17280n3λ 1,1λ1,2l3 + 246240n4λ 1,1λ1,2l + 51840n5λ 1,1λ1,2l + 2835λ1,12 + 238896n2λ 1,1λ1,2l + 198072n2λ 1,1λ1,2l2 + 44280 1,1λ1,2l + 38880λ1,1λ1,2l3n2 + 222912n4λ 1,1λ1,2 + 23128n2λ 1,22l + 9600λ 1,22ln + 200448n3λ 1,1λ1,2 + 16104λ1,22l2n + 137816λ 1,22l2n2 + 6048λ 1,2n2l2 + 33264λ 1,2n2l + 12096λ 1,2n3l + 9072λ 1,2nl2 + 22680λ 1,2nl + 7560λ1,1nl + 27000λ1,1λ1,2l3n + 13608nλ 1,12l2 + 37800nλ 1,12l + 9072n2λ 1,12l2 + 49896n2λ 1,12l + 18144n3λ 1,12l + 3888 1,1λ1,2)

Expressions for all quantities involved are provided below.

 
Psi_1:=-2*r^(l+1)*(-5-8*lambda[1,1]*l-15*lambda[1,1]-31*lambda[1,2]*l-10*lambda[1,2]*l^2-30*lambda[1,2]+5*r^2+l*r^2-l+6*lambda[1,1]*l*r^2+lambda[1,1]*l^2*r^2-lambda[1,1]*l^2+5*lambda[1,1]*r^2+5*lambda[1,2]*l*r^2+6*lambda[1,2]*l^2*r^2+lambda[1,2]*l^3*r^2-lambda[1,2]*l^3);  
 
Psi_2:=r^(l+1)*(270+44*lambda[1,2]*l^5+28*lambda[1,1]*l^4+166*lambda[1,2]^2*l^7+54*lambda[1,1]^2*l^5+279*l+4010*lambda[1,1]*lambda[1,2]*l^5+34296*lambda[1,1]*lambda[1,2]*l^4+150280*lambda[1,1]*lambda[1,2]*l^3+355336*lambda[1,1]*lambda[1,2]*l^2+429150*lambda[1,1]*lambda[1,2]*l+204981*lambda[1,2]^2*l^4+206100*lambda[1,1]*lambda[1,2]+75*l^2+5452*lambda[1,2]*l^3+794*lambda[1,2]*l^4-990*r^2+3960*lambda[1,1]+16020*lambda[1,2]+5352*lambda[1,1]*l+17776*lambda[1,2]*l^2+27534*lambda[1,2]*l+444*l*r^4+90*l^2*r^4+38899*lambda[1,2]^2*l^5+25051*lambda[1,1]^2*l^2+438*lambda[1,1]*l^3+3951*lambda[1,2]^2*l^6+7341*lambda[1,1]^2*l^3+40125*lambda[1,1]^2*l+2402*lambda[1,1]*l^2+623155*lambda[1,2]^2*l^3+1016100*lambda[1,2]^2*l+1090668*lambda[1,2]^2*l^2+1019*lambda[1,1]^2*l^4-7926*lambda[1,1]*lambda[1,2]*l^5*r^2+6*l^3*r^4+7800*lambda[1,1]*l*r^4+2972*lambda[1,1]*l^2*r^4+29376*lambda[1,2]*l*r^4+18984*lambda[1,2]*l^2*r^4+162546*lambda[1,2]^2*l^4*r^4+33734*lambda[1,2]^2*l^5*r^4+3702*lambda[1,2]^2*l^6*r^4+155520*lambda[1,1]*lambda[1,2]*r^4+5740*lambda[1,2]*l^3*r^4+816*lambda[1,2]*l^4*r^4+44*lambda[1,2]*l^5*r^4-723*l*r^2+7200*lambda[1,1]*r^4+17280*lambda[1,2]*r^4+480*lambda[1,1]*l^3*r^4+166*lambda[1,2]^2*l^7*r^4+27634*lambda[1,1]^2*l^2*r^4+7782*lambda[1,1]^2*l^3*r^4+1046*lambda[1,1]^2*l^4*r^4+23850*lambda[1,1]^2-12060*lambda[1,1]*r^2+388800*lambda[1,2]^2-38230*lambda[1,2]*l^2*r^2-63252*lambda[1,2]*l*r^2-5404*lambda[1,1]*l^2*r^2+188*lambda[1,1]*lambda[1,2]*l^6-13482*lambda[1,1]*l*r^2-41760*lambda[1,2]*r^2-11300*lambda[1,2]*l^3*r^2-165*l^2*r^2-12*l^3*r^2-373329*lambda[1,2]^2*l^4*r^2-72965*lambda[1,2]^2*l^5*r^2-410400*lambda[1,1]*lambda[1,2]*r^2-1610*lambda[1,2]*l^4*r^2-88*lambda[1,2]*l^5*r^2-67022*lambda[1,1]*lambda[1,2]*l^4*r^2-376*lambda[1,1]*lambda[1,2]*l^6*r^2+28*lambda[1,1]*l^4*r^4-291054*lambda[1,1]*lambda[1,2]*l^3*r^2+54*lambda[1,1]^2*l^5*r^4+46524*lambda[1,1]^2*l*r^4+6*l^3+447468*lambda[1,2]^2*l^3*r^4+594432*lambda[1,2]^2*l*r^4+706032*lambda[1,2]^2*l^2*r^4-685842*lambda[1,1]*lambda[1,2]*l^2*r^2-833940*lambda[1,1]*lambda[1,2]*l*r^2+3916*lambda[1,1]*lambda[1,2]*l^5*r^4+188*lambda[1,1]*lambda[1,2]*l^6*r^4+29520*lambda[1,1]^2*r^4+207360*lambda[1,2]^2*r^4+32428*lambda[1,1]*lambda[1,2]*l^4*r^4+136100*lambda[1,1]*lambda[1,2]*l^3*r^4+304584*lambda[1,1]*lambda[1,2]*l^2*r^4+345024*lambda[1,1]*lambda[1,2]*l*r^4-57150*lambda[1,1]^2*r^2-7653*lambda[1,2]^2*l^6*r^2-53405*lambda[1,1]^2*l^2*r^2-15177*lambda[1,1]^2*l^3*r^2-918*lambda[1,1]*l^3*r^2-56*lambda[1,1]*l^4*r^2-332*lambda[1,2]^2*l^7*r^2-2065*lambda[1,1]^2*l^4*r^2-89655*lambda[1,1]^2*l*r^2-691200*lambda[1,2]^2*r^2+720*r^4-1108763*lambda[1,2]^2*l^3*r^2-1781280*lambda[1,2]^2*l*r^2-1914198*lambda[1,2]^2*l^2*r^2-108*lambda[1,1]^2*l^5*r^2);  
 
c[1]:=8*n*(l+2*n)*(n+3+l)*(2835-7560*n^2*lambda[1,1]^2-32640*n^6*lambda[1,2]^2+9072*n^4*lambda[1,1]^2+44016*n^4*lambda[1,2]^2-24080*n^2*lambda[1,2]^2+270*lambda[1,1]*lambda[1,2]*l^3+4644*lambda[1,1]*lambda[1,2]*l^2+702*lambda[1,1]*lambda[1,2]*l+1155*lambda[1,2]^2*l^4-3672*lambda[1,1]*lambda[1,2]+8960*lambda[1,2]^2*n^8+6048*lambda[1,2]*n^4-7560*lambda[1,2]*n^2+7560*lambda[1,1]*n^2-1890*lambda[1,1]+1512*lambda[1,2]+22680*n^2*lambda[1,1]*lambda[1,2]+17280*n^6*lambda[1,1]*lambda[1,2]-1890*lambda[1,1]*l+2646*lambda[1,2]*l^2+4158*lambda[1,2]*l-1701*lambda[1,1]^2*l^2-378*lambda[1,1]^2*l+750*lambda[1,2]^2*l^3-1704*lambda[1,2]^2*l-5853*lambda[1,2]^2*l^2-26880*n^5*lambda[1,2]^2*l^2-97920*n^5*lambda[1,2]^2*l+53760*n^6*lambda[1,2]^2*l^2-8960*n^6*lambda[1,2]^2*l+35840*n^7*lambda[1,2]^2*l+44480*n^3*lambda[1,2]^2*l^2-96800*n^4*lambda[1,2]^2*l^2+22240*n^4*lambda[1,2]^2*l+560*lambda[1,2]^2*l^4*n+35840*lambda[1,2]^2*l^3*n^5+88032*n^3*lambda[1,2]^2*l+8960*lambda[1,2]^2*l^4*n^4-26880*lambda[1,2]^2*l^3*n^4-30400*lambda[1,2]^2*l^3*n^3+22800*lambda[1,2]^2*l^3*n^2-8960*lambda[1,2]^2*l^4*n^3+1120*lambda[1,2]^2*l^4*n^2+3560*lambda[1,2]^2*l^3*n+15984*n*lambda[1,1]*lambda[1,2]*l^2-72576*n^3*lambda[1,1]*lambda[1,2]*l-25920*n^3*lambda[1,1]*lambda[1,2]*l^2+51840*n^4*lambda[1,1]*lambda[1,2]*l^2+17280*n^3*lambda[1,1]*lambda[1,2]*l^3-12960*n^4*lambda[1,1]*lambda[1,2]*l+51840*n^5*lambda[1,1]*lambda[1,2]*l+1323*lambda[1,1]^2+15984*n^2*lambda[1,1]*lambda[1,2]*l-35208*n^2*lambda[1,1]*lambda[1,2]*l^2+22680*n*lambda[1,1]*lambda[1,2]*l-12960*lambda[1,1]*lambda[1,2]*l^3*n^2+3744*lambda[1,2]^2-36288*n^4*lambda[1,1]*lambda[1,2]-13448*n^2*lambda[1,2]^2*l-24080*lambda[1,2]^2*l*n-13448*lambda[1,2]^2*l^2*n+47576*lambda[1,2]^2*l^2*n^2+6048*lambda[1,2]*n^2*l^2-3024*lambda[1,2]*n^2*l+12096*lambda[1,2]*n^3*l-3024*lambda[1,2]*n*l^2-7560*lambda[1,2]*n*l+7560*lambda[1,1]*n*l+1080*lambda[1,1]*lambda[1,2]*l^3*n-4536*n*lambda[1,1]^2*l^2-7560*n*lambda[1,1]^2*l+9072*n^2*lambda[1,1]^2*l^2-4536*n^2*lambda[1,1]^2*l+18144*n^3*lambda[1,1]^2*l)*(l-1+2*n)*(n+2+l);  
 
c[2]:=-12*(l-1+2*n)*(n+2+l)*(2+l+2*n)*(2835-20034*n^2*lambda[1,1]^2+18144*n^6*lambda[1,1]^2-32928*n^6*lambda[1,2]^2+3213*n*lambda[1,1]^2+30240*n^4*lambda[1,1]^2+39312*n^5*lambda[1,1]^2-22680*n^3*lambda[1,1]^2-2800*n^4*lambda[1,2]^2+3744*n*lambda[1,2]^2-27440*n^3*lambda[1,2]^2+2448*n^2*lambda[1,2]^2+74256*n^5*lambda[1,2]^2-113280*n^7*lambda[1,2]^2+4725*n+945*l+630*lambda[1,1]*lambda[1,2]*l^4+3150*lambda[1,1]*lambda[1,2]*l^3+4410*lambda[1,1]*lambda[1,2]*l^2+1890*lambda[1,1]*lambda[1,2]*l+13545*lambda[1,2]^2*l^4+17920*lambda[1,2]^2*n^10+62720*lambda[1,2]^2*n^9+15360*lambda[1,2]^2*n^8+1512*lambda[1,2]*n+15120*lambda[1,2]*n^4+17640*lambda[1,2]*n^3+40824*lambda[1,2]*n^2+26208*lambda[1,2]*n^5+22680*lambda[1,1]*n^3+12096*lambda[1,2]*n^6+15120*lambda[1,1]*n^4+1890*lambda[1,1]*n+18900*lambda[1,1]*n^2+5670*n^2+4410*lambda[1,2]*l^3+5670*lambda[1,1]+216*n^2*lambda[1,1]*lambda[1,2]+48384*n^6*lambda[1,1]*lambda[1,2]+3780*n*lambda[1,1]*l^2+18144*n^3*lambda[1,1]^2*l^3-3780*lambda[1,1]*l+13860*lambda[1,2]*l^2+1890*lambda[1,2]*l+3465*lambda[1,2]^2*l^5-10395*lambda[1,1]^2*l^2-2835*lambda[1,1]^2*l^3-4725*lambda[1,1]^2*l-1890*lambda[1,1]*l^2+9135*lambda[1,2]^2*l^3-945*lambda[1,2]^2*l^2+8960*lambda[1,2]^2*l^5*n^4+179200*lambda[1,2]^2*l^3*n^7+304640*lambda[1,2]^2*l^3*n^6-561440*n^5*lambda[1,2]^2*l^2-29504*n^5*lambda[1,2]^2*l-120640*n^6*lambda[1,2]^2*l^2-416320*n^6*lambda[1,2]^2*l-1280*n^7*lambda[1,2]^2*l+223944*n^3*lambda[1,2]^2*l^2+80496*n^4*lambda[1,2]^2*l^2+207296*n^4*lambda[1,2]^2*l+412160*n^7*lambda[1,2]^2*l^2+28905*lambda[1,2]^2*l^4*n-200640*lambda[1,2]^2*l^3*n^5+34560*lambda[1,2]*n^8*lambda[1,1]+89600*lambda[1,2]^2*n^9*l+17920*lambda[1,2]^2*l^5*n^5+89600*lambda[1,2]^2*l^4*n^6+2792*n^3*lambda[1,2]^2*l+98560*lambda[1,2]^2*l^4*n^5+54432*n^5*lambda[1,1]^2*l+54432*n^4*lambda[1,1]^2*l^2-24640*lambda[1,2]^2*l^5*n^3-121280*lambda[1,2]^2*l^4*n^4-322560*lambda[1,2]^2*l^3*n^4+121712*lambda[1,2]^2*l^3*n^3+111724*lambda[1,2]^2*l^3*n^2+4480*lambda[1,2]^2*l^5*n^2-59680*lambda[1,2]^2*l^4*n^3+3990*lambda[1,2]^2*l^5*n+48630*lambda[1,2]^2*l^4*n^2+49104*lambda[1,2]^2*l^3*n-76608*n^5*lambda[1,1]*lambda[1,2]+34560*n^4*lambda[1,1]*lambda[1,2]*l^4+26208*n*lambda[1,1]*lambda[1,2]*l^2-4176*n^3*lambda[1,1]*lambda[1,2]*l-228312*n^3*lambda[1,1]*lambda[1,2]*l^2-29808*n^4*lambda[1,1]*lambda[1,2]*l^2-81216*n^3*lambda[1,1]*lambda[1,2]*l^3+141120*n^4*lambda[1,1]*lambda[1,2]*l^3-232128*n^4*lambda[1,1]*lambda[1,2]*l+5670*n*l+308160*n^6*lambda[1,1]*lambda[1,2]*l+138240*n^7*lambda[1,1]*lambda[1,2]*l+336960*n^5*lambda[1,1]*lambda[1,2]*l^2+71712*n^5*lambda[1,1]*lambda[1,2]*l+26460*lambda[1,1]*n^2*l+2835*lambda[1,1]^2+46764*n^2*lambda[1,1]*lambda[1,2]*l+32832*n^2*lambda[1,1]*lambda[1,2]*l^2+207360*n^6*lambda[1,1]*lambda[1,2]*l^2+138240*n^5*lambda[1,1]*lambda[1,2]*l^3+2178*n*lambda[1,1]*lambda[1,2]*l+14400*lambda[1,1]*lambda[1,2]*l^4*n^3-69732*lambda[1,1]*lambda[1,2]*l^3*n^2+3060*lambda[1,1]*lambda[1,2]*l^4*n-15120*n^4*lambda[1,1]*lambda[1,2]+232*n^2*lambda[1,2]^2*l+744*lambda[1,2]^2*l*n+27720*n^3*lambda[1,1]*lambda[1,2]+84672*n^4*lambda[1,1]^2*l+21189*lambda[1,2]^2*l^2*n+47646*lambda[1,2]^2*l^2*n^2+2268*lambda[1,2]*n^2*l^2+34272*lambda[1,2]*n^3*l^2+30240*lambda[1,1]*n^3*l+36288*lambda[1,2]*n^5*l+36288*lambda[1,2]*n^4*l^2+23436*lambda[1,2]*n^2*l+17136*lambda[1,2]*n^3*l+17262*lambda[1,2]*n*l^2+46242*lambda[1,2]*n*l+13230*lambda[1,1]*n*l+4032*n^2*lambda[1,2]*l^3+12096*n^3*lambda[1,2]*l^3+252*n*lambda[1,2]*l^3+56448*lambda[1,2]*n^4*l-28080*lambda[1,1]*lambda[1,2]*l^4*n^2+23418*lambda[1,1]*lambda[1,2]*l^3*n+15120*n^2*lambda[1,1]*l^2+179200*lambda[1,2]^2*n^8*l^2+259840*lambda[1,2]^2*n^8*l+97920*n^7*lambda[1,1]*lambda[1,2]-10962*n*lambda[1,1]^2*l^3-38367*n*lambda[1,1]^2*l^2-24192*n*lambda[1,1]^2*l+6048*n^2*lambda[1,1]^2*l^3-378*n^2*lambda[1,1]^2*l^2-53676*n^2*lambda[1,1]^2*l+51408*n^3*lambda[1,1]^2*l^2+40824*n^3*lambda[1,1]^2*l-3672*n*lambda[1,1]*lambda[1,2]);  
 
c[3]:=6*(l+2*n+3)*(2*l+2*n-1)*(3780+108486*n^2*lambda[1,1]^2+18144*n^6*lambda[1,1]^2-315168*n^6*lambda[1,2]^2+58023*n*lambda[1,1]^2+105840*n^4*lambda[1,1]^2+69552*n^5*lambda[1,1]^2+113400*n^3*lambda[1,1]^2+32480*n^4*lambda[1,2]^2+33984*n*lambda[1,2]^2+322000*n^3*lambda[1,2]^2+188928*n^2*lambda[1,2]^2-419664*n^5*lambda[1,2]^2+128640*n^7*lambda[1,2]^2+6615*n+1890*l-7560*lambda[1,1]*lambda[1,2]*l^4-18900*lambda[1,1]*lambda[1,2]*l^3+7560*lambda[1,1]*lambda[1,2]*l^2+41580*lambda[1,1]*lambda[1,2]*l-18900*lambda[1,2]^2*l^4+22680*lambda[1,1]*lambda[1,2]+17920*lambda[1,2]^2*n^10+116480*lambda[1,2]^2*n^9+257280*lambda[1,2]^2*n^8+29232*lambda[1,2]*n+65520*lambda[1,2]*n^4+22680*lambda[1,2]*n^3-2016*lambda[1,2]*n^2+46368*lambda[1,2]*n^5+37800*lambda[1,1]*n^3+12096*lambda[1,2]*n^6+15120*lambda[1,1]*n^4+28350*lambda[1,1]*n+41580*lambda[1,1]*n^2+5670*n^2-3780*lambda[1,2]*l^3+15120*lambda[1,1]+22680*lambda[1,2]+229536*n^2*lambda[1,1]*lambda[1,2]+330624*n^6*lambda[1,1]*lambda[1,2]+11340*n*lambda[1,1]*l^2+18144*n^3*lambda[1,1]^2*l^3+7560*lambda[1,1]*l-7560*lambda[1,2]*l^2+11340*lambda[1,2]*l-5670*lambda[1,2]^2*l^5-1890*lambda[1,1]^2*l^3+13230*lambda[1,1]^2*l-5670*lambda[1,2]^2*l^3+22680*lambda[1,2]^2*l+30240*lambda[1,2]^2*l^2+35840*lambda[1,2]^2*l^5*n^4+179200*lambda[1,2]^2*l^3*n^7+680960*lambda[1,2]^2*l^3*n^6-30560*n^5*lambda[1,2]^2*l^2-1071104*n^5*lambda[1,2]^2*l+1196480*n^6*lambda[1,2]^2*l^2+242240*n^6*lambda[1,2]^2*l+912640*n^7*lambda[1,2]^2*l-1071336*n^3*lambda[1,2]^2*l^2-1431504*n^4*lambda[1,2]^2*l^2-1044304*n^4*lambda[1,2]^2*l+842240*n^7*lambda[1,2]^2*l^2-99405*lambda[1,2]^2*l^4*n+686400*lambda[1,2]^2*l^3*n^5+34560*lambda[1,2]*n^8*lambda[1,1]+89600*lambda[1,2]^2*n^9*l+17920*lambda[1,2]^2*l^5*n^5+89600*lambda[1,2]^2*l^4*n^6-5608*n^3*lambda[1,2]^2*l+259840*lambda[1,2]^2*l^4*n^5+54432*n^5*lambda[1,1]^2*l+54432*n^4*lambda[1,1]^2*l^2+2240*lambda[1,2]^2*l^5*n^3+147520*lambda[1,2]^2*l^4*n^4-305760*lambda[1,2]^2*l^3*n^4-903088*lambda[1,2]^2*l^3*n^3-520796*lambda[1,2]^2*l^3*n^2-32480*lambda[1,2]^2*l^5*n^2-194080*lambda[1,2]^2*l^4*n^3-17850*lambda[1,2]^2*l^5*n-245370*lambda[1,2]^2*l^4*n^2-129396*lambda[1,2]^2*l^3*n+245952*n^5*lambda[1,1]*lambda[1,2]+34560*n^4*lambda[1,1]*lambda[1,2]*l^4-36792*n*lambda[1,1]*lambda[1,2]*l^2+26064*n^3*lambda[1,1]*lambda[1,2]*l+119448*n^3*lambda[1,1]*lambda[1,2]*l^2+726192*n^4*lambda[1,1]*lambda[1,2]*l^2+201024*n^3*lambda[1,1]*lambda[1,2]*l^3+342720*n^4*lambda[1,1]*lambda[1,2]*l^3+423072*n^4*lambda[1,1]*lambda[1,2]*l+5670*n*l+590400*n^6*lambda[1,1]*lambda[1,2]*l+138240*n^7*lambda[1,1]*lambda[1,2]*l+699840*n^5*lambda[1,1]*lambda[1,2]*l^2+857952*n^5*lambda[1,1]*lambda[1,2]*l+49140*lambda[1,1]*n^2*l+11340*lambda[1,1]^2+129924*n^2*lambda[1,1]*lambda[1,2]*l-156168*n^2*lambda[1,1]*lambda[1,2]*l^2+207360*n^6*lambda[1,1]*lambda[1,2]*l^2+138240*n^5*lambda[1,1]*lambda[1,2]*l^3+157158*n*lambda[1,1]*lambda[1,2]*l+54720*lambda[1,1]*lambda[1,2]*l^4*n^3-82332*lambda[1,1]*lambda[1,2]*l^3*n^2-24660*lambda[1,1]*lambda[1,2]*l^4*n+85680*n^4*lambda[1,1]*lambda[1,2]+328672*n^2*lambda[1,2]^2*l+129264*lambda[1,2]^2*l*n+153720*n^3*lambda[1,1]*lambda[1,2]+160272*n^4*lambda[1,1]^2*l+47439*lambda[1,2]^2*l^2*n-185874*lambda[1,2]^2*l^2*n^2+47628*lambda[1,2]*n^2*l^2+74592*lambda[1,2]*n^3*l^2+30240*lambda[1,1]*n^3*l+36288*lambda[1,2]*n^5*l+36288*lambda[1,2]*n^4*l^2+15876*lambda[1,2]*n^2*l+107856*lambda[1,2]*n^3*l-6678*lambda[1,2]*n*l^2-10458*lambda[1,2]*n*l+32130*lambda[1,1]*n*l+14112*n^2*lambda[1,2]*l^3+12096*n^3*lambda[1,2]*l^3+5292*n*lambda[1,2]*l^3+106848*lambda[1,2]*n^4*l+2160*lambda[1,1]*lambda[1,2]*l^4*n^2-93762*lambda[1,1]*lambda[1,2]*l^3*n+15120*n^2*lambda[1,1]*l^2+179200*lambda[1,2]^2*n^8*l^2+501760*lambda[1,2]^2*n^8*l+178560*n^7*lambda[1,1]*lambda[1,2]-3402*n*lambda[1,1]^2*l^3+16443*n*lambda[1,1]^2*l^2+77868*n*lambda[1,1]^2*l+21168*n^2*lambda[1,1]^2*l^3+67662*n^2*lambda[1,1]^2*l^2+127764*n^2*lambda[1,1]^2*l+111888*n^3*lambda[1,1]^2*l^2+176904*n^3*lambda[1,1]^2*l+124848*n*lambda[1,1]*lambda[1,2])*(l+2*n);  
 
c[4]:=-(1+2*n)*(2*l+2*n-1)*(2*l-3+2*n)*(l+2*n+3)*(2+l+2*n)*(2835+46872*n^2*lambda[1,1]^2+218240*n^6*lambda[1,2]^2+21168*n*lambda[1,1]^2+9072*n^4*lambda[1,1]^2+36288*n^3*lambda[1,1]^2+181616*n^4*lambda[1,2]^2+3744*n*lambda[1,2]^2+25024*n^3*lambda[1,2]^2+1296*n^2*lambda[1,2]^2+305920*n^5*lambda[1,2]^2+71680*n^7*lambda[1,2]^2+5670*lambda[1,1]*lambda[1,2]*l^3+11340*lambda[1,1]*lambda[1,2]*l^2+5670*lambda[1,1]*lambda[1,2]*l+2835*lambda[1,2]^2*l^4+8960*lambda[1,2]^2*n^8+9072*lambda[1,2]*n+6048*lambda[1,2]*n^4+24192*lambda[1,2]*n^3+28728*lambda[1,2]*n^2+15120*lambda[1,1]*n+7560*lambda[1,1]*n^2+5670*lambda[1,1]+64152*n^2*lambda[1,1]*lambda[1,2]+17280*n^6*lambda[1,1]*lambda[1,2]+5670*lambda[1,1]*l+5670*lambda[1,2]*l^2+5670*lambda[1,2]*l+2835*lambda[1,1]^2*l^2+5670*lambda[1,1]^2*l+5670*lambda[1,2]^2*l^3+2835*lambda[1,2]^2*l^2+295680*n^5*lambda[1,2]^2*l^2+600960*n^5*lambda[1,2]^2*l+53760*n^6*lambda[1,2]^2*l^2+241920*n^6*lambda[1,2]^2*l+35840*n^7*lambda[1,2]^2*l+463680*n^3*lambda[1,2]^2*l^2+575200*n^4*lambda[1,2]^2*l^2+652640*n^4*lambda[1,2]^2*l+11760*lambda[1,2]^2*l^4*n+35840*lambda[1,2]^2*l^3*n^5+272992*n^3*lambda[1,2]^2*l+8960*lambda[1,2]^2*l^4*n^4+152320*lambda[1,2]^2*l^3*n^4+220480*lambda[1,2]^2*l^3*n^3+128720*lambda[1,2]^2*l^3*n^2+26880*lambda[1,2]^2*l^4*n^3+28000*lambda[1,2]^2*l^4*n^2+29640*lambda[1,2]^2*l^3*n+103680*n^5*lambda[1,1]*lambda[1,2]+75168*n*lambda[1,1]*lambda[1,2]*l^2+393984*n^3*lambda[1,1]*lambda[1,2]*l+181440*n^3*lambda[1,1]*lambda[1,2]*l^2+51840*n^4*lambda[1,1]*lambda[1,2]*l^2+17280*n^3*lambda[1,1]*lambda[1,2]*l^3+246240*n^4*lambda[1,1]*lambda[1,2]*l+51840*n^5*lambda[1,1]*lambda[1,2]*l+2835*lambda[1,1]^2+238896*n^2*lambda[1,1]*lambda[1,2]*l+198072*n^2*lambda[1,1]*lambda[1,2]*l^2+44280*n*lambda[1,1]*lambda[1,2]*l+38880*lambda[1,1]*lambda[1,2]*l^3*n^2+222912*n^4*lambda[1,1]*lambda[1,2]+23128*n^2*lambda[1,2]^2*l+9600*lambda[1,2]^2*l*n+200448*n^3*lambda[1,1]*lambda[1,2]+16104*lambda[1,2]^2*l^2*n+137816*lambda[1,2]^2*l^2*n^2+6048*lambda[1,2]*n^2*l^2+33264*lambda[1,2]*n^2*l+12096*lambda[1,2]*n^3*l+9072*lambda[1,2]*n*l^2+22680*lambda[1,2]*n*l+7560*lambda[1,1]*n*l+27000*lambda[1,1]*lambda[1,2]*l^3*n+13608*n*lambda[1,1]^2*l^2+37800*n*lambda[1,1]^2*l+9072*n^2*lambda[1,1]^2*l^2+49896*n^2*lambda[1,1]^2*l+18144*n^3*lambda[1,1]^2*l+3888*n*lambda[1,1]*lambda[1,2]);  

Case(ii) α = 12

The ‘starting’ functions are given by

Ψ1 = -2rl+1(-6 - 9λ 1,1l - 18λ1,1 - 36λ1,2l - 11λ1,2l2 - 36λ 1,2 + 6r2 + lr2 - l + 7λ 1,1lr2 + λ 1,1l2r2 - λ 1,1l2 + 6λ 1,1r2 + 6λ 1,2lr2 + 7λ 1,2l2r2 + λ 1,2l3r2 - λ 1,2l3)
Ψ2 = rl+1(1890 + 1845l - 81318λ 1,1lr2 + 76230λ 1,12 - 52536λ 1,2l3r2 + 435l2 - 8190r2 + 22680λ 1,1 + 86940λ1,2 + 85188λ1,2l2 + 28944λ 1,1l + 141570λ1,2l + 7882λ1,1l5λ 1,2 + 30l3 + 353204λ 1,1l3λ 1,2 + 3162λ1,2l4 + 74172λ 1,1l4λ 1,2 + 1926λ1,1l3 + 24024λ 1,2l3 + 70231λ 1,12l2 + 121287λ 1,12l + 18763λ 1,12l3 - 237510λ 1,12r2 + 127260λ 1,12r4 + 52920λ 1,1r4 + 120960λ 1,2r4 - 2419200λ 1,22r2 + 725760λ 1,22r4 + 3396λ 1,2l4r4 - 6558λ 1,2l4r2 + 2196λ 1,1l3r4 - 4122λ 1,1l3r2 + 580860λ 1,2λ1,1 + 71609λ1,22l5 + 6663λ 1,22l6 + 11862λ 1,1l2 - 2786160λ 1,2λ1,1lr2 + 1197720λ 1,2λ1,1lr4 + 940212λ 1,2λ1,1l2r4 - 2009326λ 1,2λ1,1l2r2 - 312λ 1,2l5r2 + 156λ 1,2l5r4 - 216λ 1,1l4r2 + 108λ 1,1l4r4 - 40901λ 1,12l3r2 + 21808λ 1,12l3r4 + 2504λ 1,12l4r4 - 4843λ 1,12l4r2 + 110λ 1,12l5r4 + 896956λ 1,2λ1,1l2 + 254λ 1,22l7 + 156λ 1,2l5 + 6300r4 + 108λ 1,1l4 + 110λ 1,12l5 + 1150914λ 1,2λ1,1l + 2442420λ1,22l + 2478924λ 1,22l2 + 1330517λ 1,22l3 - 15930λ 1,1l5λ 1,2r2 - 664λ 1,1l6λ 1,2r2 + 8048λ 1,1l5λ 1,2r4 + 332λ 1,1l6λ 1,2r4 - 751350λ 1,1l3λ 1,2r2 - 152770λ 1,1l4λ 1,2r2 + 370552λ 1,1l3λ 1,2r4 + 77056λ 1,1l4λ 1,2r4 + 332λ 1,1l6λ 1,2 + 30l3r4 - 320559λ 1,12lr2 + 174882λ 1,12lr4 + 90076λ 1,12l2r4 - 165407λ 1,12l2r2 + 49644λ 1,1lr4 + 16092λ 1,1l2r4 + 185112λ 1,2lr4 + 106044λ 1,2l2r4 + 27852λ 1,2l3r4 + 408093λ 1,22l4 + 982800λ 1,22 + 2339λ 1,12l4 - 201642λ 1,2l2r2 - 975l2r2 - 284760λ 1,2r2 - 28164λ 1,1l2r2 - 220λ 1,12l5r2 - 1575000λ 1,2λ1,1r2 + 604800λ 1,2λ1,1r4 - 141309λ 1,22l5r2 - 13199λ 1,22l6r2 + 68176λ 1,22l5r4 + 6536λ 1,22l6r4 + 254λ 1,22l7r4 - 508λ 1,22l7r2 - 5509080λ 1,22lr2 - 5247978λ 1,22l2r2 + 1881792λ 1,22lr4 + 2018268λ 1,22l2r4 + 1149618λ 1,22l3r4 - 2701823λ 1,22l3r2 + 372316λ 1,22l4r4 - 810583λ 1,22l4r2 - 378192λ 1,2lr2 - 60l3r2 + 3210lr4 + 540l2r4 - 5055lr2 - 84420λ 1,1r2)
c[1] = 8n(l + 2n)(n + 3 + l)(l + 2n + 1)(n + 4 + l)(51975 + 28215λ1,12 - 62370λ 1,1 + 71280λ1,2 + 32670λ1,2l2 + 20790λ 1,1l - 2970λ1,2l + 64512n7λ 1,22 + 147840n5λ 1,2λ1,1l - 27720n2λ 1,12 + 36960n2λ 1,2λ1,1l3 + 49280n3λ 1,1l3λ 1,2 + 332640n4λ 1,2λ1,1l + 2310λ1,1l3λ 1,2 - 440880λ1,2λ1,1ln2 - 104280n2λ 1,2λ1,1l2 - 7425λ 1,12l2 - 26730λ 1,12l + 47520λ 1,2n2l2 + 95040λ 1,2n3l + 15400λ 1,2λ1,1l3n - 165440n3λ 1,2λ1,1l - 87120λ1,2λ1,1 + 17820λ1,2λ1,1l2 - 130680λ 1,2n - 83160λ1,2n2 + 83160λ 1,1n + 83160λ1,1n2 + 95040λ 1,2n3 + 47520λ 1,2n4 + 39600n4λ 1,12 - 1568n2λ 1,22 - 243792nλ 1,22 - 50768n4λ 1,22 + 23760λ 1,2nl2 - 106920λ 1,2nl + 118800λ1,2n2l + 83160λ 1,1nl + 79200n3λ 1,12 - 67320nλ 1,12 + 86790λ 1,2λ1,1l + 221760n3λ 1,2λ1,1l2 - 105600λ 1,22l - 20385λ 1,22l2 + 14070λ 1,22l3 - 6272n6λ 1,22 + 381408n3λ 1,22 - 244608n5λ 1,22 + 233640 1,2λ1,1 + 147840n5λ 1,2λ1,1 + 49280n6λ 1,2λ1,1 - 337920n3λ 1,2λ1,1 - 45760n4λ 1,2λ1,1 - 75240λ1,2λ1,1l2n + 99000n2λ 1,12l + 143000λ 1,2λ1,1ln + 64512n5λ 1,22l3 + 241920n5λ 1,22l2 - 111368λ 1,22ln + 126432λ 1,22l2n - 47520nλ 1,12l - 578592λ 1,22ln4 - 387072λ 1,22l2n3 + 543624λ 1,22ln2 - 2968λ 1,22l3n + 3024λ 1,22l4n + 44960λ 1,22ln3 + 209664λ 1,22ln6 - 50064n2λ 1,22l3 - 67200λ 1,22ln5 - 105504λ 1,22l2n4 + 99816λ 1,22l2n2 + 79200n3λ 1,12l + 40040n2λ 1,2λ1,1 + 64512n7λ 1,22l + 39600λ 1,12l2n2 + 19800λ 1,12l2n + 147840n4λ 1,2λ1,1l2 + 112896n4λ 1,22l3 + 16128n4λ 1,22l4 - 34496n3λ 1,22l3 + 16128n3λ 1,22l4 + 10080n2λ 1,22l4 + 96768n6λ 1,22l2 + 6615λ 1,22l4 + 16128λ 1,22n8 + 84960λ 1,22)
c[2] = -12(l + 2n)(n + 3 + l)(3 + l + 2n)(207900 + 155925n + 51975l - 69300λ1,12 + 103950nl + 103950n2 + 138600λ 1,1 + 55440λ1,2 + 395010λ1,2l2 + 173250λ 1,1l + 374220λ1,2l + 864640n7λ 1,22 + 394240n7λ 1,2λ1,1l + 4123680n5λ 1,2λ1,1l + 221760n3λ 1,1l4λ 1,2 + 2143680n6λ 1,2λ1,1l + 81510n2λ 1,12 + 79200n6λ 1,12 + 525580n2λ 1,2λ1,1l3 + 1337600n3λ 1,1l3λ 1,2 + 394240n5λ 1,1l3λ 1,2 + 3303520n4λ 1,2λ1,1l + 2587200n5λ 1,2λ1,1l2 + 55440λ 1,1l3λ 1,2 + 98560n4λ 1,1l4λ 1,2 + 1305920n4λ 1,1l3λ 1,2 + 591360n6λ 1,2λ1,1l2 - 408100λ 1,2λ1,1ln2 + 468160n2λ 1,2λ1,1l2 + 6930λ 1,1l4λ 1,2 + 76230λ1,2l3 - 103950λ 1,12l2 - 155925λ 1,12l - 17325λ 1,12l3 + 50820λ 1,2λ1,1l4n + 706860λ 1,2n2l2 + 1401840λ 1,2n3l + 227370λ 1,2λ1,1l3n + 775280n3λ 1,2λ1,1l + 55440λ1,2λ1,1 + 24255λ1,22l5 + 34650λ 1,1l2 + 145530λ 1,2λ1,1l2 + 431640λ 1,2n + 954360λ1,2n2 + 561330λ 1,1n + 790020λ1,1n2 + 95040λ 1,2n6 + 526680λ 1,1n3 + 930600λ 1,2n3 + 815760λ 1,2n4 + 762960n4λ 1,12 + 251376n2λ 1,22 + 173664nλ 1,22 + 166320λ 1,1n4 + 459360λ 1,2n5 - 1070560n4λ 1,22 + 539550λ 1,2nl2 + 957330λ 1,2nl + 1205820λ1,2n2l + 658350λ 1,1nl + 669240n3λ 1,12 - 191235nλ 1,12 + 152460λ 1,2λ1,1l + 2134440n3λ 1,2λ1,1l2 + 55440λ 1,22l + 221760λ 1,22l2 + 301455λ 1,22l3 + 332640λ 1,1n3l + 776160λ 1,2n3l2 + 1077120λ 1,2n4l + 706860λ 1,1n2l + 285120λ 1,2n4l2 + 285120λ 1,2n5l + 67808n6λ 1,22 + 382800n5λ 1,12 - 555680n3λ 1,22 - 788528n5λ 1,22 + 120780λ 1,2nl3 - 22440 1,2λ1,1 + 1643840n5λ 1,2λ1,1 + 1534720n6λ 1,2λ1,1 + 158400λ1,2n2l3 + 95040λ 1,2n3l3 + 180180λ 1,1nl2 + 166320λ 1,1n2l2 - 361240n3λ 1,2λ1,1 + 629200n4λ 1,2λ1,1 + 628992n5λ 1,22l4 + 163680λ 1,2λ1,1l2n + 1602048n6λ 1,22l3 + 32256n5λ 1,22l5 + 734580n2λ 1,12l - 193710λ 1,2λ1,1ln + 1946112n7λ 1,22l2 + 161280n6λ 1,22l4 + 2494016n5λ 1,22l3 + 2560992n5λ 1,22l2 + 579912λ 1,22ln + 565365λ 1,22l2n - 85800nλ 1,12l - 1679008λ 1,22ln4 - 692664λ 1,22l2n3 - 130088λ 1,22ln2 + 486120λ 1,22l3n + 188601λ 1,22l4n + 237600n5λ 1,12l - 1467416λ 1,22ln3 + 2455488λ 1,22ln6 + 298364n2λ 1,22l3 - 161472λ 1,22ln5 - 223184λ 1,22l2n4 + 16310λ 1,22l2n2 + 897600n4λ 1,12l + 640640n7λ 1,2λ1,1 + 1334520n3λ 1,12l + 646800λ 1,12l2n3 + 79200λ 1,12l3n3 + 141680n2λ 1,1l4λ 1,2 + 24318λ1,22l5n - 476520n2λ 1,2λ1,1 + 2782976n7λ 1,22l + 602910λ 1,12l2n2 + 132000λ 1,12l3n2 + 89265λ 1,12l2n + 31350λ 1,12l3n + 3784880n4λ 1,2λ1,1l2 + 1257088n4λ 1,22l3 + 736064n4λ 1,22l4 + 91392n4λ 1,22l5 + 151024n3λ 1,22l3 + 329952n3λ 1,22l4 + 79296n3λ 1,22l5 + 169246n2λ 1,22l4 + 322560n7λ 1,22l3 + 237600n4λ 1,12l2 + 3858624n6λ 1,22l2 + 43008n2λ 1,22l5 + 159390λ 1,22l4 + 322560λ 1,22n8l2 + 161280λ 1,22n9l + 1145088λ 1,22n8l + 98560λ 1,2n8λ 1,1 + 263424λ1,22n9 + 32256λ 1,22n10 + 761600λ 1,22n8)
c[3] = 6(l + 2n + 4)(2l + 2n - 1)(311850 + 259875n + 103950l + 311850λ1,12 + 103950nl + 103950n2 + 623700λ 1,1 + 207900λ1,2l2 + 623700λ 1,1l + 4353664n7λ 1,22 + 394240n7λ 1,2λ1,1l + 10111200n5λ 1,2λ1,1l + 369600n3λ 1,1l4λ 1,2 + 3178560n6λ 1,2λ1,1l + 2761110n2λ 1,12 + 79200n6λ 1,12 + 3066580n2λ 1,2λ1,1l3 + 3850880n3λ 1,1l3λ 1,2 + 394240n5λ 1,1l3λ 1,2 + 15869920n4λ 1,2λ1,1l + 3917760n5λ 1,2λ1,1l2 + 98560n4λ 1,1l4λ 1,2 + 2045120n4λ 1,1l3λ 1,2 + 591360n6λ 1,2λ1,1l2 + 3056900λ 1,2λ1,1ln2 + 5901280n2λ 1,2λ1,1l2 + 69300λ 1,2l3 + 242550λ 1,12l2 + 519750λ 1,12l + 34650λ 1,12l3 + 207900λ 1,2λ1,1l4n + 1871100λ 1,2n2l2 + 3508560λ 1,2n3l + 860310λ 1,2λ1,1l3n + 12048080n3λ 1,2λ1,1l - 34650λ1,22l5 + 138600λ 1,1l2 - 178200λ 1,2n + 1009800λ1,2n2 + 1600830λ 1,1n + 1621620λ1,1n2 + 95040λ 1,2n6 + 803880λ 1,1n3 + 2427480λ 1,2n3 + 1924560λ 1,2n4 + 1686960n4λ 1,12 - 1271376n2λ 1,22 + 84960nλ 1,22 + 166320λ 1,1n4 + 681120λ 1,2n5 - 6828928n4λ 1,22 + 1052370λ 1,2nl2 + 721710λ 1,2nl + 3118500λ1,2n2l + 1420650λ 1,1nl + 2794440n3λ 1,12 + 1483515nλ 1,12 + 11614680n3λ 1,2λ1,1l2 - 311850λ 1,22l2 - 519750λ 1,22l3 + 332640λ 1,1n3l + 1219680λ 1,2n3l2 + 1631520λ 1,2n4l + 1122660λ 1,1n2l + 285120λ 1,2n4l2 + 285120λ 1,2n5l + 4621280n6λ 1,22 + 567600n5λ 1,12 - 5744864n3λ 1,22 - 781136n5λ 1,22 + 287100λ 1,2nl3 - 336600 1,2λ1,1 + 7113920n5λ 1,2λ1,1 + 3604480n6λ 1,2λ1,1 + 269280λ1,2n2l3 + 95040λ 1,2n3l3 + 318780λ 1,1nl2 + 166320λ 1,1n2l2 + 3057560n3λ 1,2λ1,1 + 7282000n4λ 1,2λ1,1 + 983808n5λ 1,22l4 + 718080λ 1,2λ1,1l2n + 2429952n6λ 1,22l3 + 32256n5λ 1,22l5 + 3645180n2λ 1,12l - 503250λ 1,2λ1,1ln + 2892288n7λ 1,22l2 + 161280n6λ 1,22l4 + 6929216n5λ 1,22l3 + 16384032n5λ 1,22l2 - 1183080λ 1,22ln - 3599565λ 1,22l2n + 2247300nλ 1,12l - 3656368λ 1,22ln4 - 4761960λ 1,22l2n3 - 7961912λ 1,22ln2 - 2549220λ 1,22l3n - 478065λ 1,22l4n + 237600n5λ 1,12l - 13453544λ 1,22ln3 + 13839168λ 1,22ln6 - 2386780n2λ 1,22l3 + 11443968λ 1,22ln5 + 9940816λ 1,22l2n4 - 9140530λ 1,22l2n2 + 1359600n4λ 1,12l + 936320n7λ 1,2λ1,1 + 3090120n3λ 1,12l + 1016400λ 1,12l2n3 + 79200λ 1,12l3n3 + 474320n2λ 1,1l4λ 1,2 + 13230λ1,22l5n - 273240n2λ 1,2λ1,1 + 6922496n7λ 1,22l + 1573110λ 1,12l2n2 + 224400λ 1,12l3n2 + 1071015λ 1,12l2n + 169950λ 1,12l3n + 9883280n4λ 1,2λ1,1l2 + 8833888n4λ 1,22l3 + 2214464n4λ 1,22l4 + 150528n4λ 1,22l5 + 3588304n3λ 1,22l3 + 2104032n3λ 1,22l4 + 256704n3λ 1,22l5 + 483406n2λ 1,22l4 + 322560n7λ 1,22l3 + 237600n4λ 1,12l2 + 10067904n6λ 1,22l2 + 168672n2λ 1,22l5 - 242550λ 1,22l4 + 322560λ 1,22n8l2 + 161280λ 1,22n9l + 1677312λ 1,22n8l + 98560λ 1,2n8λ 1,1 + 381696λ1,22n9 + 32256λ 1,22n10 + 1826048λ 1,22n8)(l + 2n + 1)
c[4] = -(2n + 3)(2l + 2n - 1)(2l - 3 + 2n)(l + 2n + 4)(3 + l + 2n)(51975 + 51975λ1,12 + 103950λ 1,1 + 103950λ1,2l2 + 103950λ 1,1l + 103950λ1,2l + 193536n7λ 1,22 + 147840n5λ 1,2λ1,1l + 447480n2λ 1,12 + 184800n2λ 1,2λ1,1l3 + 49280n3λ 1,1l3λ 1,2 + 1071840n4λ 1,2λ1,1l + 103950λ1,1l3λ 1,2 + 2537040λ1,2λ1,1ln2 + 1448040n2λ 1,2λ1,1l2 + 51975λ 1,12l2 + 103950λ 1,12l + 47520λ 1,2n2l2 + 95040λ 1,2n3l + 237160λ 1,2λ1,1l3n + 2643520n3λ 1,2λ1,1l + 207900λ1,2λ1,1l2 + 178200λ 1,2n + 487080λ1,2n2 + 249480λ 1,1n + 83160λ1,1n2 + 285120λ 1,2n3 + 47520λ 1,2n4 + 39600n4λ 1,12 + 104224n2λ 1,22 + 14160nλ 1,22 + 2018992n4λ 1,22 + 118800λ 1,2nl2 + 415800λ 1,2nl + 403920λ1,2n2l + 83160λ 1,1nl + 237600n3λ 1,12 + 273240nλ 1,12 + 103950λ 1,2λ1,1l + 813120n3λ 1,2λ1,1l2 + 51975λ 1,22l2 + 103950λ 1,22l3 + 896896n6λ 1,22 + 767904n3λ 1,22 + 1975680n5λ 1,22 + 151800 1,2λ1,1 + 443520n5λ 1,2λ1,1 + 49280n6λ 1,2λ1,1 + 1943040n3λ 1,2λ1,1 + 1432640n4λ 1,2λ1,1 + 972840λ1,2λ1,1l2n + 336600n2λ 1,12l + 834680λ 1,2λ1,1ln + 64512n5λ 1,22l3 + 822528n5λ 1,22l2 + 169960λ 1,22ln + 533040λ 1,22l2n + 388080nλ 1,12l + 4488288λ 1,22ln4 + 3545472λ 1,22l2n3 + 1034664λ 1,22ln2 + 567560λ 1,22l3n + 136080λ 1,22l4n + 3509792λ 1,22ln3 + 661248λ 1,22ln6 + 1168944n2λ 1,22l3 + 2545536λ 1,22ln5 + 2555616λ 1,22l2n4 + 2176296λ 1,22l2n2 + 79200n3λ 1,12l + 969320n2λ 1,2λ1,1 + 64512n7λ 1,22l + 39600λ 1,12l2n2 + 99000λ 1,12l2n + 147840n4λ 1,2λ1,1l2 + 435456n4λ 1,22l3 + 16128n4λ 1,22l4 + 1062208n3λ 1,22l3 + 80640n3λ 1,22l4 + 155232n2λ 1,22l4 + 96768n6λ 1,22l2 + 51975λ 1,22l4 + 16128λ 1,22n8)

Expressions for all quantities involved are provided below.

 
Psi_1:=-2*r^(l+1)*(-6-9*lambda[1,1]*l-18*lambda[1,1]-36*lambda[1,2]*l-11*lambda[1,2]*l^2-36*lambda[1,2]+6*r^2+l*r^2-l+7*lambda[1,1]*l*r^2+lambda[1,1]*l^2*r^2-lambda[1,1]*l^2+6*lambda[1,1]*r^2+6*lambda[1,2]*l*r^2+7*lambda[1,2]*l^2*r^2+lambda[1,2]*l^3*r^2-lambda[1,2]*l^3);  
 
Psi_2:=r^(l+1)*(1890+1845*l+76230*lambda[1,1]^2+435*l^2-84420*lambda[1,1]*r^2-81318*lambda[1,1]*l*r^2-8190*r^2+22680*lambda[1,1]+86940*lambda[1,2]-28164*lambda[1,1]*l^2*r^2+85188*lambda[1,2]*l^2+28944*lambda[1,1]*l+141570*lambda[1,2]*l-284760*lambda[1,2]*r^2-52536*lambda[1,2]*l^3*r^2-201642*lambda[1,2]*l^2*r^2-378192*lambda[1,2]*l*r^2-975*l^2*r^2+30*l^3*r^4-237510*lambda[1,1]^2*r^2-60*l^3*r^2+7882*lambda[1,1]*l^5*lambda[1,2]+127260*lambda[1,1]^2*r^4+52920*lambda[1,1]*r^4+120960*lambda[1,2]*r^4+30*l^3-2419200*lambda[1,2]^2*r^2+725760*lambda[1,2]^2*r^4+540*l^2*r^4+3210*l*r^4+353204*lambda[1,1]*l^3*lambda[1,2]+3162*lambda[1,2]*l^4+74172*lambda[1,1]*l^4*lambda[1,2]+1926*lambda[1,1]*l^3+24024*lambda[1,2]*l^3+70231*lambda[1,1]^2*l^2+121287*lambda[1,1]^2*l+18763*lambda[1,1]^2*l^3-2009326*lambda[1,2]*lambda[1,1]*l^2*r^2+580860*lambda[1,2]*lambda[1,1]+71609*lambda[1,2]^2*l^5+6663*lambda[1,2]^2*l^6+11862*lambda[1,1]*l^2+896956*lambda[1,2]*lambda[1,1]*l^2+254*lambda[1,2]^2*l^7+156*lambda[1,2]*l^5+6300*r^4+108*lambda[1,1]*l^4+110*lambda[1,1]^2*l^5+1150914*lambda[1,2]*lambda[1,1]*l+2442420*lambda[1,2]^2*l+2478924*lambda[1,2]^2*l^2+1330517*lambda[1,2]^2*l^3-165407*lambda[1,1]^2*l^2*r^2+90076*lambda[1,1]^2*l^2*r^4+174882*lambda[1,1]^2*l*r^4-320559*lambda[1,1]^2*l*r^2+332*lambda[1,1]*l^6*lambda[1,2]+106044*lambda[1,2]*l^2*r^4+185112*lambda[1,2]*l*r^4+16092*lambda[1,1]*l^2*r^4+49644*lambda[1,1]*l*r^4-6558*lambda[1,2]*l^4*r^2+3396*lambda[1,2]*l^4*r^4+27852*lambda[1,2]*l^3*r^4-4122*lambda[1,1]*l^3*r^2+2196*lambda[1,1]*l^3*r^4+108*lambda[1,1]*l^4*r^4-216*lambda[1,1]*l^4*r^2+156*lambda[1,2]*l^5*r^4-312*lambda[1,2]*l^5*r^2-40901*lambda[1,1]^2*l^3*r^2-15930*lambda[1,1]*l^5*lambda[1,2]*r^2-4843*lambda[1,1]^2*l^4*r^2+2504*lambda[1,1]^2*l^4*r^4+21808*lambda[1,1]^2*l^3*r^4+332*lambda[1,1]*l^6*lambda[1,2]*r^4+604800*lambda[1,2]*lambda[1,1]*r^4-1575000*lambda[1,2]*lambda[1,1]*r^2-220*lambda[1,1]^2*l^5*r^2+110*lambda[1,1]^2*l^5*r^4+8048*lambda[1,1]*l^5*lambda[1,2]*r^4-13199*lambda[1,2]^2*l^6*r^2-141309*lambda[1,2]^2*l^5*r^2-508*lambda[1,2]^2*l^7*r^2+254*lambda[1,2]^2*l^7*r^4+6536*lambda[1,2]^2*l^6*r^4+68176*lambda[1,2]^2*l^5*r^4-751350*lambda[1,1]*l^3*lambda[1,2]*r^2+408093*lambda[1,2]^2*l^4-152770*lambda[1,1]*l^4*lambda[1,2]*r^2-5509080*lambda[1,2]^2*l*r^2+982800*lambda[1,2]^2-2701823*lambda[1,2]^2*l^3*r^2+1149618*lambda[1,2]^2*l^3*r^4+2018268*lambda[1,2]^2*l^2*r^4+1881792*lambda[1,2]^2*l*r^4-5247978*lambda[1,2]^2*l^2*r^2+372316*lambda[1,2]^2*l^4*r^4+2339*lambda[1,1]^2*l^4-664*lambda[1,1]*l^6*lambda[1,2]*r^2-810583*lambda[1,2]^2*l^4*r^2-5055*l*r^2+370552*lambda[1,1]*l^3*lambda[1,2]*r^4+77056*lambda[1,1]*l^4*lambda[1,2]*r^4-2786160*lambda[1,2]*lambda[1,1]*l*r^2+1197720*lambda[1,2]*lambda[1,1]*l*r^4+940212*lambda[1,2]*lambda[1,1]*l^2*r^4);  
 
c[1]:=8*n*(l+2*n)*(n+3+l)*(l+2*n+1)*(n+4+l)*(51975+28215*lambda[1,1]^2-62370*lambda[1,1]+71280*lambda[1,2]+32670*lambda[1,2]*l^2+20790*lambda[1,1]*l-2970*lambda[1,2]*l+64512*n^7*lambda[1,2]^2+147840*n^5*lambda[1,2]*lambda[1,1]*l-27720*n^2*lambda[1,1]^2+36960*n^2*lambda[1,2]*lambda[1,1]*l^3+49280*n^3*lambda[1,1]*l^3*lambda[1,2]+332640*n^4*lambda[1,2]*lambda[1,1]*l+2310*lambda[1,1]*l^3*lambda[1,2]-440880*lambda[1,2]*lambda[1,1]*l*n^2-104280*n^2*lambda[1,2]*lambda[1,1]*l^2-7425*lambda[1,1]^2*l^2-26730*lambda[1,1]^2*l+47520*lambda[1,2]*n^2*l^2+95040*lambda[1,2]*n^3*l+15400*lambda[1,2]*lambda[1,1]*l^3*n-165440*n^3*lambda[1,2]*lambda[1,1]*l-87120*lambda[1,2]*lambda[1,1]+17820*lambda[1,2]*lambda[1,1]*l^2-130680*lambda[1,2]*n-83160*lambda[1,2]*n^2+83160*lambda[1,1]*n+83160*lambda[1,1]*n^2+95040*lambda[1,2]*n^3+47520*lambda[1,2]*n^4+39600*n^4*lambda[1,1]^2-1568*n^2*lambda[1,2]^2-243792*n*lambda[1,2]^2-50768*n^4*lambda[1,2]^2+23760*lambda[1,2]*n*l^2-106920*lambda[1,2]*n*l+118800*lambda[1,2]*n^2*l+83160*lambda[1,1]*n*l+79200*n^3*lambda[1,1]^2-67320*n*lambda[1,1]^2+86790*lambda[1,2]*lambda[1,1]*l+221760*n^3*lambda[1,2]*lambda[1,1]*l^2-105600*lambda[1,2]^2*l-20385*lambda[1,2]^2*l^2+14070*lambda[1,2]^2*l^3-6272*n^6*lambda[1,2]^2+381408*n^3*lambda[1,2]^2-244608*n^5*lambda[1,2]^2+233640*n*lambda[1,2]*lambda[1,1]+147840*n^5*lambda[1,2]*lambda[1,1]+49280*n^6*lambda[1,2]*lambda[1,1]-337920*n^3*lambda[1,2]*lambda[1,1]-45760*n^4*lambda[1,2]*lambda[1,1]-75240*lambda[1,2]*lambda[1,1]*l^2*n+99000*n^2*lambda[1,1]^2*l+143000*lambda[1,2]*lambda[1,1]*l*n+64512*n^5*lambda[1,2]^2*l^3+241920*n^5*lambda[1,2]^2*l^2-111368*lambda[1,2]^2*l*n+126432*lambda[1,2]^2*l^2*n-47520*n*lambda[1,1]^2*l-578592*lambda[1,2]^2*l*n^4-387072*lambda[1,2]^2*l^2*n^3+543624*lambda[1,2]^2*l*n^2-2968*lambda[1,2]^2*l^3*n+3024*lambda[1,2]^2*l^4*n+44960*lambda[1,2]^2*l*n^3+209664*lambda[1,2]^2*l*n^6-50064*n^2*lambda[1,2]^2*l^3-67200*lambda[1,2]^2*l*n^5-105504*lambda[1,2]^2*l^2*n^4+99816*lambda[1,2]^2*l^2*n^2+79200*n^3*lambda[1,1]^2*l+40040*n^2*lambda[1,2]*lambda[1,1]+64512*n^7*lambda[1,2]^2*l+39600*lambda[1,1]^2*l^2*n^2+19800*lambda[1,1]^2*l^2*n+147840*n^4*lambda[1,2]*lambda[1,1]*l^2+112896*n^4*lambda[1,2]^2*l^3+16128*n^4*lambda[1,2]^2*l^4-34496*n^3*lambda[1,2]^2*l^3+16128*n^3*lambda[1,2]^2*l^4+10080*n^2*lambda[1,2]^2*l^4+96768*n^6*lambda[1,2]^2*l^2+6615*lambda[1,2]^2*l^4+16128*lambda[1,2]^2*n^8+84960*lambda[1,2]^2);  
 
c[2]:=-12*(l+2*n)*(n+3+l)*(3+l+2*n)*(207900+155925*n+51975*l-69300*lambda[1,1]^2+103950*n*l+103950*n^2+138600*lambda[1,1]+55440*lambda[1,2]+395010*lambda[1,2]*l^2+173250*lambda[1,1]*l+374220*lambda[1,2]*l+864640*n^7*lambda[1,2]^2+394240*n^7*lambda[1,2]*lambda[1,1]*l+4123680*n^5*lambda[1,2]*lambda[1,1]*l+221760*n^3*lambda[1,1]*l^4*lambda[1,2]+2143680*n^6*lambda[1,2]*lambda[1,1]*l+81510*n^2*lambda[1,1]^2+79200*n^6*lambda[1,1]^2+525580*n^2*lambda[1,2]*lambda[1,1]*l^3+1337600*n^3*lambda[1,1]*l^3*lambda[1,2]+394240*n^5*lambda[1,1]*l^3*lambda[1,2]+3303520*n^4*lambda[1,2]*lambda[1,1]*l+2587200*n^5*lambda[1,2]*lambda[1,1]*l^2+55440*lambda[1,1]*l^3*lambda[1,2]+98560*n^4*lambda[1,1]*l^4*lambda[1,2]+1305920*n^4*lambda[1,1]*l^3*lambda[1,2]+591360*n^6*lambda[1,2]*lambda[1,1]*l^2-408100*lambda[1,2]*lambda[1,1]*l*n^2+468160*n^2*lambda[1,2]*lambda[1,1]*l^2+6930*lambda[1,1]*l^4*lambda[1,2]+76230*lambda[1,2]*l^3-103950*lambda[1,1]^2*l^2-155925*lambda[1,1]^2*l-17325*lambda[1,1]^2*l^3+50820*lambda[1,2]*lambda[1,1]*l^4*n+706860*lambda[1,2]*n^2*l^2+1401840*lambda[1,2]*n^3*l+227370*lambda[1,2]*lambda[1,1]*l^3*n+775280*n^3*lambda[1,2]*lambda[1,1]*l+55440*lambda[1,2]*lambda[1,1]+24255*lambda[1,2]^2*l^5+34650*lambda[1,1]*l^2+145530*lambda[1,2]*lambda[1,1]*l^2+431640*lambda[1,2]*n+954360*lambda[1,2]*n^2+561330*lambda[1,1]*n+790020*lambda[1,1]*n^2+95040*lambda[1,2]*n^6+526680*lambda[1,1]*n^3+930600*lambda[1,2]*n^3+815760*lambda[1,2]*n^4+762960*n^4*lambda[1,1]^2+251376*n^2*lambda[1,2]^2+173664*n*lambda[1,2]^2+166320*lambda[1,1]*n^4+459360*lambda[1,2]*n^5-1070560*n^4*lambda[1,2]^2+539550*lambda[1,2]*n*l^2+957330*lambda[1,2]*n*l+1205820*lambda[1,2]*n^2*l+658350*lambda[1,1]*n*l+669240*n^3*lambda[1,1]^2-191235*n*lambda[1,1]^2+152460*lambda[1,2]*lambda[1,1]*l+2134440*n^3*lambda[1,2]*lambda[1,1]*l^2+55440*lambda[1,2]^2*l+221760*lambda[1,2]^2*l^2+301455*lambda[1,2]^2*l^3+332640*lambda[1,1]*n^3*l+776160*lambda[1,2]*n^3*l^2+1077120*lambda[1,2]*n^4*l+706860*lambda[1,1]*n^2*l+285120*lambda[1,2]*n^4*l^2+285120*lambda[1,2]*n^5*l+67808*n^6*lambda[1,2]^2+382800*n^5*lambda[1,1]^2-555680*n^3*lambda[1,2]^2-788528*n^5*lambda[1,2]^2+120780*lambda[1,2]*n*l^3-22440*n*lambda[1,2]*lambda[1,1]+1643840*n^5*lambda[1,2]*lambda[1,1]+1534720*n^6*lambda[1,2]*lambda[1,1]+158400*lambda[1,2]*n^2*l^3+95040*lambda[1,2]*n^3*l^3+180180*lambda[1,1]*n*l^2+166320*lambda[1,1]*n^2*l^2-361240*n^3*lambda[1,2]*lambda[1,1]+629200*n^4*lambda[1,2]*lambda[1,1]+628992*n^5*lambda[1,2]^2*l^4+163680*lambda[1,2]*lambda[1,1]*l^2*n+1602048*n^6*lambda[1,2]^2*l^3+32256*n^5*lambda[1,2]^2*l^5+734580*n^2*lambda[1,1]^2*l-193710*lambda[1,2]*lambda[1,1]*l*n+1946112*n^7*lambda[1,2]^2*l^2+161280*n^6*lambda[1,2]^2*l^4+2494016*n^5*lambda[1,2]^2*l^3+2560992*n^5*lambda[1,2]^2*l^2+579912*lambda[1,2]^2*l*n+565365*lambda[1,2]^2*l^2*n-85800*n*lambda[1,1]^2*l-1679008*lambda[1,2]^2*l*n^4-692664*lambda[1,2]^2*l^2*n^3-130088*lambda[1,2]^2*l*n^2+486120*lambda[1,2]^2*l^3*n+188601*lambda[1,2]^2*l^4*n+237600*n^5*lambda[1,1]^2*l-1467416*lambda[1,2]^2*l*n^3+2455488*lambda[1,2]^2*l*n^6+298364*n^2*lambda[1,2]^2*l^3-161472*lambda[1,2]^2*l*n^5-223184*lambda[1,2]^2*l^2*n^4+16310*lambda[1,2]^2*l^2*n^2+897600*n^4*lambda[1,1]^2*l+640640*n^7*lambda[1,2]*lambda[1,1]+1334520*n^3*lambda[1,1]^2*l+646800*lambda[1,1]^2*l^2*n^3+79200*lambda[1,1]^2*l^3*n^3+141680*n^2*lambda[1,1]*l^4*lambda[1,2]+24318*lambda[1,2]^2*l^5*n-476520*n^2*lambda[1,2]*lambda[1,1]+2782976*n^7*lambda[1,2]^2*l+602910*lambda[1,1]^2*l^2*n^2+132000*lambda[1,1]^2*l^3*n^2+89265*lambda[1,1]^2*l^2*n+31350*lambda[1,1]^2*l^3*n+3784880*n^4*lambda[1,2]*lambda[1,1]*l^2+1257088*n^4*lambda[1,2]^2*l^3+736064*n^4*lambda[1,2]^2*l^4+91392*n^4*lambda[1,2]^2*l^5+151024*n^3*lambda[1,2]^2*l^3+329952*n^3*lambda[1,2]^2*l^4+79296*n^3*lambda[1,2]^2*l^5+169246*n^2*lambda[1,2]^2*l^4+322560*n^7*lambda[1,2]^2*l^3+237600*n^4*lambda[1,1]^2*l^2+3858624*n^6*lambda[1,2]^2*l^2+43008*n^2*lambda[1,2]^2*l^5+159390*lambda[1,2]^2*l^4+322560*lambda[1,2]^2*n^8*l^2+161280*lambda[1,2]^2*n^9*l+1145088*lambda[1,2]^2*n^8*l+98560*lambda[1,2]*n^8*lambda[1,1]+263424*lambda[1,2]^2*n^9+32256*lambda[1,2]^2*n^10+761600*lambda[1,2]^2*n^8);  
 
c[3]:=6*(l+2*n+4)*(2*l+2*n-1)*(311850+259875*n+103950*l+311850*lambda[1,1]^2+103950*n*l+103950*n^2+623700*lambda[1,1]+207900*lambda[1,2]*l^2+623700*lambda[1,1]*l+4353664*n^7*lambda[1,2]^2+394240*n^7*lambda[1,2]*lambda[1,1]*l+10111200*n^5*lambda[1,2]*lambda[1,1]*l+369600*n^3*lambda[1,1]*l^4*lambda[1,2]+3178560*n^6*lambda[1,2]*lambda[1,1]*l+2761110*n^2*lambda[1,1]^2+79200*n^6*lambda[1,1]^2+3066580*n^2*lambda[1,2]*lambda[1,1]*l^3+3850880*n^3*lambda[1,1]*l^3*lambda[1,2]+394240*n^5*lambda[1,1]*l^3*lambda[1,2]+15869920*n^4*lambda[1,2]*lambda[1,1]*l+3917760*n^5*lambda[1,2]*lambda[1,1]*l^2+98560*n^4*lambda[1,1]*l^4*lambda[1,2]+2045120*n^4*lambda[1,1]*l^3*lambda[1,2]+591360*n^6*lambda[1,2]*lambda[1,1]*l^2+3056900*lambda[1,2]*lambda[1,1]*l*n^2+5901280*n^2*lambda[1,2]*lambda[1,1]*l^2+69300*lambda[1,2]*l^3+242550*lambda[1,1]^2*l^2+519750*lambda[1,1]^2*l+34650*lambda[1,1]^2*l^3+207900*lambda[1,2]*lambda[1,1]*l^4*n+1871100*lambda[1,2]*n^2*l^2+3508560*lambda[1,2]*n^3*l+860310*lambda[1,2]*lambda[1,1]*l^3*n+12048080*n^3*lambda[1,2]*lambda[1,1]*l-34650*lambda[1,2]^2*l^5+138600*lambda[1,1]*l^2-178200*lambda[1,2]*n+1009800*lambda[1,2]*n^2+1600830*lambda[1,1]*n+1621620*lambda[1,1]*n^2+95040*lambda[1,2]*n^6+803880*lambda[1,1]*n^3+2427480*lambda[1,2]*n^3+1924560*lambda[1,2]*n^4+1686960*n^4*lambda[1,1]^2-1271376*n^2*lambda[1,2]^2+84960*n*lambda[1,2]^2+166320*lambda[1,1]*n^4+681120*lambda[1,2]*n^5-6828928*n^4*lambda[1,2]^2+1052370*lambda[1,2]*n*l^2+721710*lambda[1,2]*n*l+3118500*lambda[1,2]*n^2*l+1420650*lambda[1,1]*n*l+2794440*n^3*lambda[1,1]^2+1483515*n*lambda[1,1]^2+11614680*n^3*lambda[1,2]*lambda[1,1]*l^2-311850*lambda[1,2]^2*l^2-519750*lambda[1,2]^2*l^3+332640*lambda[1,1]*n^3*l+1219680*lambda[1,2]*n^3*l^2+1631520*lambda[1,2]*n^4*l+1122660*lambda[1,1]*n^2*l+285120*lambda[1,2]*n^4*l^2+285120*lambda[1,2]*n^5*l+4621280*n^6*lambda[1,2]^2+567600*n^5*lambda[1,1]^2-5744864*n^3*lambda[1,2]^2-781136*n^5*lambda[1,2]^2+287100*lambda[1,2]*n*l^3-336600*n*lambda[1,2]*lambda[1,1]+7113920*n^5*lambda[1,2]*lambda[1,1]+3604480*n^6*lambda[1,2]*lambda[1,1]+269280*lambda[1,2]*n^2*l^3+95040*lambda[1,2]*n^3*l^3+318780*lambda[1,1]*n*l^2+166320*lambda[1,1]*n^2*l^2+3057560*n^3*lambda[1,2]*lambda[1,1]+7282000*n^4*lambda[1,2]*lambda[1,1]+983808*n^5*lambda[1,2]^2*l^4+718080*lambda[1,2]*lambda[1,1]*l^2*n+2429952*n^6*lambda[1,2]^2*l^3+32256*n^5*lambda[1,2]^2*l^5+3645180*n^2*lambda[1,1]^2*l-503250*lambda[1,2]*lambda[1,1]*l*n+2892288*n^7*lambda[1,2]^2*l^2+161280*n^6*lambda[1,2]^2*l^4+6929216*n^5*lambda[1,2]^2*l^3+16384032*n^5*lambda[1,2]^2*l^2-1183080*lambda[1,2]^2*l*n-3599565*lambda[1,2]^2*l^2*n+2247300*n*lambda[1,1]^2*l-3656368*lambda[1,2]^2*l*n^4-4761960*lambda[1,2]^2*l^2*n^3-7961912*lambda[1,2]^2*l*n^2-2549220*lambda[1,2]^2*l^3*n-478065*lambda[1,2]^2*l^4*n+237600*n^5*lambda[1,1]^2*l-13453544*lambda[1,2]^2*l*n^3+13839168*lambda[1,2]^2*l*n^6-2386780*n^2*lambda[1,2]^2*l^3+11443968*lambda[1,2]^2*l*n^5+9940816*lambda[1,2]^2*l^2*n^4-9140530*lambda[1,2]^2*l^2*n^2+1359600*n^4*lambda[1,1]^2*l+936320*n^7*lambda[1,2]*lambda[1,1]+3090120*n^3*lambda[1,1]^2*l+1016400*lambda[1,1]^2*l^2*n^3+79200*lambda[1,1]^2*l^3*n^3+474320*n^2*lambda[1,1]*l^4*lambda[1,2]+13230*lambda[1,2]^2*l^5*n-273240*n^2*lambda[1,2]*lambda[1,1]+6922496*n^7*lambda[1,2]^2*l+1573110*lambda[1,1]^2*l^2*n^2+224400*lambda[1,1]^2*l^3*n^2+1071015*lambda[1,1]^2*l^2*n+169950*lambda[1,1]^2*l^3*n+9883280*n^4*lambda[1,2]*lambda[1,1]*l^2+8833888*n^4*lambda[1,2]^2*l^3+2214464*n^4*lambda[1,2]^2*l^4+150528*n^4*lambda[1,2]^2*l^5+3588304*n^3*lambda[1,2]^2*l^3+2104032*n^3*lambda[1,2]^2*l^4+256704*n^3*lambda[1,2]^2*l^5+483406*n^2*lambda[1,2]^2*l^4+322560*n^7*lambda[1,2]^2*l^3+237600*n^4*lambda[1,1]^2*l^2+10067904*n^6*lambda[1,2]^2*l^2+168672*n^2*lambda[1,2]^2*l^5-242550*lambda[1,2]^2*l^4+322560*lambda[1,2]^2*n^8*l^2+161280*lambda[1,2]^2*n^9*l+1677312*lambda[1,2]^2*n^8*l+98560*lambda[1,2]*n^8*lambda[1,1]+381696*lambda[1,2]^2*n^9+32256*lambda[1,2]^2*n^10+1826048*lambda[1,2]^2*n^8)*(l+2*n+1);  
 
c[4]:=-(2*n+3)*(2*l+2*n-1)*(2*l-3+2*n)*(l+2*n+4)*(3+l+2*n)*(51975+51975*lambda[1,1]^2+103950*lambda[1,1]+103950*lambda[1,2]*l^2+103950*lambda[1,1]*l+103950*lambda[1,2]*l+193536*n^7*lambda[1,2]^2+147840*n^5*lambda[1,2]*lambda[1,1]*l+447480*n^2*lambda[1,1]^2+184800*n^2*lambda[1,2]*lambda[1,1]*l^3+49280*n^3*lambda[1,1]*l^3*lambda[1,2]+1071840*n^4*lambda[1,2]*lambda[1,1]*l+103950*lambda[1,1]*l^3*lambda[1,2]+2537040*lambda[1,2]*lambda[1,1]*l*n^2+1448040*n^2*lambda[1,2]*lambda[1,1]*l^2+51975*lambda[1,1]^2*l^2+103950*lambda[1,1]^2*l+47520*lambda[1,2]*n^2*l^2+95040*lambda[1,2]*n^3*l+237160*lambda[1,2]*lambda[1,1]*l^3*n+2643520*n^3*lambda[1,2]*lambda[1,1]*l+207900*lambda[1,2]*lambda[1,1]*l^2+178200*lambda[1,2]*n+487080*lambda[1,2]*n^2+249480*lambda[1,1]*n+83160*lambda[1,1]*n^2+285120*lambda[1,2]*n^3+47520*lambda[1,2]*n^4+39600*n^4*lambda[1,1]^2+104224*n^2*lambda[1,2]^2+14160*n*lambda[1,2]^2+2018992*n^4*lambda[1,2]^2+118800*lambda[1,2]*n*l^2+415800*lambda[1,2]*n*l+403920*lambda[1,2]*n^2*l+83160*lambda[1,1]*n*l+237600*n^3*lambda[1,1]^2+273240*n*lambda[1,1]^2+103950*lambda[1,2]*lambda[1,1]*l+813120*n^3*lambda[1,2]*lambda[1,1]*l^2+51975*lambda[1,2]^2*l^2+103950*lambda[1,2]^2*l^3+896896*n^6*lambda[1,2]^2+767904*n^3*lambda[1,2]^2+1975680*n^5*lambda[1,2]^2+151800*n*lambda[1,2]*lambda[1,1]+443520*n^5*lambda[1,2]*lambda[1,1]+49280*n^6*lambda[1,2]*lambda[1,1]+1943040*n^3*lambda[1,2]*lambda[1,1]+1432640*n^4*lambda[1,2]*lambda[1,1]+972840*lambda[1,2]*lambda[1,1]*l^2*n+336600*n^2*lambda[1,1]^2*l+834680*lambda[1,2]*lambda[1,1]*l*n+64512*n^5*lambda[1,2]^2*l^3+822528*n^5*lambda[1,2]^2*l^2+169960*lambda[1,2]^2*l*n+533040*lambda[1,2]^2*l^2*n+388080*n*lambda[1,1]^2*l+4488288*lambda[1,2]^2*l*n^4+3545472*lambda[1,2]^2*l^2*n^3+1034664*lambda[1,2]^2*l*n^2+567560*lambda[1,2]^2*l^3*n+136080*lambda[1,2]^2*l^4*n+3509792*lambda[1,2]^2*l*n^3+661248*lambda[1,2]^2*l*n^6+1168944*n^2*lambda[1,2]^2*l^3+2545536*lambda[1,2]^2*l*n^5+2555616*lambda[1,2]^2*l^2*n^4+2176296*lambda[1,2]^2*l^2*n^2+79200*n^3*lambda[1,1]^2*l+969320*n^2*lambda[1,2]*lambda[1,1]+64512*n^7*lambda[1,2]^2*l+39600*lambda[1,1]^2*l^2*n^2+99000*lambda[1,1]^2*l^2*n+147840*n^4*lambda[1,2]*lambda[1,1]*l^2+435456*n^4*lambda[1,2]^2*l^3+16128*n^4*lambda[1,2]^2*l^4+1062208*n^3*lambda[1,2]^2*l^3+80640*n^3*lambda[1,2]^2*l^4+155232*n^2*lambda[1,2]^2*l^4+96768*n^6*lambda[1,2]^2*l^2+51975*lambda[1,2]^2*l^4+16128*lambda[1,2]^2*n^8);  

Case(iii) α = 0

The ‘starting’ functions are given by

Ψ1 = -rl+1(-11 - 33λ 1,1 - 66λ1,2 - 17λ1,1l - 21λ1,2l2 - 67λ 1,2l + 11r2 + 2lr2 - 2l + 11λ 1,1r2 + 13λ 1,1lr2 + 2λ 1,1l2r2 - 2λ 1,1l2 + 13λ 1,2l2r2 + 2λ 1,2l3r2 - 2λ 1,2l3 + 11λ 1,2lr2)
Ψ2 = rl+1(858 - 26088λ 1,12l3r2 + 1936λ 1,2l4r4 + 80λ 1,12l5r4 + 86784λ 1,2lr4 + 216l2 - 480l2r2 + 95820λ 1,12lr4 - 98944λ 1,12l2r2 - 562424λ 1,22l4r2 + 52630λ 1,12l2r4 + 1098756λ 1,22lr4 + 64λ 1,1l4r4 + 13660λ 1,12l3r4 + 8120λ 1,1l2r4 + 860l + 13320λ 1,2l3 + 96λ 1,2l5 + 64λ 1,1l4 + 23220λ 1,1lr4 + 52580λ 1,2l2r4 - 3250680λ 1,22lr2 + 737732λ 1,22l3r4 + 5000λ 1,22l6r4 + 48924λ 1,22l5r4 - 10208λ 1,22l6r2 - 103448λ 1,22l5r2 - 128λ 1,1l4r2 - 2272λ 1,1l3r2 - 416λ 1,22l7r2 + 208λ 1,22l7r4 + 1233660λ 1,22l2r4 - 160λ 1,12l5r2 + 1688λ 1,12l4r4 - 3296λ 1,12l4r2 + 12268λ 1,12l3 + 53692λ 1,22l5 - 3269828λ 1,22l2r2 - 1776896λ 1,22l3r2 - 192λ 1,2l5r2 + 1072λ 1,1l3 + 1840λ 1,2l4 + 6248λ 1,1l2 + 294954λ 1,22l4 + 73464λ 1,12l + 1685616λ 1,22l2 + 1619244λ 1,22l - 3432r2 + 11154λ 1,1 + 43758λ1,2 + 14612λ1,1l + 45404λ1,2l2 + 73032λ 1,2l + 96λ1,2l5r4 - 3776λ 1,2l4r2 + 251950λ 1,22l4r4 + 1200λ 1,1l3r4 + 5208λ 1,22l6 + 16l3 - 849420λ 1,1λ1,2r2 - 1597860λ 1,1λ1,2lr2 + 558654λ 1,1λ1,2l2r4 + 675144λ 1,1λ1,2lr4 + 256λ 1,2l6λ 1,1 + 2574r4 + 14760λ 1,2l3r4 + 45045λ 1,12 + 637065λ 1,22 + 360360λ 1,1λ1,2 + 44010λ1,12l2 + 54054λ 1,2r4 - 128700λ 1,2r2 + 1608λ 1,12l4 + 930988λ 1,22l3 - 124410λ 1,12r2 + 324324λ 1,1λ1,2r4 + 405405λ 1,22r4 + 65637λ 1,12r4 - 1351350λ 1,22r2 + 5776λ 1,1l5λ 1,2 + 584930λ1,1λ1,2l2 + 238028λ 1,2l3λ 1,1 + 51960λ1,2l4λ 1,1 + 730140λ1,1λ1,2l - 179612λ1,12lr2 - 1222872λ 1,1λ1,2l2r2 - 11552λ 1,1l5λ 1,2r2 - 512λ 1,1l6λ 1,2r2 + 5776λ 1,1l5λ 1,2r4 + 256λ 1,1l6λ 1,2r4 - 484648λ 1,1λ1,2l3r2 + 233180λ 1,1λ1,2l3r4 + 51656λ 1,1λ1,2l4r4 - 104416λ 1,1λ1,2l4r2 + 1436lr4 + 264l2r4 + 16l3r4 - 37752λ 1,1r2 + 23166λ 1,1r4 + 80λ 1,12l5 + 208λ 1,22l7 - 32l3r2 - 14464λ 1,1l2r2 - 181624λ 1,2lr2 - 102688λ 1,2l2r2 - 38984λ 1,1lr2 - 28400λ 1,2l3r2 - 2296lr2)
c[1] = n(2l + 1 + 4n)(2n + 7 + 2l)(60 + 48n4λ 1,22l4 + 12λ 1,22l4 - 20λ 1,12l - 72λ 1,22l2 - 84λ 1,22l - 60λ 1,1 + 60λ1,2 + 40λ1,2l2 + 40λ 1,2l + 72λ1,22l2n + 48λ 1,22l3n + 30λ 1,12 + 90λ 1,22 - 360n2λ 1,1λ1,2l2 - 90λ 1,1λ1,2 - 20λ1,12l2 + 24λ 1,22l3 + 60λ 1,1λ1,2l2 + 60λ 1,1λ1,2l - 648n4λ 1,22l2 - 360n3λ 1,22l2 + 360n5λ 1,1λ1,2l + 3301,1λ1,2l + 288n5λ 1,22l2 + 360n4λ 1,1λ1,2l2 - 630n3λ 1,1λ1,2l + 120n3λ 1,1λ1,2l3 - 80λ 1,2n - 50nλ1,12 - 174λ 1,22n + 96n7λ 1,22 - 336n5λ 1,22 + 267n4λ 1,22 - 237n2λ 1,22 + 414n3λ 1,22 + 80n4λ 1,12 + 80n3λ 1,12 - 80n2λ 1,12 - 168n6λ 1,22 + 288n6λ 1,22l2 + 492n2λ 1,22l2 + 192n5λ 1,22l3 + 708n3λ 1,22l - 576n5λ 1,22l - 345n3λ 1,1λ1,2 - 100nλ1,12l - 240n3λ 1,22l3 - 140λ 1,2n2 + 48λ 1,22n8 + 80λ 1,2n3 + 80λ 1,2n4 + 60λ 1,1n + 120λ1,1n2 + 80n2λ 1,12l2 - 270n4λ 1,1λ1,2 + 160n3λ 1,12l - 696n4λ 1,22l + 492n2λ 1,22l + 120n6λ 1,1λ1,2 + 120λ1,1ln + 360n4λ 1,1λ1,2l - 160λ1,2ln + 80λ1,2ln2 + 160λ 1,2ln3 + 80λ 1,2l2n2 + 180n3λ 1,1λ1,2l2 - 360n2λ 1,1λ1,2l + 96n4λ 1,22l3 + 240n2λ 1,1λ1,2 + 192n7λ 1,22l + 180n5λ 1,1λ1,2 + 80n2λ 1,12l - 324λ 1,22ln + 165 1,1λ1,2 + 288n6λ 1,22l)(2l + 4n - 1)(2n + 5 + 2l)
c[2] = -3(2l + 4n - 1)(2n + 5 + 2l)(5 + 2l + 4n)(140 + 120n2 + 140n + 40l + 80λ 1,2l3 + 120ln - 40λ 1,12l3 + 40λ 1,22l5 - 320n3λ 1,22l4 + 400n4λ 1,22l4 + 220λ 1,22l4 - 140λ 1,12l + 140λ 1,22l2 + 140λ 1,1 + 40λ1,1l + 360λ1,2l2 + 280λ 1,2l + 3200n6λ 1,22l3 + 760λ 1,22l2n + 840λ 1,22l3n + 300λ 1,22l4n + 24λ 1,22l5n + 480n6λ 1,22l4 + 96n5λ 1,22l5 - 300n2λ 1,1λ1,2l2 - 180λ 1,12l2 + 320λ 1,22l3 + 180λ 1,1λ1,2l2 + 40λ 1,2l3λ 1,1 + 140λ1,1λ1,2l + 2400λ1,22n8l + 480λ 1,22n9l + 960λ 1,22n8l2 + 240λ 1,2n8λ 1,1 - 2320n4λ 1,22l2 + 500n3λ 1,22l2 - 240n2λ 1,1λ1,2l3 + 240n4λ 1,1λ1,2l4 + 1440n6λ 1,1λ1,2l2 + 4320n5λ 1,1λ1,2l + 1201,1λ1,2l + 3001,1λ1,2l2 + 120 1,1λ1,2l3 + 960n7λ 1,1λ1,2l - 1320n5λ 1,22l2 + 3480n4λ 1,1λ1,2l2 - 740n3λ 1,1λ1,2l + 880n3λ 1,1λ1,2l3 + 340λ 1,2n - 110nλ1,12 + 160λ 1,2n6 + 90λ 1,22n + 120n7λ 1,22 - 525n5λ 1,22 - 285n4λ 1,22 + 111n2λ 1,22 + 560n5λ 1,12 - 245n3λ 1,22 + 800n4λ 1,12 + 300n3λ 1,12 - 210n2λ 1,12 + 160n6λ 1,12 - 882n6λ 1,22 + 120n2λ 1,22l4 + 160n2λ 1,12l3 + 960n7λ 1,22l3 + 4080n6λ 1,22l2 + 240λ 1,1n2l2 + 1020n2λ 1,22l2 + 2160n5λ 1,22l3 + 10n3λ 1,22l - 2586n5λ 1,22l - 170n3λ 1,1λ1,2 - 40λ1,12l3n - 360nλ 1,12l - 220nλ 1,12l2 - 520n3λ 1,22l3 + 900λ 1,2n2 + 560λ 1,22n9 + 960λ 1,22n8 + 96λ 1,22n10 + 660λ 1,2n3 + 680λ 1,2n4 + 240λ 1,1n4 + 300λ 1,1n + 660λ1,1n2 + 560λ 1,1n3 + 560λ 1,2n5 + 480n2λ 1,12l2 - 265n4λ 1,1λ1,2 + 1320n3λ 1,12l + 1280n4λ 1,12l - 670n4λ 1,22l + 330n2λ 1,22l + 1200n5λ 1,22l4 + 1720n6λ 1,1λ1,2 + 720λ1,1ln2 + 520λ 1,1ln + 480λ1,2ln5 + 3680n6λ 1,1λ1,2l + 840n4λ 1,1λ1,2l + 480λ1,2l2n4 + 960λ 1,2ln + 840λ1,2ln2 + 1080λ 1,2ln3 + 1280λ 1,2ln4 + 880λ 1,2l2n3 + 480λ 1,2l2n2 + 440λ 1,2l2n + 480λ 1,1ln3 + 160λ 1,1l2n + 1120n7λ 1,1λ1,2 + 4000n7λ 1,22l2 - 120n3λ 1,1λ1,2l2 + 4320n5λ 1,1λ1,2l2 + 2080n4λ 1,1λ1,2l3 + 320n3λ 1,1λ1,2l4 + 960n5λ 1,1λ1,2l3 + 840n2λ 1,22l3 + 880n3λ 1,12l2 + 160n3λ 1,12l3 - 1200n4λ 1,22l3 - 45n2λ 1,1λ1,2 + 480n5λ 1,12l + 3280n7λ 1,22l + 720n5λ 1,1λ1,2 + 120n2λ 1,12l + 376λ 1,22ln + 160n2λ 1,2l3 - 20 1,1λ1,2 + 160n4λ 1,22l5 + 480n4λ 1,12l2 - 320n6λ 1,22l + 160n3λ 1,2l3 + 80λ 1,2l3n)
c[3] = 3(2l + 4n + 7)(2n - 1 + 2l)(200 + 120n2 + 220n + 80l + 120ln - 80λ 1,22l5 + 1120n3λ 1,22l4 + 3200n4λ 1,22l4 + 80λ 1,1l2 - 360λ 1,22l4 + 420λ 1,12l + 220λ 1,22l2 + 300λ 1,22l + 500λ 1,1 + 300λ1,2 + 400λ1,1l + 120λ1,2l + 5440n6λ 1,22l3 - 1660λ 1,22l2n - 3120λ 1,22l3n - 1300λ 1,22l4n - 136λ 1,22l5n + 480n6λ 1,22l4 + 96n5λ 1,22l5 + 300λ 1,12 + 2220n2λ 1,1λ1,2l2 + 300λ 1,1λ1,2 + 120λ1,12l2 - 360λ 1,22l3 + 60λ 1,1λ1,2l2 - 240λ 1,2l3λ 1,1 - 80λ1,2l4λ 1,1 + 520λ1,1λ1,2l + 3840λ1,22n8l + 480λ 1,22n9l + 960λ 1,22n8l2 + 240λ 1,2n8λ 1,1 - 1720n4λ 1,22l2 - 14460n3λ 1,22l2 + 1920n2λ 1,1λ1,2l3 + 240n4λ 1,1λ1,2l4 + 1440n6λ 1,1λ1,2l2 + 480n2λ 1,1λ1,2l4 + 13920n5λ 1,1λ1,2l + 7801,1λ1,2l - 4201,1λ1,2l2 - 280 1,1λ1,2l3 + 960n7λ 1,1λ1,2l + 15960n5λ 1,22l2 + 13080n4λ 1,1λ1,2l2 + 7420n3λ 1,1λ1,2l + 4720n3λ 1,1λ1,2l3 + 200λ 1,2n + 1370nλ1,12 + 160λ 1,2n6 + 540λ 1,22n + 4920n7λ 1,22 - 5145n5λ 1,22 - 6270n4λ 1,22 + 1416n2λ 1,22 + 880n5λ 1,12 - 1195n3λ 1,22 + 2000n4λ 1,12 + 2700n3λ 1,12 + 2490n2λ 1,12 + 160n6λ 1,12 + 1638n6λ 1,22 - 1320n2λ 1,22l4 + 320n2λ 1,12l3 + 960n7λ 1,22l3 + 16400n6λ 1,22l2 + 240λ 1,1n2l2 - 9360n2λ 1,22l2 + 10800n5λ 1,22l3 - 12370n3λ 1,22l + 1974n5λ 1,22l + 2090n3λ 1,1λ1,2 + 120λ1,12l3n + 1920nλ 1,12l + 820nλ 1,12l2 - 3240n3λ 1,22l3 + 360λ 1,2n2 + 880λ 1,22n9 + 3120λ 1,22n8 + 96λ 1,22n10 + 1620λ 1,2n3 + 1880λ 1,2n4 + 240λ 1,1n4 + 1140λ 1,1n + 1380λ1,1n2 + 880λ 1,1n3 + 880λ 1,2n5 + 1680n2λ 1,12l2 + 5135n4λ 1,1λ1,2 + 320n3λ 1,22l5 + 3560n3λ 1,12l + 2080n4λ 1,12l - 14020n4λ 1,22l - 2220n2λ 1,22l + 2160n5λ 1,22l4 + 5080n6λ 1,1λ1,2 + 1200λ1,1ln2 + 1160λ 1,1ln + 480λ1,2ln5 + 5920n6λ 1,1λ1,2l + 15240n4λ 1,1λ1,2l + 480λ1,2l2n4 + 120λ 1,2ln + 1920λ1,2ln2 + 3320λ 1,2ln3 + 2080λ 1,2ln4 + 1520λ 1,2l2n3 + 1680λ 1,2l2n2 + 520λ 1,2l2n + 480λ 1,1ln3 + 320λ 1,1l2n + 1760n7λ 1,1λ1,2 + 6560n7λ 1,22l2 + 9960n3λ 1,1λ1,2l2 + 7200n5λ 1,1λ1,2l2 + 3680n4λ 1,1λ1,2l3 + 640n3λ 1,1λ1,2l4 + 1500n2λ 1,1λ1,2l + 960n5λ 1,1λ1,2l3 - 6720n2λ 1,22l3 + 1520n3λ 1,12l2 + 160n3λ 1,12l3 + 7200n4λ 1,22l3 + 1395n2λ 1,1λ1,2 + 480n5λ 1,12l + 11600n7λ 1,22l + 7200n5λ 1,1λ1,2 + 3360n2λ 1,12l + 1016λ 1,22ln + 320n2λ 1,2l3 + 1100 1,1λ1,2 + 320n4λ 1,22l5 + 480n4λ 1,12l2 + 14800n6λ 1,22l + 160n3λ 1,2l3 + 240λ 1,2l3n)(2l + 1 + 4n)
c[4] = -(n + 1)(2l + 4n + 7)(5 + 2l + 4n)(2n - 1 + 2l)(2n - 3 + 2l)(60 + 192n3λ 1,22l4 + 48n4λ 1,22l4 + 60λ 1,22l4 + 120λ 1,12l + 60λ 1,22l2 + 120λ 1,1 + 120λ1,1l + 120λ1,2l2 + 120λ 1,2l + 552λ1,22l2n + 672λ 1,22l3n + 192λ 1,22l4n + 60λ 1,12 + 2340n2λ 1,1λ1,2l2 + 60λ 1,12l2 + 120λ 1,22l3 + 240λ 1,1λ1,2l2 + 120λ 1,2l3λ 1,1 + 120λ1,1λ1,2l + 5112n4λ 1,22l2 + 5688n3λ 1,22l2 + 360n2λ 1,1λ1,2l3 + 360n5λ 1,1λ1,2l + 9601,1λ1,2l + 12601,1λ1,2l2 + 360 1,1λ1,2l3 + 2016n5λ 1,22l2 + 360n4λ 1,1λ1,2l2 + 4410n3λ 1,1λ1,2l + 120n3λ 1,1λ1,2l3 + 200λ 1,2n + 350nλ1,12 + 30λ 1,22n + 480n7λ 1,22 + 3360n5λ 1,22 + 2787n4λ 1,22 + 87n2λ 1,22 + 810n3λ 1,22 + 80n4λ 1,12 + 400n3λ 1,12 + 640n2λ 1,12 + 1848n6λ 1,22 + 288n2λ 1,22l4 + 288n6λ 1,22l2 + 2724n2λ 1,22l2 + 192n5λ 1,22l3 + 4644n3λ 1,22l + 5184n5λ 1,22l + 2775n3λ 1,1λ1,2 + 540nλ1,12l + 160nλ 1,12l2 + 2064n3λ 1,22l3 + 580λ 1,2n2 + 48λ 1,22n8 + 400λ 1,2n3 + 80λ 1,2n4 + 300λ 1,1n + 120λ1,1n2 + 80n2λ 1,12l2 + 2430n4λ 1,1λ1,2 + 160n3λ 1,12l + 7464n4λ 1,22l + 1032n2λ 1,22l + 120n6λ 1,1λ1,2 + 120λ1,1ln + 2160n4λ 1,1λ1,2l + 480λ1,2ln + 560λ1,2ln2 + 160λ 1,2ln3 + 80λ 1,2l2n2 + 160λ 1,2l2n + 1620n3λ 1,1λ1,2l2 + 3510n2λ 1,1λ1,2l + 1776n2λ 1,22l3 + 1056n4λ 1,22l3 + 1185n2λ 1,1λ1,2 + 192n7λ 1,22l + 900n5λ 1,1λ1,2 + 560n2λ 1,12l + 192λ 1,22ln + 150 1,1λ1,2 + 1632n6λ 1,22l)

Expressions for all quantities involved are provided below.

 
Psi_1:=-r^(l+1)*(-11-33*lambda[1,1]-66*lambda[1,2]-17*lambda[1,1]*l-21*lambda[1,2]*l^2-67*lambda[1,2]*l+11*r^2+2*l*r^2-2*l+11*lambda[1,1]*r^2+13*lambda[1,1]*l*r^2+2*lambda[1,1]*l^2*r^2-2*lambda[1,1]*l^2+13*lambda[1,2]*l^2*r^2+2*lambda[1,2]*l^3*r^2-2*lambda[1,2]*l^3+11*lambda[1,2]*l*r^2);  
 
Psi_2:=r^(l+1)*(858+216*l^2+860*l+13320*lambda[1,2]*l^3+96*lambda[1,2]*l^5+64*lambda[1,1]*l^4+12268*lambda[1,1]^2*l^3+53692*lambda[1,2]^2*l^5+1072*lambda[1,1]*l^3+1840*lambda[1,2]*l^4+6248*lambda[1,1]*l^2-38984*lambda[1,1]*l*r^2-128700*lambda[1,2]*r^2-102688*lambda[1,2]*l^2*r^2-28400*lambda[1,2]*l^3*r^2-14464*lambda[1,1]*l^2*r^2-181624*lambda[1,2]*l*r^2+294954*lambda[1,2]^2*l^4+73464*lambda[1,1]^2*l+1685616*lambda[1,2]^2*l^2+1619244*lambda[1,2]^2*l-3432*r^2+11154*lambda[1,1]+43758*lambda[1,2]-32*l^3*r^2-480*l^2*r^2+14612*lambda[1,1]*l+45404*lambda[1,2]*l^2+73032*lambda[1,2]*l+5208*lambda[1,2]^2*l^6+16*l^3+1436*l*r^4+264*l^2*r^4-103448*lambda[1,2]^2*l^5*r^2-10208*lambda[1,2]^2*l^6*r^2-2272*lambda[1,1]*l^3*r^2-3776*lambda[1,2]*l^4*r^2-26088*lambda[1,1]^2*l^3*r^2-3296*lambda[1,1]^2*l^4*r^2-562424*lambda[1,2]^2*l^4*r^2-128*lambda[1,1]*l^4*r^2-192*lambda[1,2]*l^5*r^2-2296*l*r^2-3269828*lambda[1,2]^2*l^2*r^2-1776896*lambda[1,2]^2*l^3*r^2-3250680*lambda[1,2]^2*l*r^2-179612*lambda[1,1]^2*l*r^2-98944*lambda[1,1]^2*l^2*r^2-160*lambda[1,1]^2*l^5*r^2-849420*lambda[1,1]*lambda[1,2]*r^2-124410*lambda[1,1]^2*r^2-1351350*lambda[1,2]^2*r^2-416*lambda[1,2]^2*l^7*r^2-37752*lambda[1,1]*r^2+16*l^3*r^4+14760*lambda[1,2]*l^3*r^4+1936*lambda[1,2]*l^4*r^4+48924*lambda[1,2]^2*l^5*r^4+5000*lambda[1,2]^2*l^6*r^4+80*lambda[1,1]^2*l^5*r^4+13660*lambda[1,1]^2*l^3*r^4+1688*lambda[1,1]^2*l^4*r^4+96*lambda[1,2]*l^5*r^4+1200*lambda[1,1]*l^3*r^4+64*lambda[1,1]*l^4*r^4+208*lambda[1,2]^2*l^7*r^4+256*lambda[1,2]*l^6*lambda[1,1]+251950*lambda[1,2]^2*l^4*r^4+8120*lambda[1,1]*l^2*r^4+1233660*lambda[1,2]^2*l^2*r^4+737732*lambda[1,2]^2*l^3*r^4+2574*r^4+95820*lambda[1,1]^2*l*r^4+52630*lambda[1,1]^2*l^2*r^4+1098756*lambda[1,2]^2*l*r^4+23220*lambda[1,1]*l*r^4+23166*lambda[1,1]*r^4+86784*lambda[1,2]*l*r^4+52580*lambda[1,2]*l^2*r^4+54054*lambda[1,2]*r^4+45045*lambda[1,1]^2+637065*lambda[1,2]^2+65637*lambda[1,1]^2*r^4+360360*lambda[1,1]*lambda[1,2]+44010*lambda[1,1]^2*l^2+405405*lambda[1,2]^2*r^4+1608*lambda[1,1]^2*l^4+930988*lambda[1,2]^2*l^3+324324*lambda[1,1]*lambda[1,2]*r^4+5776*lambda[1,1]*l^5*lambda[1,2]+584930*lambda[1,1]*lambda[1,2]*l^2+238028*lambda[1,2]*l^3*lambda[1,1]+51960*lambda[1,2]*l^4*lambda[1,1]+730140*lambda[1,1]*lambda[1,2]*l-11552*lambda[1,1]*l^5*lambda[1,2]*r^2-1597860*lambda[1,1]*lambda[1,2]*l*r^2-512*lambda[1,1]*l^6*lambda[1,2]*r^2-1222872*lambda[1,1]*lambda[1,2]*l^2*r^2-484648*lambda[1,1]*lambda[1,2]*l^3*r^2+80*lambda[1,1]^2*l^5+208*lambda[1,2]^2*l^7-104416*lambda[1,2]*l^4*lambda[1,1]*r^2+675144*lambda[1,1]*lambda[1,2]*l*r^4+558654*lambda[1,1]*lambda[1,2]*l^2*r^4+5776*lambda[1,1]*l^5*lambda[1,2]*r^4+256*lambda[1,1]*l^6*lambda[1,2]*r^4+51656*lambda[1,1]*lambda[1,2]*l^4*r^4+233180*lambda[1,1]*lambda[1,2]*l^3*r^4);  
 
c[1]:=n*(2*l+1+4*n)*(2*n+7+2*l)*(60+48*n^4*lambda[1,2]^2*l^4+12*lambda[1,2]^2*l^4-20*lambda[1,1]^2*l-72*lambda[1,2]^2*l^2-84*lambda[1,2]^2*l-60*lambda[1,1]+60*lambda[1,2]+40*lambda[1,2]*l^2+40*lambda[1,2]*l+72*lambda[1,2]^2*l^2*n+48*lambda[1,2]^2*l^3*n+30*lambda[1,1]^2+90*lambda[1,2]^2-360*n^2*lambda[1,1]*lambda[1,2]*l^2-90*lambda[1,1]*lambda[1,2]-20*lambda[1,1]^2*l^2+24*lambda[1,2]^2*l^3+60*lambda[1,1]*lambda[1,2]*l^2+60*lambda[1,1]*lambda[1,2]*l-648*n^4*lambda[1,2]^2*l^2-360*n^3*lambda[1,2]^2*l^2+360*n^5*lambda[1,1]*lambda[1,2]*l+330*n*lambda[1,1]*lambda[1,2]*l+288*n^5*lambda[1,2]^2*l^2+360*n^4*lambda[1,1]*lambda[1,2]*l^2-630*n^3*lambda[1,1]*lambda[1,2]*l+120*n^3*lambda[1,1]*lambda[1,2]*l^3-80*lambda[1,2]*n-50*n*lambda[1,1]^2-174*lambda[1,2]^2*n+96*n^7*lambda[1,2]^2-336*n^5*lambda[1,2]^2+267*n^4*lambda[1,2]^2-237*n^2*lambda[1,2]^2+414*n^3*lambda[1,2]^2+80*n^4*lambda[1,1]^2+80*n^3*lambda[1,1]^2-80*n^2*lambda[1,1]^2-168*n^6*lambda[1,2]^2+288*n^6*lambda[1,2]^2*l^2+492*n^2*lambda[1,2]^2*l^2+192*n^5*lambda[1,2]^2*l^3+708*n^3*lambda[1,2]^2*l-576*n^5*lambda[1,2]^2*l-345*n^3*lambda[1,1]*lambda[1,2]-100*n*lambda[1,1]^2*l-240*n^3*lambda[1,2]^2*l^3-140*lambda[1,2]*n^2+48*lambda[1,2]^2*n^8+80*lambda[1,2]*n^3+80*lambda[1,2]*n^4+60*lambda[1,1]*n+120*lambda[1,1]*n^2+80*n^2*lambda[1,1]^2*l^2-270*n^4*lambda[1,1]*lambda[1,2]+160*n^3*lambda[1,1]^2*l-696*n^4*lambda[1,2]^2*l+492*n^2*lambda[1,2]^2*l+120*n^6*lambda[1,1]*lambda[1,2]+120*lambda[1,1]*l*n+360*n^4*lambda[1,1]*lambda[1,2]*l-160*lambda[1,2]*l*n+80*lambda[1,2]*l*n^2+160*lambda[1,2]*l*n^3+80*lambda[1,2]*l^2*n^2+180*n^3*lambda[1,1]*lambda[1,2]*l^2-360*n^2*lambda[1,1]*lambda[1,2]*l+96*n^4*lambda[1,2]^2*l^3+240*n^2*lambda[1,1]*lambda[1,2]+192*n^7*lambda[1,2]^2*l+180*n^5*lambda[1,1]*lambda[1,2]+80*n^2*lambda[1,1]^2*l-324*lambda[1,2]^2*l*n+165*n*lambda[1,1]*lambda[1,2]+288*n^6*lambda[1,2]^2*l)*(2*l+4*n-1)*(2*n+5+2*l);  
 
c[2]:=-3*(2*l+4*n-1)*(2*n+5+2*l)*(5+2*l+4*n)*(140+120*n^2+140*n+40*l+80*lambda[1,2]*l^3+120*l*n-40*lambda[1,1]^2*l^3+40*lambda[1,2]^2*l^5-320*n^3*lambda[1,2]^2*l^4+400*n^4*lambda[1,2]^2*l^4+220*lambda[1,2]^2*l^4-140*lambda[1,1]^2*l+140*lambda[1,2]^2*l^2+140*lambda[1,1]+40*lambda[1,1]*l+360*lambda[1,2]*l^2+280*lambda[1,2]*l+3200*n^6*lambda[1,2]^2*l^3+760*lambda[1,2]^2*l^2*n+840*lambda[1,2]^2*l^3*n+300*lambda[1,2]^2*l^4*n+24*lambda[1,2]^2*l^5*n+480*n^6*lambda[1,2]^2*l^4+96*n^5*lambda[1,2]^2*l^5-300*n^2*lambda[1,1]*lambda[1,2]*l^2-180*lambda[1,1]^2*l^2+320*lambda[1,2]^2*l^3+180*lambda[1,1]*lambda[1,2]*l^2+40*lambda[1,2]*l^3*lambda[1,1]+140*lambda[1,1]*lambda[1,2]*l+2400*lambda[1,2]^2*n^8*l+480*lambda[1,2]^2*n^9*l+960*lambda[1,2]^2*n^8*l^2+240*lambda[1,2]*n^8*lambda[1,1]-2320*n^4*lambda[1,2]^2*l^2+500*n^3*lambda[1,2]^2*l^2-240*n^2*lambda[1,1]*lambda[1,2]*l^3+240*n^4*lambda[1,1]*lambda[1,2]*l^4+1440*n^6*lambda[1,1]*lambda[1,2]*l^2+4320*n^5*lambda[1,1]*lambda[1,2]*l+120*n*lambda[1,1]*lambda[1,2]*l+300*n*lambda[1,1]*lambda[1,2]*l^2+120*n*lambda[1,1]*lambda[1,2]*l^3+960*n^7*lambda[1,1]*lambda[1,2]*l-1320*n^5*lambda[1,2]^2*l^2+3480*n^4*lambda[1,1]*lambda[1,2]*l^2-740*n^3*lambda[1,1]*lambda[1,2]*l+880*n^3*lambda[1,1]*lambda[1,2]*l^3+340*lambda[1,2]*n-110*n*lambda[1,1]^2+160*lambda[1,2]*n^6+90*lambda[1,2]^2*n+120*n^7*lambda[1,2]^2-525*n^5*lambda[1,2]^2-285*n^4*lambda[1,2]^2+111*n^2*lambda[1,2]^2+560*n^5*lambda[1,1]^2-245*n^3*lambda[1,2]^2+800*n^4*lambda[1,1]^2+300*n^3*lambda[1,1]^2-210*n^2*lambda[1,1]^2+160*n^6*lambda[1,1]^2-882*n^6*lambda[1,2]^2+120*n^2*lambda[1,2]^2*l^4+160*n^2*lambda[1,1]^2*l^3+960*n^7*lambda[1,2]^2*l^3+4080*n^6*lambda[1,2]^2*l^2+240*lambda[1,1]*n^2*l^2+1020*n^2*lambda[1,2]^2*l^2+2160*n^5*lambda[1,2]^2*l^3+10*n^3*lambda[1,2]^2*l-2586*n^5*lambda[1,2]^2*l-170*n^3*lambda[1,1]*lambda[1,2]-40*lambda[1,1]^2*l^3*n-360*n*lambda[1,1]^2*l-220*n*lambda[1,1]^2*l^2-520*n^3*lambda[1,2]^2*l^3+900*lambda[1,2]*n^2+560*lambda[1,2]^2*n^9+960*lambda[1,2]^2*n^8+96*lambda[1,2]^2*n^10+660*lambda[1,2]*n^3+680*lambda[1,2]*n^4+240*lambda[1,1]*n^4+300*lambda[1,1]*n+660*lambda[1,1]*n^2+560*lambda[1,1]*n^3+560*lambda[1,2]*n^5+480*n^2*lambda[1,1]^2*l^2-265*n^4*lambda[1,1]*lambda[1,2]+1320*n^3*lambda[1,1]^2*l+1280*n^4*lambda[1,1]^2*l-670*n^4*lambda[1,2]^2*l+330*n^2*lambda[1,2]^2*l+1200*n^5*lambda[1,2]^2*l^4+1720*n^6*lambda[1,1]*lambda[1,2]+720*lambda[1,1]*l*n^2+520*lambda[1,1]*l*n+480*lambda[1,2]*l*n^5+3680*n^6*lambda[1,1]*lambda[1,2]*l+840*n^4*lambda[1,1]*lambda[1,2]*l+480*lambda[1,2]*l^2*n^4+960*lambda[1,2]*l*n+840*lambda[1,2]*l*n^2+1080*lambda[1,2]*l*n^3+1280*lambda[1,2]*l*n^4+880*lambda[1,2]*l^2*n^3+480*lambda[1,2]*l^2*n^2+440*lambda[1,2]*l^2*n+480*lambda[1,1]*l*n^3+160*lambda[1,1]*l^2*n+1120*n^7*lambda[1,1]*lambda[1,2]+4000*n^7*lambda[1,2]^2*l^2-120*n^3*lambda[1,1]*lambda[1,2]*l^2+4320*n^5*lambda[1,1]*lambda[1,2]*l^2+2080*n^4*lambda[1,1]*lambda[1,2]*l^3+320*n^3*lambda[1,1]*lambda[1,2]*l^4+960*n^5*lambda[1,1]*lambda[1,2]*l^3+840*n^2*lambda[1,2]^2*l^3+880*n^3*lambda[1,1]^2*l^2+160*n^3*lambda[1,1]^2*l^3-1200*n^4*lambda[1,2]^2*l^3-45*n^2*lambda[1,1]*lambda[1,2]+480*n^5*lambda[1,1]^2*l+3280*n^7*lambda[1,2]^2*l+720*n^5*lambda[1,1]*lambda[1,2]+120*n^2*lambda[1,1]^2*l+376*lambda[1,2]^2*l*n+160*n^2*lambda[1,2]*l^3-20*n*lambda[1,1]*lambda[1,2]+160*n^4*lambda[1,2]^2*l^5+480*n^4*lambda[1,1]^2*l^2-320*n^6*lambda[1,2]^2*l+160*n^3*lambda[1,2]*l^3+80*lambda[1,2]*l^3*n);  
 
c[3]:=3*(2*l+4*n+7)*(2*n-1+2*l)*(200+120*n^2+220*n+80*l+120*l*n-80*lambda[1,2]^2*l^5+1120*n^3*lambda[1,2]^2*l^4+3200*n^4*lambda[1,2]^2*l^4+80*lambda[1,1]*l^2-360*lambda[1,2]^2*l^4+420*lambda[1,1]^2*l+220*lambda[1,2]^2*l^2+300*lambda[1,2]^2*l+500*lambda[1,1]+300*lambda[1,2]+400*lambda[1,1]*l+120*lambda[1,2]*l+5440*n^6*lambda[1,2]^2*l^3-1660*lambda[1,2]^2*l^2*n-3120*lambda[1,2]^2*l^3*n-1300*lambda[1,2]^2*l^4*n-136*lambda[1,2]^2*l^5*n+480*n^6*lambda[1,2]^2*l^4+96*n^5*lambda[1,2]^2*l^5+300*lambda[1,1]^2+2220*n^2*lambda[1,1]*lambda[1,2]*l^2+300*lambda[1,1]*lambda[1,2]+120*lambda[1,1]^2*l^2-360*lambda[1,2]^2*l^3+60*lambda[1,1]*lambda[1,2]*l^2-240*lambda[1,2]*l^3*lambda[1,1]-80*lambda[1,2]*l^4*lambda[1,1]+520*lambda[1,1]*lambda[1,2]*l+3840*lambda[1,2]^2*n^8*l+480*lambda[1,2]^2*n^9*l+960*lambda[1,2]^2*n^8*l^2+240*lambda[1,2]*n^8*lambda[1,1]-1720*n^4*lambda[1,2]^2*l^2-14460*n^3*lambda[1,2]^2*l^2+1920*n^2*lambda[1,1]*lambda[1,2]*l^3+240*n^4*lambda[1,1]*lambda[1,2]*l^4+1440*n^6*lambda[1,1]*lambda[1,2]*l^2+480*n^2*lambda[1,1]*lambda[1,2]*l^4+13920*n^5*lambda[1,1]*lambda[1,2]*l+780*n*lambda[1,1]*lambda[1,2]*l-420*n*lambda[1,1]*lambda[1,2]*l^2-280*n*lambda[1,1]*lambda[1,2]*l^3+960*n^7*lambda[1,1]*lambda[1,2]*l+15960*n^5*lambda[1,2]^2*l^2+13080*n^4*lambda[1,1]*lambda[1,2]*l^2+7420*n^3*lambda[1,1]*lambda[1,2]*l+4720*n^3*lambda[1,1]*lambda[1,2]*l^3+200*lambda[1,2]*n+1370*n*lambda[1,1]^2+160*lambda[1,2]*n^6+540*lambda[1,2]^2*n+4920*n^7*lambda[1,2]^2-5145*n^5*lambda[1,2]^2-6270*n^4*lambda[1,2]^2+1416*n^2*lambda[1,2]^2+880*n^5*lambda[1,1]^2-1195*n^3*lambda[1,2]^2+2000*n^4*lambda[1,1]^2+2700*n^3*lambda[1,1]^2+2490*n^2*lambda[1,1]^2+160*n^6*lambda[1,1]^2+1638*n^6*lambda[1,2]^2-1320*n^2*lambda[1,2]^2*l^4+320*n^2*lambda[1,1]^2*l^3+960*n^7*lambda[1,2]^2*l^3+16400*n^6*lambda[1,2]^2*l^2+240*lambda[1,1]*n^2*l^2-9360*n^2*lambda[1,2]^2*l^2+10800*n^5*lambda[1,2]^2*l^3-12370*n^3*lambda[1,2]^2*l+1974*n^5*lambda[1,2]^2*l+2090*n^3*lambda[1,1]*lambda[1,2]+120*lambda[1,1]^2*l^3*n+1920*n*lambda[1,1]^2*l+820*n*lambda[1,1]^2*l^2-3240*n^3*lambda[1,2]^2*l^3+360*lambda[1,2]*n^2+880*lambda[1,2]^2*n^9+3120*lambda[1,2]^2*n^8+96*lambda[1,2]^2*n^10+1620*lambda[1,2]*n^3+1880*lambda[1,2]*n^4+240*lambda[1,1]*n^4+1140*lambda[1,1]*n+1380*lambda[1,1]*n^2+880*lambda[1,1]*n^3+880*lambda[1,2]*n^5+1680*n^2*lambda[1,1]^2*l^2+5135*n^4*lambda[1,1]*lambda[1,2]+320*n^3*lambda[1,2]^2*l^5+3560*n^3*lambda[1,1]^2*l+2080*n^4*lambda[1,1]^2*l-14020*n^4*lambda[1,2]^2*l-2220*n^2*lambda[1,2]^2*l+2160*n^5*lambda[1,2]^2*l^4+5080*n^6*lambda[1,1]*lambda[1,2]+1200*lambda[1,1]*l*n^2+1160*lambda[1,1]*l*n+480*lambda[1,2]*l*n^5+5920*n^6*lambda[1,1]*lambda[1,2]*l+15240*n^4*lambda[1,1]*lambda[1,2]*l+480*lambda[1,2]*l^2*n^4+120*lambda[1,2]*l*n+1920*lambda[1,2]*l*n^2+3320*lambda[1,2]*l*n^3+2080*lambda[1,2]*l*n^4+1520*lambda[1,2]*l^2*n^3+1680*lambda[1,2]*l^2*n^2+520*lambda[1,2]*l^2*n+480*lambda[1,1]*l*n^3+320*lambda[1,1]*l^2*n+1760*n^7*lambda[1,1]*lambda[1,2]+6560*n^7*lambda[1,2]^2*l^2+9960*n^3*lambda[1,1]*lambda[1,2]*l^2+7200*n^5*lambda[1,1]*lambda[1,2]*l^2+3680*n^4*lambda[1,1]*lambda[1,2]*l^3+640*n^3*lambda[1,1]*lambda[1,2]*l^4+1500*n^2*lambda[1,1]*lambda[1,2]*l+960*n^5*lambda[1,1]*lambda[1,2]*l^3-6720*n^2*lambda[1,2]^2*l^3+1520*n^3*lambda[1,1]^2*l^2+160*n^3*lambda[1,1]^2*l^3+7200*n^4*lambda[1,2]^2*l^3+1395*n^2*lambda[1,1]*lambda[1,2]+480*n^5*lambda[1,1]^2*l+11600*n^7*lambda[1,2]^2*l+7200*n^5*lambda[1,1]*lambda[1,2]+3360*n^2*lambda[1,1]^2*l+1016*lambda[1,2]^2*l*n+320*n^2*lambda[1,2]*l^3+1100*n*lambda[1,1]*lambda[1,2]+320*n^4*lambda[1,2]^2*l^5+480*n^4*lambda[1,1]^2*l^2+14800*n^6*lambda[1,2]^2*l+160*n^3*lambda[1,2]*l^3+240*lambda[1,2]*l^3*n)*(2*l+1+4*n);  
 
c[4]:=-(n+1)*(2*l+4*n+7)*(5+2*l+4*n)*(2*n-1+2*l)*(2*n-3+2*l)*(60+192*n^3*lambda[1,2]^2*l^4+48*n^4*lambda[1,2]^2*l^4+60*lambda[1,2]^2*l^4+120*lambda[1,1]^2*l+60*lambda[1,2]^2*l^2+120*lambda[1,1]+120*lambda[1,1]*l+120*lambda[1,2]*l^2+120*lambda[1,2]*l+552*lambda[1,2]^2*l^2*n+672*lambda[1,2]^2*l^3*n+192*lambda[1,2]^2*l^4*n+60*lambda[1,1]^2+2340*n^2*lambda[1,1]*lambda[1,2]*l^2+60*lambda[1,1]^2*l^2+120*lambda[1,2]^2*l^3+240*lambda[1,1]*lambda[1,2]*l^2+120*lambda[1,2]*l^3*lambda[1,1]+120*lambda[1,1]*lambda[1,2]*l+5112*n^4*lambda[1,2]^2*l^2+5688*n^3*lambda[1,2]^2*l^2+360*n^2*lambda[1,1]*lambda[1,2]*l^3+360*n^5*lambda[1,1]*lambda[1,2]*l+960*n*lambda[1,1]*lambda[1,2]*l+1260*n*lambda[1,1]*lambda[1,2]*l^2+360*n*lambda[1,1]*lambda[1,2]*l^3+2016*n^5*lambda[1,2]^2*l^2+360*n^4*lambda[1,1]*lambda[1,2]*l^2+4410*n^3*lambda[1,1]*lambda[1,2]*l+120*n^3*lambda[1,1]*lambda[1,2]*l^3+200*lambda[1,2]*n+350*n*lambda[1,1]^2+30*lambda[1,2]^2*n+480*n^7*lambda[1,2]^2+3360*n^5*lambda[1,2]^2+2787*n^4*lambda[1,2]^2+87*n^2*lambda[1,2]^2+810*n^3*lambda[1,2]^2+80*n^4*lambda[1,1]^2+400*n^3*lambda[1,1]^2+640*n^2*lambda[1,1]^2+1848*n^6*lambda[1,2]^2+288*n^2*lambda[1,2]^2*l^4+288*n^6*lambda[1,2]^2*l^2+2724*n^2*lambda[1,2]^2*l^2+192*n^5*lambda[1,2]^2*l^3+4644*n^3*lambda[1,2]^2*l+5184*n^5*lambda[1,2]^2*l+2775*n^3*lambda[1,1]*lambda[1,2]+540*n*lambda[1,1]^2*l+160*n*lambda[1,1]^2*l^2+2064*n^3*lambda[1,2]^2*l^3+580*lambda[1,2]*n^2+48*lambda[1,2]^2*n^8+400*lambda[1,2]*n^3+80*lambda[1,2]*n^4+300*lambda[1,1]*n+120*lambda[1,1]*n^2+80*n^2*lambda[1,1]^2*l^2+2430*n^4*lambda[1,1]*lambda[1,2]+160*n^3*lambda[1,1]^2*l+7464*n^4*lambda[1,2]^2*l+1032*n^2*lambda[1,2]^2*l+120*n^6*lambda[1,1]*lambda[1,2]+120*lambda[1,1]*l*n+2160*n^4*lambda[1,1]*lambda[1,2]*l+480*lambda[1,2]*l*n+560*lambda[1,2]*l*n^2+160*lambda[1,2]*l*n^3+80*lambda[1,2]*l^2*n^2+160*lambda[1,2]*l^2*n+1620*n^3*lambda[1,1]*lambda[1,2]*l^2+3510*n^2*lambda[1,1]*lambda[1,2]*l+1776*n^2*lambda[1,2]^2*l^3+1056*n^4*lambda[1,2]^2*l^3+1185*n^2*lambda[1,1]*lambda[1,2]+192*n^7*lambda[1,2]^2*l+900*n^5*lambda[1,1]*lambda[1,2]+560*n^2*lambda[1,1]^2*l+192*lambda[1,2]^2*l*n+150*n*lambda[1,1]*lambda[1,2]+1632*n^6*lambda[1,2]^2*l);  

4.10 2nd order, 2 generalised boundary conditions.

In the polar domain r [0,1], we provide anorthogonal basis functions that satisfies the generalised boundary conditions

           ′          ′′
f (1) + λ1,1f (1)+ λ1,2f (1) = 0,                 (27)
 f(1)+ λ2,1f ′(1)+ λ2,2f′′(1) = 0.                 (28)

An unnormalised basis set may be written

             4
         l+1 ∑     (α+3,l+1∕2)
Ψn(x) = r      ciPn+2- i    (x ),     n ≥ 2
            i=1

for any α > -1. The function Ψ1 is given explicitly below. The 4 coefficients ci are determined up to an arbitrary normalisation by imposing

A generalised set ci for arbitrary α is too complex. However, we present results for α = 0, α = -12 and α = 12 below.

Case(i) α = -12

The ‘starting’ functions are given by

       l+1       3           3            2                                                          2                                        2                 2                                  2 2       3 2       2 2       3 2         2         2       2 2        2       2 2         2             2     2 4         4        2 4        4       3 4       2 4         4       3 4       2          2        2         2     2 4         4           4        4
Ψ1 = 4r   (19λ2,2l λ1,1- 19λ2,1l λ1,2- 133λ2,1l λ1,2- 405λ2,1λ1,2l+405 λ2,2lλ1,1- 30λ1,1- 210λ1,2- 11λ1,1l- 29λ1,2l- 137λ1,2l+30 λ2,1+210 λ2,2+11 λ2,1l+29 λ2,2l +137&#

c[1] = 8n(n + 1)(2n + l + 1)(2n + 2 + l)(n + 4 + l)(-11340λ2,1λ1,2l - 11340λ2,21,1 + 5670λ2,1λ1,2 + 5670λ2,2λ1,1 - 5460λ1,22 2,1 + 6048λ2,12 1,2 - 8960λ2,2n6λ 2,1λ1,2 + 65280n4λ 2,22λ 1,12l3 + 126720n5λ 2,22λ 1,12l2 - 14480nλ 2,22λ 1,12l + 32640n3λ 2,22λ 1,12l2 + 5460λ 1,2l3λ 2,2λ1,1 + 3840n4λ 2,22λ 1,12l4 + 23040n6λ 2,22λ 1,12l2 + 11520n3λ 2,22λ 1,12l4 - 15120 2,2λ1,12l - 53760λ 2,2n5λ 2,1λ1,2 + 64960n3λ 2,22λ 1,12l3 + 15360n5λ 2,22λ 1,12l3 - 18816λ 2,2n3λ 2,1λ1,2 + 69120n5λ 2,22λ 1,12 + 33264λ 1,2n2λ 2,1λ1,1l
+ 6048λ1,2n2λ 2,1λ1,1l2 + 9072λ 1,21,1l2λ 2,1 + 15120λ1,21,12,1 - 138240λ1,2n5λ 2,1λ2,2λ1,1 - 7680λ1,2n8λ 2,1λ2,2λ1,1 - 4368λ2,22n2λ 1,1l - 54640nλ2,22λ 1,12l3 - 83472nλ 2,22λ 1,12l2 - 70224λ 2,2n2λ 2,1l2λ 1,2 + 11340λ1,21,1 + 7560λ2,12λ 1,2l + 30720λ1,22n7λ 2,12 + 69120λ 1,22n5λ 2,12 - 50528λ 1,22n4λ 2,12 + 3840λ 1,22n8λ 2,12 + 83200λ 1,22n6λ 2,12 - 8064λ 1,22 2,1
- 21168λ2,12n2λ 1,2 + 30720n7λ 2,22λ 1,12 + 3840n8λ 2,22λ 1,12 + 17568λ 1,22nλ 2,12 - 9008λ 1,22n2λ 2,12 - 89472λ 1,22n3λ 2,12 + 30240λ 1,21,1 - 2800λ2,22,1l3λ 1,2 + 24192λ2,1n3λ 2,2λ1,1 + 56896λ2,2n2λ 2,1λ1,2 - 90722,2λ1,12l2 + 17568nλ 2,22λ 1,12 - 33264n2λ 2,2λ1,12l - 12096n3λ 2,2λ1,12l - 6048n2λ 2,2λ1,12l2 - 6048λ 2,12n2l2λ 1,2 + 166944λ1,22,2l2λ 1,1λ2,1 - 127680λ1,2n4λ 2,2λ1,1l - 245760λ1,2n4λ 2,1λ2,2λ1,1l - 8400λ1,22,2λ1,1λ2,1 - 33264λ2,12n2λ 1,2l + 5460λ1,22,2λ1,1 + 26880λ1,22n5λ 2,1l - 23040λ1,2n3λ 2,1λ2,2l4λ 1,1 + 6048λ2,1n2λ 2,2l2λ 1,1 + 33264λ2,1n2λ 2,21,1 - 9072λ2,12nl2λ 1,2 + 19320λ1,22,2 - 8190λ1,2λ2,2 - 5670λ2,2λ2,1 - 13230λ1,1λ2,1 + 27888λ1,22n2
+ 1890λ2,2l2λ 1,12 + 83200n6λ 2,22λ 1,12 - 7560λ 2,21,1λ2,1 - 36960λ2,21,2l - 94304λ2,2n4λ 2,1λ1,2 - 8190λ2,1λ1,2λ2,2λ1,1 - 161728λ2,2n3λ 2,1λ1,2l - 7560λ1,22l3λ 2,12 - 5670λ 2,1λ1,2λ1,1 + 4200λ2,22lλ 1,12 + 26880λ 2,22n4λ 1,1l2 + 15120λ 1,2l3λ 2,2λ1,1λ2,1 + 7560λ2,2lλ1,12 - 18816λ 2,2n2λ 1,2l2 - 103488λ 2,2n2λ 1,2l + 5460λ2,1λ1,2λ2,2l + 19110λ1,2l2λ 2,2λ1,1 - 7560λ1,21,1λ2,1 - 5670λ2,22l2λ 1,12 + 5460λ 2,1l3λ 1,2λ2,2 + 2940λ2,22l2 + 37632λ 1,22n3 + 15120λ 1,21,1l + 6615λ2,12 + 4095λ 1,22 + 6615λ 1,12 + 4095λ 2,22 + 9408λ 2,22n4 - 19488λ 2,22n + 5670λ 2,2λ1,12 + 4095λ 2,22λ 1,12 - 26880λ 2,2n5λ 2,1λ1,2l - 127680λ2,2n4λ 2,1λ1,2l - 20160λ2,2n2λ 2,1l3λ 1,2 + 15120λ2,12,21,1 + 9072λ2,12,2l2λ 1,1 + 4368λ2,2n2λ 2,1λ1,2l + 18480λ2,22nl + 27888λ 2,22n2 + 304608λ 1,2n2λ 2,1λ2,21,1 + 307296λ1,2n2λ 2,1λ2,2l2λ 1,1 + 9408λ1,22n4 - 5880λ 1,2l2λ 2,2 - 21168n2λ 2,2λ1,12 - 30720λ 1,2n5λ 2,1λ2,2λ1,1l3 - 6048λ 2,12,2λ1,1 + 18816λ1,22n3λ 2,1 + 8960λ1,22n6λ 2,1 - 56896λ1,22n2λ 2,1 + 18480λ1,22nl + 178944λ 1,2n3λ 2,1λ2,2λ1,1 + 53760λ1,22n5λ 2,1 - 453120λ1,2n5λ 2,1λ2,2λ1,1l
- 19488λ1,22n - 15120 2,2λ1,1l + 8064λ2,22,1λ1,2 - 26544λ2,22nl2λ 1,1 - 15120λ2,12 1,2l + 26544λ2,22,1l2λ 1,2 + 21168λ2,1n2λ 2,2λ1,1 + 68320λ2,22,1λ1,2l - 26544λ1,22 2,1l2 - 68320λ 2,22nlλ 1,1 - 15120n2λ 2,1λ1,2 + 3570λ1,2l4λ 2,2λ1,1λ2,1 - 15120n2λ 2,2λ1,1 - 302402,1λ1,2 + 8190λ2,22λ 1,1 + 94304λ1,22n4λ 2,1 - 26880λ1,2n4λ 2,2λ1,1l2 - 35136λ 1,22,2λ1,1λ2,1 + 4200λ1,22lλ 2,12 - 8064λ 2,22 1,1 + 30240λ2,22,1 - 5670λ1,2λ1,1 - 46080λ1,2n6λ 2,1λ2,2λ1,1l2 - 68320λ 1,22 2,1l + 24192λ1,2n3λ 2,1λ1,1 - 9360nλ2,22λ 1,12l4 - 152304λ 1,22n2λ 2,12l - 153648λ 1,22n2λ 2,12l2
- 37632λ2,2n3λ 1,2l + 26880λ2,22n5λ 1,1l + 103680n6λ 2,22λ 1,12l + 15360n7λ 2,22λ 1,12l - 147136n3λ 2,22λ 1,12l - 153648n2λ 2,22λ 1,12l2 + 122880n4λ 2,22λ 1,12l + 226560n5λ 2,22λ 1,12l - 129920λ 1,2n3λ 2,1λ2,2l3λ 1,1 + 26544λ1,22,2l2λ 1,1 + 68320λ1,22,21,1 - 94080λ2,2n3λ 2,1l2λ 1,2 + 161728λ1,22n3λ 2,1l + 56896λ1,2n2λ 2,2λ1,1 + 23040λ1,22n6λ 2,12l2 + 127680λ 1,22n4λ 2,1l + 11520λ1,22n3λ 2,12l4 + 127680λ 2,22n4λ 1,1l + 70224λ1,22n2λ 2,1l2 + 2800λ 1,22 2,1l3 + 21168λ 1,2n2λ 2,1λ1,1 + 15360λ1,22n5λ 2,12l3 + 205920λ 1,22n4λ 2,12l2 + 64960λ 1,22n3λ 2,12l3 + 14112λ 1,22nl2 - 9360λ 1,22nλ 2,12l4 - 54640λ 1,22nλ 2,12l3 + 161728λ 2,22n3λ 1,1l
+ 51744λ1,22n2l + 9408λ 1,22n2l2 + 18816λ 1,22n3l + 4368λ 1,2n2λ 2,2λ1,1l - 30480λ1,22n2λ 2,12l3 - 2800λ 1,22,2l3λ 1,1 + 15120λ1,2n2λ 1,1 - 6048n4λ 2,2λ1,12 + 38976λ 2,21,2 + 103680λ1,22n6λ 2,12l + 226560λ 1,22n5λ 2,12l - 83472λ 1,22nλ 2,12l2 + 2400λ 1,22n2λ 2,12l4 + 94080λ 1,22n3λ 2,1l2 + 8064λ 1,22,2λ1,1 + 11340λ2,12,2 - 5670λ1,22l2λ 2,12 - 94304λ 1,2n4λ 2,2λ1,1 - 53760λ1,2n5λ 2,2λ1,1 - 8960λ1,2n6λ 2,2λ1,1 + 18016λ1,2n2λ 2,1λ2,2λ1,1 - 18816λ1,2n3λ 2,2λ1,1 + 15360λ1,22n7λ 2,12l - 8960λ 1,2n3λ 2,2λ1,1l3 - 14480λ 1,22nλ 2,12l + 3840λ 1,22n4λ 2,12l4 + 32640λ 1,22n3λ 2,12l2
- 147136λ1,22n3λ 2,12l + 26880λ 1,22n4λ 2,1l2 + 8960λ 1,22n3λ 2,1l3 + 20160λ 2,22n2l3λ 1,1 + 19110λ2,1λ1,2λ2,2l2 + 8960λ 2,22n3λ 1,1l3 - 56896λ 2,22n2λ 1,1 - 9008n2λ 2,22λ 1,12 - 18816λ 2,2n4λ 1,2 + 12096λ1,2n3λ 2,1λ1,1l - 19110λ1,22l2λ 2,1 + 51744λ2,22n2l + 18816λ 2,22n3l - 55776λ 2,2n2λ 1,2 - 75264λ2,2n3λ 1,2 + 14112λ2,22nl2 + 4095λ 2,12λ 1,22 + 15120λ 2,2n2λ 2,1 - 302402,2λ1,1 - 1785λ2,22l4λ 1,12 + 12096λ 2,1n3λ 2,2λ1,1l - 6048λ2,12n4λ 1,2 - 24192λ2,12n3λ 1,2 + 8190λ2,1λ1,22 - 1890λ 2,2l2λ 1,1λ2,1 + 94080λ2,22n3λ 1,1l2 - 24192n3λ 2,2λ1,12 - 89472n3λ 2,22λ 1,12 + 6048 2,2λ1,12 - 411840λ 1,2n4λ 2,1λ2,2l2λ 1,1
- 130560λ1,2n4λ 2,1λ2,2l3λ 1,1 - 1890λ1,2l2λ 1,1λ2,1 + 9408λ2,22n2l2 - 26880λ 2,2n4λ 2,1l2λ 1,2 - 5670λ2,2λ1,1λ2,1 - 151202,1λ1,2l - 12096λ2,12n3λ 1,2l - 207360λ1,2n6λ 2,1λ2,2λ1,1l + 28960λ1,22,21,1λ2,1 + 11340λ1,2l2λ 2,2λ1,1λ2,1 - 20160λ1,2n2λ 2,2l3λ 1,1 + 18720λ1,22,2l4λ 1,1λ2,1 - 253440λ1,2n5λ 2,1λ2,2λ1,1l2 - 70224λ 1,2n2λ 2,2l2λ 1,1 - 5460λ1,22l3λ 2,1 - 161728λ1,2n3λ 2,2λ1,1l - 26880λ1,2n5λ 2,2λ1,1l + 60960λ1,2n2λ 2,1λ2,2l3λ 1,1 - 4800λ1,2n2λ 2,1λ2,2l4λ 1,1 - 1785λ1,22l4λ 2,12 - 50528n4λ 2,22λ 1,12 + 18816λ 2,22n3λ 1,1 + 126720λ1,22n5λ 2,12l2
+ 20160λ1,22n2λ 2,1l3 - 9660λ 1,22l + 2940λ 1,22l2 - 9660λ 2,22l + 5670λ 2,12λ 1,2 - 8960λ2,2n3λ 2,1l3λ 1,2 + 6048λ2,1n4λ 2,2λ1,1 + 109280λ1,22,2l3λ 1,1λ2,1 + 65280λ1,22n4λ 2,12l3 - 4368λ 1,22n2λ 2,1l + 122880λ1,22n4λ 2,12l - 6048λ 1,21,1λ2,1 + 6048λ1,2n4λ 2,1λ1,1 - 166400λ1,2n6λ 2,1λ2,2λ1,1 - 61440λ1,2n7λ 2,1λ2,2λ1,1 - 7680λ1,2n4λ 2,1λ2,2l4λ 1,1 - 94080λ1,2n3λ 2,2λ1,1l2 + 101056λ 1,2n4λ 2,1λ2,2λ1,1 + 294272λ1,2n3λ 2,1λ2,21,1 - 5460λ2,22l3λ 1,1 + 8960λ2,22n6λ 1,1 - 65280λ1,2n3λ 2,1λ2,2l2λ 1,1 - 30720λ1,2n7λ 2,1λ2,2λ1,1l - 7560λ2,22l3λ 1,12 + 53760λ 2,22n5λ 1,1 + 94304λ2,22n4λ 1,1 - 30480n2λ 2,22λ 1,12l3 + 2400n2λ 2,22λ 1,12l4 - 152304n2λ 2,22λ 1,12l + 205920n4λ 2,22λ 1,12l2 - 28224λ 2,21,2l2 + 15120λ 2,22,1l + 2800λ2,22nl3λ 1,1 - 8190λ2,2λ1,1λ1,2 - 8190λ2,1λ1,2λ2,2 + 1890λ2,12l2λ 1,2 + 37632λ2,22n3 - 19110λ 2,22l2λ 1,1 - 5460λ2,22 1,1 + 70224λ2,22n2l2λ 1,1)
c[2] = -12(2n + l + 1)n(4 + l + 2n)(-52920λ2,1l2λ 1,2 - 202860λ2,1λ1,2l - 202860λ2,21,1 - 52920λ2,2l2λ 1,1 - 127890λ2,1λ1,2 - 127890λ2,2λ1,1 - 126560λ2,2n2λ 2,1l4λ 1,2 - 314300λ1,22 2,1 + 109494λ2,12 1,2 - 36288n5λ 2,2λ1,12l - 1093568λ 2,2n6λ 2,1λ1,2 + 4057120n4λ 2,22λ 1,12l3 + 8163680n5λ 2,22λ 1,12l2 - 472474nλ 2,22λ 1,12l - 2296304n3λ 2,22λ 1,12l2 - 5880λ 2,22,1l4λ 1,2 + 309960λ2,2n2λ 2,1l + 242620λ1,2l3λ 2,2λ1,1 + 836160n4λ 2,22λ 1,12l4 + 3979200n6λ 2,22λ 1,12l2 + 697120n3λ 2,22λ 1,12l4 + 38400n6λ 2,22λ 1,12l4 + 38400n9λ 2,22λ 1,12l - 251244 2,2λ1,12l - 2565472λ 2,2n5λ 2,1λ1,2 + 1194224n3λ 2,22λ 1,12l3 + 2726720n5λ 2,22λ 1,12l3 + 311040n5λ 2,22λ 1,12l4 + 757760n6λ 2,22λ 1,12l3 - 526400λ 2,2n3λ 2,1λ1,2
+ 23800λ1,2l5λ 2,2λ1,1λ2,1 + 1213856n5λ 2,22λ 1,12 + 71680λ 2,22n7 1,1 + 946512λ1,2n2λ 2,1λ1,1l + 50400λ1,2n2λ 2,1λ1,1l3 + 428652λ 1,2n2λ 2,1λ1,1l2 + 18816λ 1,22n6 - 232960λ 1,2n9λ 2,1λ2,2λ1,1 + 231966λ1,21,1l2λ 2,1 + 251244λ1,21,12,1 + 5440λ1,2n2λ 2,1λ2,2l5λ 1,1 - 2427712λ1,2n5λ 2,1λ2,2λ1,1 - 1415680λ1,2n8λ 2,1λ2,2λ1,1 - 230104λ2,22n2λ 1,1l - 2136724nλ2,22λ 1,12l3 - 2564806nλ 2,22λ 1,12l2 + 60480λ 2,2n3λ 2,1l - 224000λ2,2n7λ 2,1λ1,2 - 1510516λ2,2n2λ 2,1l2λ 1,2 + 202860λ1,21,1 + 153720λ2,12λ 1,2l - 622080λ1,2n5λ 2,1λ2,2λ1,1l4 - 76800λ 1,2n6λ 2,1λ2,2λ1,1l4 + 2151680λ 1,22n7λ 2,12 - 15360λ 1,2n5λ 2,1λ2,2λ1,1l5 - 766080λ 1,2n6λ 2,2λ1,1l + 1213856λ1,22n5λ 2,12 - 2344000λ 1,22n4λ 2,12 + 707840λ 1,22n8λ 2,12 + 3182144λ 1,22n6λ 2,12 - 429842λ 1,22 2,1 + 116480n9λ 2,22λ 1,12 - 425124λ 2,12n2λ 1,2 + 2151680n7λ 2,22λ 1,12 + 707840n8λ 2,22λ 1,12 + 533079λ 1,22nλ 2,12 - 240114λ 1,22n2λ 2,12
- 2572080λ1,22n3λ 2,12 + 523530λ 1,21,1 + 219744λ2,1n3λ 2,2l2λ 1,1 + 12096λ2,1n3λ 2,2l3λ 1,1 + 155008λ2,22,1l3λ 1,2 + 730800λ2,1n3λ 2,2λ1,1 + 32760λ2,1l4λ 1,2λ2,2 - 30240n2λ 2,2λ1,1l2 + 1041348λ 2,2n2λ 2,1λ1,2 - 288288n4λ 2,2λ1,12l - 231966 2,2λ1,12l2 - 107520λ 2,2n6λ 2,1l2λ 1,2 + 533079nλ2,22λ 1,12 - 946512n2λ 2,2λ1,12l - 827568n3λ 2,2λ1,12l - 36288n4λ 2,2λ1,12l2 - 219744n3λ 2,2λ1,12l2 - 428652n2λ 2,2λ1,12l2 - 428652λ 2,12n2l2λ 1,2 - 94080λ2,2n3λ 2,1l4λ 1,2 + 5129612λ1,22,2l2λ 1,1λ2,1
- 506240λ2,2n4λ 2,1l3λ 1,2 - 5797344λ1,2n4λ 2,2λ1,1l - 71680λ1,2n7λ 2,21,1 + 12096λ1,2n6λ 2,1λ1,1 - 1980864λ1,2n4λ 2,1λ2,2λ1,1l - 308280λ1,22,2λ1,1λ2,1 - 946512λ2,12n2λ 1,2l + 314300λ1,22,2λ1,1 + 71680λ1,22n7λ 2,1l + 757760λ1,22n6λ 2,12l3 + 3112704λ 1,22n5λ 2,1l + 766080λ1,22n6λ 2,1l - 112896λ2,2n4λ 1,2l2 - 1394240λ 1,2n3λ 2,1λ2,2l4λ 1,1 - 11900λ1,22l5λ 2,12 + 428652λ 2,1n2λ 2,2l2λ 1,1 + 946512λ2,1n2λ 2,21,1 - 231966λ2,12nl2λ 1,2 + 18816λ2,22n3l3 - 3920λ 1,22,2 + 78400λ2,22n2l3 + 26460λ 1,12l
+ 13230λ2,12n2 + 27930λ 1,2λ2,2 + 127890λ2,2λ2,1 - 171990λ1,1λ2,1 + 782894λ1,22n2 + 81144λ 2,22nl3 + 69930λ 2,2l2λ 1,12 - 32760λ 2,22l4λ 1,1 + 3182144n6λ 2,22λ 1,12 - 153720λ 2,21,1λ2,1 - 112896λ2,2n5λ 1,2l - 1166788λ2,21,2l - 2724960λ2,2n4λ 2,1λ1,2 - 308070λ2,1λ1,2λ2,2λ1,1 - 37632λ2,2n3λ 1,2l3 - 4343024λ 2,2n3λ 2,1λ1,2l - 266560λ1,22l3λ 2,12 + 52920λ 2,2l2λ 2,1 - 174510λ2,1λ1,2λ1,1 + 154140λ2,22lλ 1,12 + 3071264λ 2,22n4λ 1,1l2 + 36288λ 2,1n5λ 2,2λ1,1l + 533120λ1,2l3λ 2,2λ1,1λ2,1 + 153720λ2,2lλ1,12 - 1336944λ 2,2n2λ 1,2l2
- 2949744λ2,2n2λ 1,2l - 896896λ2,2n4λ 1,2l + 94080λ2,22n3λ 1,1l4 - 156800λ 2,2n2λ 1,2l3 - 683648λ 2,2n3λ 1,2l2 + 314300λ 2,1λ1,2λ2,2l + 529830λ1,2l2λ 2,2λ1,1 - 12096n6λ 2,2λ1,12 + 7680n10λ 2,22λ 1,12 + 17920λ 2,22n4λ 1,1l4 - 153720λ 1,21,1λ2,1 - 177310λ2,22l2λ 1,12 + 242620λ 2,1l3λ 1,2λ2,2 + 32760λ1,2l4λ 2,2λ1,1 + 185024λ1,22n5 + 15680λ 2,22l3 + 44100λ 2,22l2 + 26460λ 2,12l + 1127280λ 1,22n3 + 493920λ 1,21,1l + 60480λ1,2n3λ 1,1l + 85995λ2,12 - 13965λ 1,22 + 85995λ 1,12 - 13965λ 2,22 + 18816λ 2,22n6 + 679840λ 2,22n4
+ 185024λ2,22n5 + 130711λ 2,22n + 174510λ 2,2λ1,12 + 154035λ 2,22λ 1,12 - 766080λ 2,2n6λ 2,1λ1,2l - 3112704λ2,2n5λ 2,1λ1,2l - 5797344λ2,2n4λ 2,1λ1,2l + 288288λ2,1n4λ 2,2λ1,1l - 890120λ2,2n2λ 2,1l3λ 1,2 + 251244λ2,12,21,1 + 231966λ2,12,2l2λ 1,1 + 230104λ2,2n2λ 2,1λ1,2l + 17920λ2,22n8λ 1,1 + 583394λ2,22nl + 78400λ 1,22n2l3 + 81144λ 1,22nl3 - 71680λ 2,2n7λ 2,1λ1,2l + 782894λ2,22n2 + 9046944λ 1,2n2λ 2,1λ2,21,1 + 12313624λ1,2n2λ 2,1λ2,2l2λ 1,1 + 679840λ1,22n4 - 31360λ 1,2l3λ 2,2 - 88200λ1,2l2λ 2,2 - 119070λ2,11,1 - 93240λ2,1l2λ 1,2n - 425124n2λ 2,2λ1,12 - 30240n4λ 2,1λ1,2 - 5453440λ1,2n5λ 2,1λ2,2λ1,1l3
+ 36288λ1,2n5λ 2,1λ1,1l - 109494λ2,12,2λ1,1 + 526400λ1,22n3λ 2,1 + 1093568λ1,22n6λ 2,1 + 116480λ1,22n9λ 2,12 - 1041348λ 1,22n2λ 2,1 + 583394λ1,22nl - 1515520λ 1,2n6λ 2,1λ2,2λ1,1l3 + 5144160λ 1,2n3λ 2,1λ2,2λ1,1 + 224000λ1,22n7λ 2,1 + 2565472λ1,22n5λ 2,1 - 1029120λ1,2n8λ 2,1λ2,2λ1,1l - 16177024λ1,2n5λ 2,1λ2,2λ1,1l + 17920λ1,22n8λ 2,1 + 130711λ1,22n - 493920 2,2λ1,1l + 429842λ2,22,1λ1,2 - 974302λ2,22nl2λ 1,1 - 251244λ2,12 1,2l + 974302λ2,22,1l2λ 1,2 + 425124λ2,1n2λ 2,2λ1,1 + 1507128λ2,22,1λ1,2l - 974302λ1,22 2,1l2 - 1507128λ 2,22nlλ 1,1 - 548100n2λ 2,1λ1,2 - 216720n3λ 2,2λ1,1 - 30240n4λ 2,2λ1,1
+ 202090λ1,2l4λ 2,2λ1,1λ2,1 - 548100n2λ 2,2λ1,1 - 5235302,1λ1,2 + 140070λ2,22λ 1,1 + 2724960λ1,22n4λ 2,1 + 7680λ1,22n10λ 2,12 + 18816λ 1,22n3l3 + 30240λ 1,2n4λ 1,1 - 3071264λ1,2n4λ 2,2λ1,1l2 - 1066158λ 1,22,2λ1,1λ2,1 + 154140λ1,22lλ 2,12 - 429842λ 2,22 1,1 + 523530λ2,22,1 + 127890λ1,2λ1,1
- 7958400λ1,2n6λ 2,1λ2,2λ1,1l2 - 1507128λ 1,22 2,1l + 730800λ1,2n3λ 2,1λ1,1 - 65970nλ2,22λ 1,12l5 - 649585nλ 2,22λ 1,12l4 - 50400n2λ 2,2λ1,12l3 + 309960λ 1,2n2λ 1,1l - 4523472λ1,22n2λ 2,12l - 6156812λ 1,22n2λ 2,12l2 - 2534336λ 2,2n3λ 1,2l - 446042,2λ1,12l3 + 3112704λ 2,22n5λ 1,1l + 6958080n6λ 2,22λ 1,12l + 2714880n7λ 2,22λ 1,12l - 6256048n3λ 2,22λ 1,12l - 6156812n2λ 2,22λ 1,12l2 + 990432n4λ 2,22λ 1,12l + 8088512n5λ 2,22λ 1,12l + 93240λ 1,21,1l2 + 5880λ 1,22 2,1l4 - 2388448λ 1,2n3λ 2,1λ2,2l3λ 1,1 + 974302λ1,22,2l2λ 1,1 + 1507128λ1,22,21,1 - 4116112λ2,2n3λ 2,1l2λ 1,2 + 4343024λ1,22n3λ 2,1l + 126560λ1,22n2λ 2,1l4 + 1041348λ 1,2n2λ 2,2λ1,1 + 3979200λ1,22n6λ 2,12l2 + 5797344λ 1,22n4λ 2,1l + 38400λ1,22n6λ 2,12l4 + 697120λ 1,22n3λ 2,12l4 + 5797344λ 2,22n4λ 1,1l + 30240λ1,2n2λ 1,1l2 + 1510516λ 1,22n2λ 2,1l2 - 155008λ 1,22 2,1l3 + 425124λ 1,2n2λ 2,1λ1,1 + 38400λ1,22n9λ 2,12l - 17920λ 1,2n8λ 2,2λ1,1 + 2726720λ1,22n5λ 2,12l3 + 6408192λ 1,22n4λ 2,12l2 + 1194224λ 1,22n3λ 2,12l3 + 893440λ 1,22n7λ 2,12l2 + 7680λ 1,22n5λ 2,12l5 + 76800λ 1,22n8λ 2,12l2 + 441476λ 1,22nl2 + 56448λ 1,22n4l2 + 56448λ 1,22n5l - 65970λ 1,22nλ 2,12l5 - 649585λ 1,22nλ 2,12l4 - 2136724λ 1,22nλ 2,12l3 + 311040λ 1,22n5λ 2,12l4 + 4343024λ 2,22n3λ 1,1l + 1474872λ1,22n2l + 668472λ 1,22n2l2 + 448448λ 1,22n4l + 341824λ 1,22n3l2 + 1267168λ 1,22n3l + 30240λ 2,2n2λ 2,1l2 + 506240λ 2,22n4λ 1,1l3 + 44604λ 1,21,1l3λ 2,1 + 230104λ1,2n2λ 2,2λ1,1l - 2678480λ1,22n2λ 2,12l3 - 5880λ 1,22,2l4λ 1,1
+ 155008λ1,22,2l3λ 1,1 + 59535λ1,12n + 548100λ 1,2n2λ 1,1 + 216720λ1,2n3λ 1,1 - 443520n4λ 2,2λ1,12 - 118944n5λ 2,2λ1,12 - 261422λ 2,21,2 - 216720n3λ 2,1λ1,2 + 10080λ2,2l3λ 1,12 + 6958080λ 1,22n6λ 2,12l + 8088512λ 1,22n5λ 2,12l - 2564806λ 1,22nλ 2,12l2 - 373570λ 1,22n2λ 2,12l4 - 2720λ 1,22n2λ 2,12l5 + 4116112λ 1,22n3λ 2,1l2 + 429842λ 1,22,2λ1,1 - 11900λ2,22l5λ 1,12 + 202860λ 2,12,2 - 177310λ1,22l2λ 2,12 + 56448λ 2,22n4l2 + 30240λ 2,2n4λ 2,1 - 2724960λ1,2n4λ 2,2λ1,1 - 2565472λ1,2n5λ 2,2λ1,1 - 1093568λ1,2n6λ 2,2λ1,1 + 480228λ1,2n2λ 2,1λ2,2λ1,1 + 107520λ1,22n6λ 2,1l2 + 94080λ 1,22n3λ 2,1l4 + 506240λ 1,22n4λ 2,1l3 + 514560λ 1,22n8λ 2,12l
- 224000λ1,2n7λ 2,2λ1,1 - 526400λ1,2n3λ 2,2λ1,1 + 2714880λ1,22n7λ 2,12l - 1178688λ 1,2n3λ 2,2λ1,1l3 + 76800λ 1,22n7λ 2,12l3 + 81600λ 1,22n3λ 2,12l5 - 472474λ 1,22nλ 2,12l + 836160λ 1,22n4λ 2,12l4 + 13230λ 1,12n2 + 71680λ 1,22n5λ 2,1l3 + 17920λ 1,22n4λ 2,1l4 - 2296304λ 1,22n3λ 2,12l2 - 6256048λ 1,22n3λ 2,12l + 3071264λ 1,22n4λ 2,1l2 + 93240λ 2,22,1l2 + 954240λ 1,22n5λ 2,1l2 + 1178688λ 1,22n3λ 2,1l3 + 890120λ 2,22n2l3λ 1,1 + 529830λ2,1λ1,2λ2,2l2 + 766080λ 2,22n6λ 1,1l + 1178688λ2,22n3λ 1,1l3 - 1041348λ 2,22n2λ 1,1 + 59535λ2,12n + 126560λ 2,22n2l4λ 1,1 - 240114n2λ 2,22λ 1,12 - 1359680λ 2,2n4λ 1,2 - 37632λ2,2n6λ 1,2
- 94080λ1,2n3λ 2,2λ1,1l4 - 17920λ 1,2n4λ 2,2λ1,1l4 - 93240λ 2,2l2λ 1,1n - 36288λ2,12n4l2λ 1,2 + 827568λ1,2n3λ 2,1λ1,1l - 153600λ1,2n7λ 2,1λ2,2λ1,1l3 - 529830λ 1,22l2λ 2,1 + 1474872λ2,22n2l + 1267168λ 2,22n3l - 370048λ 2,2n5λ 1,2 - 1565788λ2,2n2λ 1,2 + 50400λ2,1n2λ 2,2l3λ 1,1 - 2254560λ2,2n3λ 1,2 + 216720λ2,2n3λ 2,1 + 441476λ2,22nl2 + 154035λ 2,12λ 1,22 + 219744λ 1,2n3λ 2,1λ1,1l2 - 12096λ 2,12n6λ 1,2 + 12096λ1,2n3λ 2,1λ1,1l3 + 36288λ 2,1n4λ 2,2λ1,1l2 + 548100λ 2,2n2λ 2,1 - 5235302,2λ1,1 - 101045λ2,22l4λ 1,12 + 827568λ 2,1n3λ 2,2λ1,1l - 443520λ2,12n4λ 1,2 - 730800λ2,12n3λ 1,2 + 52920λ1,2l2λ 1,1 + 140070λ2,1λ1,22 - 10080λ 1,2l3λ 1,1λ2,1 - 50400λ2,12n2l3λ 1,2 - 60480n3λ 2,2λ1,1l - 69930λ2,2l2λ 1,1λ2,1 - 219744λ2,12n3l2λ 1,2
- 60480n3λ 2,1λ1,2l - 309960n2λ 2,1λ1,2l + 4116112λ2,22n3λ 1,1l2 - 730800n3λ 2,2λ1,12 - 2572080n3λ 2,22λ 1,12 + 109494 2,2λ1,12 - 12816384λ 1,2n4λ 2,1λ2,2l2λ 1,1 + 954240λ2,22n5λ 1,1l2 - 8114240λ 1,2n4λ 2,1λ2,2l3λ 1,1 - 97280λ1,2n4λ 2,1λ2,2l5λ 1,1 + 71680λ2,22n5λ 1,1l3 - 69930λ 1,2l2λ 1,1λ2,1 - 10080λ2,2l3λ 1,1λ2,1 - 118944λ2,12n5λ 1,2 + 448448λ2,22n4l + 668472λ 2,22n2l2
+ 56448λ2,22n5l - 3071264λ 2,2n4λ 2,1l2λ 1,2 - 32760λ1,22l4λ 2,1 - 71680λ2,2n5λ 2,1l3λ 1,2 + 107520λ2,22n6λ 1,1l2 - 12096λ 2,12n3l3λ 1,2 + 118944λ2,1n5λ 2,2λ1,1 + 12096λ2,1n6λ 2,2λ1,1 + 341824λ2,22n3l2 - 174510λ 2,2λ1,1λ2,1 - 4939202,1λ1,2l - 827568λ2,12n3λ 1,2l - 17920λ2,2n4λ 2,1l4λ 1,2 - 26460λ2,11,1l - 13916160λ1,2n6λ 2,1λ2,2λ1,1l + 13230λ2,12nl + 944948λ 1,22,21,1λ2,1 - 76800λ1,2n9λ 2,1λ2,21,1 - 126560λ1,2n2λ 2,2l4λ 1,1 + 354620λ1,2l2λ 2,2λ1,1λ2,1 - 890120λ1,2n2λ 2,2l3λ 1,1 - 1786880λ1,2n7λ 2,1λ2,2λ1,1l2 + 36288λ 1,2n4λ 2,1λ1,1l2 + 1299170λ 1,22,2l4λ 1,1λ2,1
- 153600λ1,2n8λ 2,1λ2,2λ1,1l2 - 16327360λ 1,2n5λ 2,1λ2,2λ1,1l2 - 1510516λ 1,2n2λ 2,2l2λ 1,1 - 242620λ1,22l3λ 2,1 - 4343024λ1,2n3λ 2,2λ1,1l - 506240λ1,2n4λ 2,2λ1,1l3 - 3112704λ 1,2n5λ 2,2λ1,1l + 5356960λ1,2n2λ 2,1λ2,2l3λ 1,1 + 747140λ1,2n2λ 2,1λ2,2l4λ 1,1 - 26460λ2,1n2λ 1,1 - 52920λ1,12,1 - 101045λ1,22l4λ 2,12 - 2344000n4λ 2,22λ 1,12 - 954240λ 2,2n5λ 2,1l2λ 1,2 + 526400λ2,22n3λ 1,1 + 8163680λ1,22n5λ 2,12l2 + 890120λ 1,22n2λ 2,1l3 + 1960λ 1,22l + 44100λ 1,22l2 + 1960λ 2,22l + 174510λ 2,12λ 1,2 - 1178688λ2,2n3λ 2,1l3λ 1,2 + 443520λ2,1n4λ 2,2λ1,1 + 10080λ2,12l3λ 1,2 + 4273448λ1,22,2l3λ 1,1λ2,1 + 4057120λ1,22n4λ 2,12l3 - 230104λ 1,22n2λ 2,1l + 48640λ1,22n4λ 2,12l5 + 990432λ 1,22n4λ 2,12l + 118944λ 1,2n5λ 2,1λ1,1
- 44604λ2,12nl3λ 1,2 - 109494λ1,21,1λ2,1 + 443520λ1,2n4λ 2,1λ1,1 - 6364288λ1,2n6λ 2,1λ2,2λ1,1 - 4303360λ1,2n7λ 2,1λ2,2λ1,1 - 30240n2λ 2,1l2λ 1,2 + 44604λ2,12,2l3λ 1,1 - 1672320λ1,2n4λ 2,1λ2,2l4λ 1,1 - 4116112λ1,2n3λ 2,2λ1,1l2 - 954240λ 1,2n5λ 2,2λ1,1l2 + 4688000λ 1,2n4λ 2,1λ2,2λ1,1 - 15360λ1,2n10λ 2,1λ2,2λ1,1 + 12512096λ1,2n3λ 2,1λ2,21,1 - 242620λ2,22l3λ 1,1 + 1093568λ2,22n6λ 1,1 + 224000λ2,22n7λ 1,1 - 71680λ1,2n5λ 2,2λ1,1l3 - 107520λ 1,2n6λ 2,2λ1,1l2 + 131940λ 1,22,2l5λ 1,1λ2,1
+ 4592608λ1,2n3λ 2,1λ2,2l2λ 1,1 + 288288λ1,2n4λ 2,1λ1,1l - 163200λ1,2n3λ 2,1λ2,2l5λ 1,1 - 5429760λ1,2n7λ 2,1λ2,2λ1,1l - 266560λ2,22l3λ 1,12 + 13230λ 1,12ln + 2565472λ 2,22n5λ 1,1 + 2724960λ2,22n4λ 1,1 - 12096n3λ 2,2λ1,12l3 + 48640n4λ 2,22λ 1,12l5 + 81600n3λ 2,22λ 1,12l5 + 7680n5λ 2,22λ 1,12l5 - 2678480n2λ 2,22λ 1,12l3 - 373570n2λ 2,22λ 1,12l4 + 893440n7λ 2,22λ 1,12l2 + 76800n7λ 2,22λ 1,12l3 + 76800n8λ 2,22λ 1,12l2 - 4523472n2λ 2,22λ 1,12l + 514560n8λ 2,22λ 1,12l + 6408192n4λ 2,22λ 1,12l2 - 2720n2λ 2,22λ 1,12l5 - 17920λ 2,2n8λ 2,1λ1,2 - 309960n2λ 2,2λ1,1l - 162288λ2,21,2l3 - 882952λ 2,21,2l2 + 493920λ 2,22,1l - 155008λ2,22nl3λ 1,1 + 5880λ2,22nl4λ 1,1 - 36288λ2,12n5λ 1,2l - 288288λ2,12n4λ 1,2l - 140070λ2,2λ1,1λ1,2 - 140070λ2,1λ1,2λ2,2 + 69930λ2,12l2λ 1,2 + 15680λ1,22l3 + 1127280λ 2,22n3 - 529830λ 2,22l2λ 1,1 - 314300λ2,22 1,1 + 1510516λ2,22n2l2λ 1,1)
c[3] = 6(2n + 2 + l)(2n + 5)(5 + l + 2n)(-8820λ2,1l2λ 1,2 - 57330λ2,1λ1,2l - 57330λ2,21,1 - 8820λ2,2l2λ 1,1 - 88200λ2,1λ1,2 - 88200λ2,2λ1,1 - 92960λ2,2n2λ 2,1l4λ 1,2 - 92610λ1,22 2,1 - 292446λ2,12 1,2 - 36288n5λ 2,2λ1,12l - 905408λ 2,2n6λ 2,1λ1,2 + 3653120n4λ 2,22λ 1,12l3 + 7447840n5λ 2,22λ 1,12l2 - 364154nλ 2,22λ 1,12l - 2023824n3λ 2,22λ 1,12l2 + 17080λ 2,22,1l4λ 1,2 + 204120λ2,2n2λ 2,1l + 171990λ1,2l3λ 2,2λ1,1 + 784960n4λ 2,22λ 1,12l4 + 3773120n6λ 2,22λ 1,12l2 + 600480n3λ 2,22λ 1,12l4 + 38400n6λ 2,22λ 1,12l4 + 38400n9λ 2,22λ 1,12l - 281484 2,2λ1,12l - 1877792λ 2,2n5λ 2,1λ1,2 + 892944n3λ 2,22λ 1,12l3 + 2576960n5λ 2,22λ 1,12l3 + 303360n5λ 2,22λ 1,12l4 + 739840n6λ 2,22λ 1,12l3 - 622720λ 2,2n3λ 2,1λ1,2 + 22050λ1,2l5λ 2,2λ1,1λ2,1 + 1148896n5λ 2,22λ 1,12 + 71680λ 2,22n7 1,1 + 523152λ1,2n2λ 2,1λ1,1l + 40320λ1,2n2λ 2,1λ1,1l3 + 262332λ 1,2n2λ 2,1λ1,1l2 + 18816λ 1,22n6
- 227840λ1,2n9λ 2,1λ2,2λ1,1 + 117306λ1,21,1l2λ 2,1 + 281484λ1,21,12,1 + 18560λ1,2n2λ 2,1λ2,2l5λ 1,1 - 2297792λ1,2n5λ 2,1λ2,2λ1,1 - 1346560λ1,2n8λ 2,1λ2,2λ1,1 + 181496λ2,22n2λ 1,1l - 1850884nλ2,22λ 1,12l3 - 2062466nλ 2,22λ 1,12l2 + 60480λ 2,2n3λ 2,1l - 206080λ2,2n7λ 2,1λ1,2 - 767956λ2,2n2λ 2,1l2λ 1,2 + 57330λ1,21,1 - 92610λ2,12λ 1,2l - 606720λ1,2n5λ 2,1λ2,2λ1,1l4 - 76800λ 1,2n6λ 2,1λ2,2λ1,1l4
+ 1980160λ1,22n7λ 2,12 - 15360λ 1,2n5λ 2,1λ2,2λ1,1l5 - 703360λ 1,2n6λ 2,2λ1,1l + 1148896λ1,22n5λ 2,12 - 1500640λ 1,22n4λ 2,12 + 673280λ 1,22n8λ 2,12 + 2832704λ 1,22n6λ 2,12 + 126938λ 1,22 2,1 + 113920n9λ 2,22λ 1,12 - 379764λ 2,12n2λ 1,2 + 1980160n7λ 2,22λ 1,12 + 673280n8λ 2,22λ 1,12 + 247149λ 1,22nλ 2,12 + 81726λ 1,22n2λ 2,12 - 1401360λ 1,22n3λ 2,12 + 179550λ 1,21,1 + 179424λ2,1n3λ 2,2l2λ 1,1 + 12096λ2,1n3λ 2,2l3λ 1,1 + 213528λ2,22,1l3λ 1,2 + 418320λ2,1n3λ 2,2λ1,1 + 26460λ2,1l4λ 1,2λ2,2 - 30240n2λ 2,2λ1,1l2 - 87612λ 2,2n2λ 2,1λ1,2 - 237888n4λ 2,2λ1,12l - 117306 2,2λ1,12l2 - 107520λ 2,2n6λ 2,1l2λ 1,2 + 247149nλ2,22λ 1,12 - 523152n2λ 2,2λ1,12l - 535248n3λ 2,2λ1,12l - 36288n4λ 2,2λ1,12l2 - 179424n3λ 2,2λ1,12l2
- 262332n2λ 2,2λ1,12l2 - 262332λ 2,12n2l2λ 1,2 - 85120λ2,2n3λ 2,1l4λ 1,2 + 4124932λ1,22,2l2λ 1,1λ2,1 - 461440λ2,2n4λ 2,1l3λ 1,2 - 4178944λ1,2n4λ 2,2λ1,1l - 71680λ1,2n7λ 2,21,1 + 12096λ1,2n6λ 2,1λ1,1 - 2020864λ1,2n4λ 2,1λ2,2λ1,1l + 127890λ1,22,2λ1,1λ2,1 - 523152λ2,12n2λ 1,2l + 92610λ1,22,2λ1,1 + 71680λ1,22n7λ 2,1l + 739840λ1,22n6λ 2,12l3 + 2561664λ 1,22n5λ 2,1l + 703360λ1,22n6λ 2,1l - 112896λ2,2n4λ 1,2l2 - 1200960λ 1,2n3λ 2,1λ2,2l4λ 1,1 - 11025λ1,22l5λ 2,12 + 262332λ 2,1n2λ 2,2l2λ 1,1 + 523152λ2,1n2λ 2,21,1 - 117306λ2,12nl2λ 1,2 + 18816λ2,22n3l3 + 57330λ 1,22,2 + 62720λ2,22n2l3 + 6615λ 1,12l + 13230λ 2,12n2 - 52920λ 1,2λ2,2 + 88200λ2,2λ2,1 - 52920λ1,1λ2,1 + 253694λ1,22n2 + 41944λ 2,22nl3 - 26460λ 2,22l4λ 1,1 + 2832704n6λ 2,22λ 1,12 + 92610λ 2,21,1λ2,1 - 112896λ2,2n5λ 1,2l - 261268λ2,21,2l - 1800960λ2,2n4λ 2,1λ1,2
- 52920λ2,1λ1,2λ2,2λ1,1 - 37632λ2,2n3λ 1,2l3 - 2755984λ 2,2n3λ 2,1λ1,2l - 277830λ1,22l3λ 2,12 + 8820λ 2,2l2λ 2,1 + 88200λ2,1λ1,2λ1,1 - 63945λ2,22lλ 1,12 + 2500064λ 2,22n4λ 1,1l2 + 36288λ 2,1n5λ 2,2λ1,1l + 555660λ1,2l3λ 2,2λ1,1λ2,1 - 92610λ2,2lλ1,12 - 819504λ 2,2n2λ 1,2l2 - 1326864λ 2,2n2λ 1,2l - 740096λ2,2n4λ 1,2l + 85120λ2,22n3λ 1,1l4 - 125440λ 2,2n2λ 1,2l3 - 558208λ 2,2n3λ 1,2l2 + 92610λ 2,1λ1,2λ2,2l + 291060λ1,2l2λ 2,2λ1,1 - 12096n6λ 2,2λ1,12 + 7680n10λ 2,22λ 1,12 + 17920λ 2,22n4λ 1,1l4
+ 92610λ1,21,1λ2,1 - 282240λ2,22l2λ 1,12 + 171990λ 2,1l3λ 1,2λ2,2 + 26460λ1,2l4λ 2,2λ1,1 + 153664λ1,22n5 - 8820λ 2,22l3 - 44100λ 2,22l2 + 6615λ 2,12l + 539280λ 1,22n3 + 194040λ 1,21,1l + 60480λ1,2n3λ 1,1l + 26460λ2,12 + 26460λ 1,22 + 26460λ 1,12 + 26460λ 2,22 + 18816λ 2,22n6 + 444640λ 2,22n4 + 153664λ 2,22n5 + 51821λ 2,22n - 88200λ 2,2λ1,12 + 26460λ 2,22λ 1,12 - 703360λ 2,2n6λ 2,1λ1,2l - 2561664λ2,2n5λ 2,1λ1,2l
- 4178944λ2,2n4λ 2,1λ1,2l + 237888λ2,1n4λ 2,2λ1,1l - 537880λ2,2n2λ 2,1l3λ 1,2 + 281484λ2,12,21,1 + 117306λ2,12,2l2λ 1,1 - 181496λ2,2n2λ 2,1λ1,2l + 17920λ2,22n8λ 1,1 + 130634λ2,22nl + 62720λ 1,22n2l3 + 41944λ 1,22nl3 - 71680λ 2,2n7λ 2,1λ1,2l + 253694λ2,22n2 + 5827104λ 1,2n2λ 2,1λ2,21,1 + 9857944λ1,2n2λ 2,1λ2,2l2λ 1,1 + 444640λ1,22n4 + 17640λ 1,2l3λ 2,2 + 88200λ1,2l2λ 2,2 - 39690λ2,11,1 - 57960λ2,1l2λ 1,2n - 379764n2λ 2,2λ1,12 - 30240n4λ 2,1λ1,2 - 5153920λ1,2n5λ 2,1λ2,2λ1,1l3 + 36288λ 1,2n5λ 2,1λ1,1l + 292446λ2,12,2λ1,1 + 622720λ1,22n3λ 2,1 + 905408λ1,22n6λ 2,1 + 113920λ1,22n9λ 2,12 + 87612λ 1,22n2λ 2,1 + 130634λ1,22nl - 1479680λ 1,2n6λ 2,1λ2,2λ1,1l3 + 2802720λ 1,2n3λ 2,1λ2,2λ1,1 + 206080λ1,22n7λ 2,1
+ 1877792λ1,22n5λ 2,1 - 1006080λ1,2n8λ 2,1λ2,2λ1,1l - 14290304λ1,2n5λ 2,1λ2,2λ1,1l + 17920λ1,22n8λ 2,1 + 51821λ1,22n - 194040 2,2λ1,1l - 126938λ2,22,1λ1,2 - 609322λ2,22nl2λ 1,1 - 281484λ2,12 1,2l + 609322λ2,22,1l2λ 1,2 + 379764λ2,1n2λ 2,2λ1,1 + 330288λ2,22,1λ1,2l - 609322λ1,22 2,1l2 - 330288λ 2,22nlλ 1,1 - 230580n2λ 2,1λ1,2 - 146160n3λ 2,2λ1,1 - 30240n4λ 2,2λ1,1 + 194040λ1,2l4λ 2,2λ1,1λ2,1 - 230580n2λ 2,2λ1,1 - 1795502,1λ1,2 + 52920λ2,22λ 1,1 + 1800960λ1,22n4λ 2,1 + 7680λ1,22n10λ 2,12 + 18816λ 1,22n3l3 + 30240λ 1,2n4λ 1,1 - 2500064λ1,2n4λ 2,2λ1,1l2 - 494298λ 1,22,2λ1,1λ2,1 - 63945λ1,22lλ 2,12 + 126938λ 2,22 1,1 + 179550λ2,22,1 + 88200λ1,2λ1,1 - 7546240λ1,2n6λ 2,1λ2,2λ1,1l2 - 330288λ 1,22 2,1l + 418320λ1,2n3λ 2,1λ1,1 - 62370nλ2,22λ 1,12l5 - 591115nλ 2,22λ 1,12l4 - 40320n2λ 2,2λ1,12l3
+ 204120λ1,2n2λ 1,1l - 2913552λ1,22n2λ 2,12l - 4928972λ 1,22n2λ 2,12l2 - 1624896λ 2,2n3λ 1,2l - 194042,2λ1,12l3 + 2561664λ 2,22n5λ 1,1l + 6384640n6λ 2,22λ 1,12l + 2579200n7λ 2,22λ 1,12l - 4478928n3λ 2,22λ 1,12l - 4928972n2λ 2,22λ 1,12l2 + 1010432n4λ 2,22λ 1,12l + 7145152n5λ 2,22λ 1,12l + 57960λ 1,21,1l2 - 17080λ 1,22 2,1l4 - 1785888λ 1,2n3λ 2,1λ2,2l3λ 1,1 + 609322λ1,22,2l2λ 1,1 + 330288λ1,22,21,1 - 2856112λ2,2n3λ 2,1l2λ 1,2 + 2755984λ1,22n3λ 2,1l + 92960λ1,22n2λ 2,1l4 - 87612λ 1,2n2λ 2,2λ1,1 + 3773120λ1,22n6λ 2,12l2 + 4178944λ 1,22n4λ 2,1l + 38400λ1,22n6λ 2,12l4 + 600480λ 1,22n3λ 2,12l4 + 4178944λ 2,22n4λ 1,1l + 30240λ1,2n2λ 1,1l2 + 767956λ 1,22n2λ 2,1l2 - 213528λ 1,22 2,1l3 + 379764λ 1,2n2λ 2,1λ1,1 + 38400λ1,22n9λ 2,12l
- 17920λ1,2n8λ 2,2λ1,1 + 2576960λ1,22n5λ 2,12l3 + 5535392λ 1,22n4λ 2,12l2 + 892944λ 1,22n3λ 2,12l3 + 872960λ 1,22n7λ 2,12l2 + 7680λ 1,22n5λ 2,12l5 + 76800λ 1,22n8λ 2,12l2 + 145516λ 1,22nl2 + 56448λ 1,22n4l2 + 56448λ 1,22n5l - 62370λ 1,22nλ 2,12l5 - 591115λ 1,22nλ 2,12l4 - 1850884λ 1,22nλ 2,12l3 + 303360λ 1,22n5λ 2,12l4 + 2755984λ 2,22n3λ 1,1l + 663432λ1,22n2l + 409752λ 1,22n2l2 + 370048λ 1,22n4l + 279104λ 1,22n3l2 + 812448λ 1,22n3l + 30240λ 2,2n2λ 2,1l2 + 461440λ 2,22n4λ 1,1l3 + 19404λ 1,21,1l3λ 2,1 - 181496λ1,2n2λ 2,2λ1,1l
- 2433520λ1,22n2λ 2,12l3 + 17080λ 1,22,2l4λ 1,1 + 213528λ1,22,2l3λ 1,1 + 19845λ1,12n + 230580λ 1,2n2λ 1,1 + 146160λ1,2n3λ 1,1 - 292320n4λ 2,2λ1,12 - 98784n5λ 2,2λ1,12 - 103642λ 2,21,2 - 146160n3λ 2,1λ1,2 + 4410λ2,2l3λ 1,12 + 6384640λ 1,22n6λ 2,12l + 7145152λ 1,22n5λ 2,12l - 2062466λ 1,22nλ 2,12l2 - 392370λ 1,22n2λ 2,12l4 - 9280λ 1,22n2λ 2,12l5 + 2856112λ 1,22n3λ 2,1l2 - 126938λ 1,22,2λ1,1 - 11025λ2,22l5λ 1,12 + 57330λ 2,12,2 - 282240λ1,22l2λ 2,12 + 56448λ 2,22n4l2
+ 30240λ2,2n4λ 2,1 - 1800960λ1,2n4λ 2,2λ1,1 - 1877792λ1,2n5λ 2,2λ1,1 - 905408λ1,2n6λ 2,2λ1,1 - 163452λ1,2n2λ 2,1λ2,2λ1,1 + 107520λ1,22n6λ 2,1l2 + 85120λ 1,22n3λ 2,1l4 + 461440λ 1,22n4λ 2,1l3 + 503040λ 1,22n8λ 2,12l - 206080λ 1,2n7λ 2,2λ1,1 - 622720λ1,2n3λ 2,2λ1,1 + 2579200λ1,22n7λ 2,12l - 936768λ 1,2n3λ 2,2λ1,1l3 + 76800λ 1,22n7λ 2,12l3 + 75200λ 1,22n3λ 2,12l5 - 364154λ 1,22nλ 2,12l + 784960λ 1,22n4λ 2,12l4 + 13230λ 1,12n2 + 71680λ 1,22n5λ 2,1l3 + 17920λ 1,22n4λ 2,1l4 - 2023824λ 1,22n3λ 2,12l2 - 4478928λ 1,22n3λ 2,12l + 2500064λ 1,22n4λ 2,1l2 + 57960λ 2,22,1l2 + 873600λ 1,22n5λ 2,1l2 + 936768λ 1,22n3λ 2,1l3
+ 537880λ2,22n2l3λ 1,1 + 291060λ2,1λ1,2λ2,2l2 + 703360λ 2,22n6λ 1,1l + 936768λ2,22n3λ 1,1l3 + 87612λ 2,22n2λ 1,1 + 19845λ2,12n + 92960λ 2,22n2l4λ 1,1 + 81726n2λ 2,22λ 1,12 - 889280λ 2,2n4λ 1,2 - 37632λ2,2n6λ 1,2 - 85120λ1,2n3λ 2,2λ1,1l4 - 17920λ 1,2n4λ 2,2λ1,1l4 - 57960λ 2,2l2λ 1,1n - 36288λ2,12n4l2λ 1,2 + 535248λ1,2n3λ 2,1λ1,1l - 153600λ1,2n7λ 2,1λ2,2λ1,1l3 - 291060λ 1,22l2λ 2,1 + 663432λ2,22n2l + 812448λ 2,22n3l - 307328λ 2,2n5λ 1,2 - 507388λ2,2n2λ 1,2 + 40320λ2,1n2λ 2,2l3λ 1,1 - 1078560λ2,2n3λ 1,2 + 146160λ2,2n3λ 2,1 + 145516λ2,22nl2
+ 26460λ2,12λ 1,22 + 179424λ 1,2n3λ 2,1λ1,1l2 - 12096λ 2,12n6λ 1,2 + 12096λ1,2n3λ 2,1λ1,1l3 + 36288λ 2,1n4λ 2,2λ1,1l2 + 230580λ 2,2n2λ 2,1 - 1795502,2λ1,1 - 97020λ2,22l4λ 1,12 + 535248λ 2,1n3λ 2,2λ1,1l - 292320λ2,12n4λ 1,2 - 418320λ2,12n3λ 1,2 + 8820λ1,2l2λ 1,1 + 52920λ2,1λ1,22 - 4410λ 1,2l3λ 1,1λ2,1 - 40320λ2,12n2l3λ 1,2 - 60480n3λ 2,2λ1,1l - 179424λ2,12n3l2λ 1,2 - 60480n3λ 2,1λ1,2l - 204120n2λ 2,1λ1,2l + 2856112λ2,22n3λ 1,1l2 - 418320n3λ 2,2λ1,12 - 1401360n3λ 2,22λ 1,12 - 292446 2,2λ1,12 - 11070784λ 1,2n4λ 2,1λ2,2l2λ 1,1 + 873600λ2,22n5λ 1,1l2 - 7306240λ 1,2n4λ 2,1λ2,2l3λ 1,1 - 94720λ1,2n4λ 2,1λ2,2l5λ 1,1 + 71680λ2,22n5λ 1,1l3 - 4410λ 2,2l3λ 1,1λ2,1 - 98784λ2,12n5λ 1,2 + 370048λ2,22n4l + 409752λ 2,22n2l2 + 56448λ 2,22n5l - 2500064λ 2,2n4λ 2,1l2λ 1,2 - 26460λ1,22l4λ 2,1 - 71680λ2,2n5λ 2,1l3λ 1,2 + 107520λ2,22n6λ 1,1l2 - 12096λ 2,12n3l3λ 1,2 + 98784λ2,1n5λ 2,2λ1,1 + 12096λ2,1n6λ 2,2λ1,1
+ 279104λ2,22n3l2 + 88200λ 2,2λ1,1λ2,1 - 1940402,1λ1,2l - 535248λ2,12n3λ 1,2l - 17920λ2,2n4λ 2,1l4λ 1,2 - 26460λ2,11,1l - 12769280λ1,2n6λ 2,1λ2,2λ1,1l + 13230λ2,12nl + 728308λ 1,22,21,1λ2,1 - 76800λ1,2n9λ 2,1λ2,21,1 - 92960λ1,2n2λ 2,2l4λ 1,1 + 564480λ1,2l2λ 2,2λ1,1λ2,1 - 537880λ1,2n2λ 2,2l3λ 1,1 - 1745920λ1,2n7λ 2,1λ2,2λ1,1l2 + 36288λ 1,2n4λ 2,1λ1,1l2 + 1182230λ 1,22,2l4λ 1,1λ2,1 - 153600λ1,2n8λ 2,1λ2,2λ1,1l2 - 14895680λ 1,2n5λ 2,1λ2,2λ1,1l2 - 767956λ 1,2n2λ 2,2l2λ 1,1 - 171990λ1,22l3λ 2,1 - 2755984λ1,2n3λ 2,2λ1,1l - 461440λ1,2n4λ 2,2λ1,1l3 - 2561664λ 1,2n5λ 2,2λ1,1l + 4867040λ1,2n2λ 2,1λ2,2l3λ 1,1 + 784740λ1,2n2λ 2,1λ2,2l4λ 1,1 - 26460λ2,1n2λ 1,1 - 13230λ1,12,1
- 97020λ1,22l4λ 2,12 - 1500640n4λ 2,22λ 1,12 - 873600λ 2,2n5λ 2,1l2λ 1,2 + 622720λ2,22n3λ 1,1 + 7447840λ1,22n5λ 2,12l2 + 537880λ 1,22n2λ 2,1l3 - 28665λ 1,22l - 44100λ 1,22l2 - 28665λ 2,22l - 88200λ 2,12λ 1,2 - 936768λ2,2n3λ 2,1l3λ 1,2 + 292320λ2,1n4λ 2,2λ1,1 + 4410λ2,12l3λ 1,2 + 3701768λ1,22,2l3λ 1,1λ2,1 + 3653120λ1,22n4λ 2,12l3 + 181496λ 1,22n2λ 2,1l + 47360λ1,22n4λ 2,12l5 + 1010432λ 1,22n4λ 2,12l + 98784λ 1,2n5λ 2,1λ1,1 - 19404λ2,12nl3λ 1,2 + 292446λ1,21,1λ2,1 + 292320λ1,2n4λ 2,1λ1,1 - 5665408λ1,2n6λ 2,1λ2,2λ1,1 - 3960320λ1,2n7λ 2,1λ2,2λ1,1 - 30240n2λ 2,1l2λ 1,2 + 19404λ2,12,2l3λ 1,1 - 1569920λ1,2n4λ 2,1λ2,2l4λ 1,1 - 2856112λ1,2n3λ 2,2λ1,1l2 - 873600λ 1,2n5λ 2,2λ1,1l2 + 3001280λ 1,2n4λ 2,1λ2,2λ1,1 - 15360λ1,2n10λ 2,1λ2,2λ1,1 + 8957856λ1,2n3λ 2,1λ2,21,1 - 171990λ2,22l3λ 1,1 + 905408λ2,22n6λ 1,1
+ 206080λ2,22n7λ 1,1 - 71680λ1,2n5λ 2,2λ1,1l3 - 107520λ 1,2n6λ 2,2λ1,1l2 + 124740λ 1,22,2l5λ 1,1λ2,1 + 4047648λ1,2n3λ 2,1λ2,2l2λ 1,1 + 237888λ1,2n4λ 2,1λ1,1l - 150400λ1,2n3λ 2,1λ2,2l5λ 1,1 - 5158400λ1,2n7λ 2,1λ2,2λ1,1l - 277830λ2,22l3λ 1,12 + 13230λ 1,12ln + 1877792λ 2,22n5λ 1,1 + 1800960λ2,22n4λ 1,1
- 12096n3λ 2,2λ1,12l3 + 47360n4λ 2,22λ 1,12l5 + 75200n3λ 2,22λ 1,12l5 + 7680n5λ 2,22λ 1,12l5 - 2433520n2λ 2,22λ 1,12l3 - 392370n2λ 2,22λ 1,12l4 + 872960n7λ 2,22λ 1,12l2 + 76800n7λ 2,22λ 1,12l3 + 76800n8λ 2,22λ 1,12l2 - 2913552n2λ 2,22λ 1,12l + 503040n8λ 2,22λ 1,12l + 5535392n4λ 2,22λ 1,12l2 - 9280n2λ 2,22λ 1,12l5 - 17920λ 2,2n8λ 2,1λ1,2 - 204120n2λ 2,2λ1,1l - 83888λ2,21,2l3 - 291032λ 2,21,2l2 + 194040λ 2,22,1l - 213528λ2,22nl3λ 1,1 - 17080λ2,22nl4λ 1,1 - 36288λ2,12n5λ 1,2l - 237888λ2,12n4λ 1,2l - 52920λ2,2λ1,1λ1,2 - 52920λ2,1λ1,2λ2,2 - 8820λ1,22l3 + 539280λ 2,22n3 - 291060λ 2,22l2λ 1,1 - 92610λ2,22 1,1 + 767956λ2,22n2l2λ 1,1)
c[4] = -(2n + 5)(2n + 3)(5 + l + 2n)(4 + l + 2n)(2l - 1 + 2n)(-26460λ2,1λ1,2l - 26460λ2,21,1 - 39690λ2,1λ1,2 - 39690λ2,2λ1,1 + 238140λ1,22 2,1 - 133056λ2,12 1,2 - 8960λ2,2n6λ 2,1λ1,2 + 142080n4λ 2,22λ 1,12l3 + 264960n5λ 2,22λ 1,12l2 + 1593424nλ 2,22λ 1,12l + 2584320n3λ 2,22λ 1,12l2 - 26460λ 1,2l3λ 2,2λ1,1 + 3840n4λ 2,22λ 1,12l4 + 23040n6λ 2,22λ 1,12l2 + 26880n3λ 2,22λ 1,12l4 - 117936 2,2λ1,12l - 107520λ 2,2n5λ 2,1λ1,2 + 479680n3λ 2,22λ 1,12l3 + 15360n5λ 2,22λ 1,12l3 - 1112832λ 2,2n3λ 2,1λ1,2 + 1428480n5λ 2,22λ 1,12 + 69552λ 1,2n2λ 2,1λ1,1l + 6048λ1,2n2λ 2,1λ1,1l2 + 21168λ 1,21,1l2λ 2,1 + 117936λ1,21,12,1 - 2856960λ1,2n5λ 2,1λ2,2λ1,1 - 7680λ1,2n8λ 2,1λ2,2λ1,1 + 1515696λ2,22n2λ 1,1l + 417200nλ2,22λ 1,12l3 + 1302672nλ 2,22λ 1,12l2 - 513744λ 2,2n2λ 2,1l2λ 1,2 + 26460λ1,21,1 - 52920λ2,12λ 1,2l + 61440λ1,22n7λ 2,12 + 1428480λ 1,22n5λ 2,12 + 2887072λ 1,22n4λ 2,12 + 3840λ 1,22n8λ 2,12 + 405760λ 1,22n6λ 2,12 + 634368λ 1,22 2,1 - 130032λ2,12n2λ 1,2 + 61440n7λ 2,22λ 1,12 + 3840n8λ 2,22λ 1,12 + 619584λ 1,22nλ 2,12 + 2111248λ 1,22n2λ 2,12 + 3353856λ 1,22n3λ 2,12 + 60480λ 1,21,1 - 70000λ2,22,1l3λ 1,2 + 48384λ2,1n3λ 2,2λ1,1 - 1237376λ2,2n2λ 2,1λ1,2
- 211682,2λ1,12l2 + 619584nλ 2,22λ 1,12 - 69552n2λ 2,2λ1,12l - 12096n3λ 2,2λ1,12l - 6048n2λ 2,2λ1,12l2 - 6048λ 2,12n2l2λ 1,2 - 2605344λ1,22,2l2λ 1,1λ2,1 - 262080λ1,2n4λ 2,2λ1,1l - 6696960λ1,2n4λ 2,1λ2,2λ1,1l - 317520λ1,22,2λ1,1λ2,1 - 69552λ2,12n2λ 1,2l - 238140λ1,22,2λ1,1 + 26880λ1,22n5λ 2,1l - 53760λ1,2n3λ 2,1λ2,2l4λ 1,1 + 6048λ2,1n2λ 2,2l2λ 1,1 + 69552λ2,1n2λ 2,21,1 - 21168λ2,12nl2λ 1,2 - 158760λ1,22,2 - 119070λ1,2λ2,2 + 39690λ2,2λ2,1 - 13230λ1,1λ2,1 + 197232λ1,22n2 - 13230λ 2,2l2λ 1,12 + 405760n6λ 2,22λ 1,12 + 52920λ 2,21,1λ2,1 - 356832λ2,21,2l - 497504λ2,2n4λ 2,1λ1,2 - 119070λ2,1λ1,2λ2,2λ1,1 - 941248λ2,2n3λ 2,1λ1,2l + 52920λ1,22l3λ 2,12 + 39690λ 2,1λ1,2λ1,1 + 158760λ2,22lλ 1,12 + 26880λ 2,22n4λ 1,1l2 - 105840λ 1,2l3λ 2,2λ1,1λ2,1 - 52920λ2,2lλ1,12 - 18816λ 2,2n2λ 1,2l2 - 216384λ 2,2n2λ 1,2l - 238140λ2,1λ1,2λ2,2l - 145530λ1,2l2λ 2,2λ1,1 + 52920λ1,21,1λ2,1 + 145530λ2,22l2λ 1,12 - 26460λ 2,1l3λ 1,2λ2,2 + 26460λ2,22l2 + 75264λ 1,22n3 + 15120λ 1,21,1l + 6615λ2,12 + 59535λ 1,22 + 6615λ 1,12 + 59535λ 2,22 + 9408λ 2,22n4 + 186816λ 2,22n - 39690λ 2,2λ1,12 + 59535λ 2,22λ 1,12 - 26880λ 2,2n5λ 2,1λ1,2l - 262080λ2,2n4λ 2,1λ1,2l - 47040λ2,2n2λ 2,1l3λ 1,2 + 117936λ2,12,21,1 + 21168λ2,12,2l2λ 1,1 - 1515696λ2,2n2λ 2,1λ1,2l + 178416λ2,22nl + 197232λ 2,22n2 - 8573856λ 1,2n2λ 2,1λ2,21,1 - 5585184λ1,2n2λ 2,1λ2,2l2λ 1,1 + 9408λ1,22n4 - 52920λ 1,2l2λ 2,2 - 130032n2λ 2,2λ1,12 - 30720λ 1,2n5λ 2,1λ2,2λ1,1l3 + 133056λ 2,12,2λ1,1 + 1112832λ1,22n3λ 2,1 + 8960λ1,22n6λ 2,1 + 1237376λ1,22n2λ 2,1 + 178416λ1,22nl - 6707712λ 1,2n3λ 2,1λ2,2λ1,1 + 107520λ1,22n5λ 2,1 - 2342400λ1,2n5λ 2,1λ2,2λ1,1l + 186816λ1,22n
- 151202,2λ1,1l - 634368λ2,22,1λ1,2 + 503664λ2,22nl2λ 1,1 - 117936λ2,12 1,2l - 503664λ2,22,1l2λ 1,2 + 130032λ2,1n2λ 2,2λ1,1 - 1053248λ2,22,1λ1,2l + 503664λ1,22 2,1l2 + 1053248λ 2,22nlλ 1,1 - 15120n2λ 2,1λ1,2 - 13230λ1,2l4λ 2,2λ1,1λ2,1 - 15120n2λ 2,2λ1,1 - 604802,1λ1,2 + 119070λ2,22λ 1,1 + 497504λ1,22n4λ 2,1 - 26880λ1,2n4λ 2,2λ1,1l2 - 1239168λ 1,22,2λ1,1λ2,1 + 158760λ1,22lλ 2,12 + 634368λ 2,22 1,1 + 60480λ2,22,1 + 39690λ1,2λ1,1 - 46080λ1,2n6λ 2,1λ2,2λ1,1l2 + 1053248λ 1,22 2,1l + 48384λ1,2n3λ 2,1λ1,1 + 45360nλ2,22λ 1,12l4 + 4286928λ 1,22n2λ 2,12l + 2792592λ 1,22n2λ 2,12l2 - 37632λ 2,2n3λ 1,2l + 26880λ2,22n5λ 1,1l + 211200n6λ 2,22λ 1,12l + 15360n7λ 2,22λ 1,12l + 5221184n3λ 2,22λ 1,12l + 2792592n2λ 2,22λ 1,12l2 + 3348480n4λ 2,22λ 1,12l + 1171200n5λ 2,22λ 1,12l - 959360λ 1,2n3λ 2,1λ2,2l3λ 1,1 - 503664λ1,22,2l2λ 1,1 - 1053248λ1,22,21,1 - 201600λ2,2n3λ 2,1l2λ 1,2 + 941248λ1,22n3λ 2,1l - 1237376λ1,2n2λ 2,2λ1,1 + 23040λ1,22n6λ 2,12l2 + 262080λ 1,22n4λ 2,1l + 26880λ1,22n3λ 2,12l4 + 262080λ 2,22n4λ 1,1l + 513744λ1,22n2λ 2,1l2 + 70000λ 1,22 2,1l3 + 130032λ 1,2n2λ 2,1λ1,1 + 15360λ1,22n5λ 2,12l3 + 1185120λ 1,22n4λ 2,12l2 + 479680λ 1,22n3λ 2,12l3 + 32928λ 1,22nl2 + 45360λ 1,22nλ 2,12l4 + 417200λ 1,22nλ 2,12l3 + 941248λ 2,22n3λ 1,1l + 108192λ1,22n2l + 9408λ 1,22n2l2 + 18816λ 1,22n3l - 1515696λ 1,2n2λ 2,2λ1,1l + 709680λ1,22n2λ 2,12l3 - 70000λ 1,22,2l3λ 1,1 + 15120λ1,2n2λ 1,1 - 6048n4λ 2,2λ1,12 - 373632λ 2,21,2 + 211200λ1,22n6λ 2,12l + 1171200λ 1,22n5λ 2,12l + 1302672λ 1,22nλ 2,12l2
+ 60000λ1,22n2λ 2,12l4 + 201600λ 1,22n3λ 2,1l2 - 634368λ 1,22,2λ1,1 + 26460λ2,12,2 + 145530λ1,22l2λ 2,12 - 497504λ 1,2n4λ 2,2λ1,1 - 107520λ1,2n5λ 2,2λ1,1 - 8960λ1,2n6λ 2,2λ1,1 - 4222496λ1,2n2λ 2,1λ2,2λ1,1 - 1112832λ1,2n3λ 2,2λ1,1 + 15360λ1,22n7λ 2,12l - 8960λ 1,2n3λ 2,2λ1,1l3 + 1593424λ 1,22nλ 2,12l + 3840λ 1,22n4λ 2,12l4 + 2584320λ 1,22n3λ 2,12l2 + 5221184λ 1,22n3λ 2,12l + 26880λ 1,22n4λ 2,1l2 + 8960λ 1,22n3λ 2,1l3 + 47040λ 2,22n2l3λ 1,1 - 145530λ2,1λ1,2λ2,2l2 + 8960λ 2,22n3λ 1,1l3 + 1237376λ 2,22n2λ 1,1 + 2111248n2λ 2,22λ 1,12 - 18816λ 2,2n4λ 1,2 + 12096λ1,2n3λ 2,1λ1,1l + 145530λ1,22l2λ 2,1 + 108192λ2,22n2l + 18816λ 2,22n3l - 394464λ 2,2n2λ 1,2 - 150528λ2,2n3λ 1,2 + 32928λ2,22nl2 + 59535λ 2,12λ 1,22 + 15120λ 2,2n2λ 2,1 - 604802,2λ1,1 + 6615λ2,22l4λ 1,12 + 12096λ 2,1n3λ 2,2λ1,1l - 6048λ2,12n4λ 1,2 - 48384λ2,12n3λ 1,2 + 119070λ2,1λ1,22 + 13230λ 2,2l2λ 1,1λ2,1 + 201600λ2,22n3λ 1,1l2 - 48384n3λ 2,2λ1,12 + 3353856n3λ 2,22λ 1,12 - 133056 2,2λ1,12 - 2370240λ 1,2n4λ 2,1λ2,2l2λ 1,1 - 284160λ1,2n4λ 2,1λ2,2l3λ 1,1 + 13230λ1,2l2λ 1,1λ2,1 + 9408λ2,22n2l2 - 26880λ 2,2n4λ 2,1l2λ 1,2 + 39690λ2,2λ1,1λ2,1 - 151202,1λ1,2l - 12096λ2,12n3λ 1,2l - 422400λ1,2n6λ 2,1λ2,2λ1,1l - 3186848λ1,22,21,1λ2,1 - 291060λ1,2l2λ 2,2λ1,1λ2,1 - 47040λ1,2n2λ 2,2l3λ 1,1 - 90720λ1,22,2l4λ 1,1λ2,1 - 529920λ1,2n5λ 2,1λ2,2λ1,1l2 - 513744λ 1,2n2λ 2,2l2λ 1,1 + 26460λ1,22l3λ 2,1 - 941248λ1,2n3λ 2,2λ1,1l - 26880λ1,2n5λ 2,2λ1,1l - 1419360λ1,2n2λ 2,1λ2,2l3λ 1,1 - 120000λ1,2n2λ 2,1λ2,2l4λ 1,1 + 6615λ1,22l4λ 2,12 + 2887072n4λ 2,22λ 1,12 + 1112832λ 2,22n3λ 1,1 + 264960λ1,22n5λ 2,12l2 + 47040λ 1,22n2λ 2,1l3 + 79380λ 1,22l + 26460λ 1,22l2 + 79380λ 2,22l - 39690λ 2,12λ 1,2 - 8960λ2,2n3λ 2,1l3λ 1,2
+ 6048λ2,1n4λ 2,2λ1,1 - 834400λ1,22,2l3λ 1,1λ2,1 + 142080λ1,22n4λ 2,12l3 + 1515696λ 1,22n2λ 2,1l + 3348480λ1,22n4λ 2,12l + 133056λ 1,21,1λ2,1 + 6048λ1,2n4λ 2,1λ1,1 - 811520λ1,2n6λ 2,1λ2,2λ1,1 - 122880λ1,2n7λ 2,1λ2,2λ1,1 - 7680λ1,2n4λ 2,1λ2,2l4λ 1,1 - 201600λ1,2n3λ 2,2λ1,1l2 - 5774144λ 1,2n4λ 2,1λ2,2λ1,1 - 10442368λ1,2n3λ 2,1λ2,21,1 + 26460λ2,22l3λ 1,1 + 8960λ2,22n6λ 1,1 - 5168640λ1,2n3λ 2,1λ2,2l2λ 1,1 - 30720λ1,2n7λ 2,1λ2,2λ1,1l + 52920λ2,22l3λ 1,12 + 107520λ 2,22n5λ 1,1 + 497504λ2,22n4λ 1,1 + 709680n2λ 2,22λ 1,12l3 + 60000n2λ 2,22λ 1,12l4 + 4286928n2λ 2,22λ 1,12l + 1185120n4λ 2,22λ 1,12l2 - 65856λ 2,21,2l2 + 15120λ 2,22,1l + 70000λ2,22nl3λ 1,1 - 119070λ2,2λ1,1λ1,2 - 119070λ2,1λ1,2λ2,2 - 13230λ2,12l2λ 1,2 + 75264λ2,22n3 + 145530λ 2,22l2λ 1,1 + 238140λ2,22 1,1 + 513744λ2,22n2l2λ 1,1)

Expressions for all quantities involved are provided below.

 
Psi_1:=4*r^(l+1)*(19*lambda[2,2]*l^3*lambda[1,1]-19*lambda[2,1]*l^3*lambda[1,2]-133*lambda[2,1]*l^2*lambda[1,2]-405*lambda[2,1]*lambda[1,2]*l+405*lambda[2,2]*l*lambda[1,1]-30*lambda[1,1]-210*lambda[1,2]-11*lambda[1,1]*l-29*lambda[1,2]*l^2-137*lambda[1,2]*l+30*lambda[2,1]+210*lambda[2,2]+11*lambda[2,1]*l+29*lambda[2,2]*l^2+137*lambda[2,2]*l+133*lambda[2,2]*l^2*lambda[1,1]-450*lambda[2,1]*lambda[1,2]+450*lambda[2,2]*lambda[1,1]-60*lambda[2,1]*r^2+90*lambda[2,2]*r^4-300*lambda[2,2]*r^2+300*lambda[1,2]*r^2+lambda[2,1]*l^2-lambda[1,1]*l^2+2*lambda[2,2]*l^3-2*lambda[1,2]*l^3+60*lambda[1,1]*r^2+30*lambda[2,1]*r^4-30*lambda[1,1]*r^4-90*lambda[1,2]*r^4-lambda[2,1]*l^4*lambda[1,2]-34*lambda[2,2]*l^3*lambda[1,1]*r^2+2*lambda[2,1]*l^4*lambda[1,2]*r^2+34*lambda[2,1]*l^3*lambda[1,2]*r^2+202*lambda[2,1]*l^2*lambda[1,2]*r^2-2*lambda[2,2]*l^4*lambda[1,1]*r^2+54*lambda[1,2]*l^2*r^2+4*lambda[1,2]*l^3*r^2-54*lambda[2,2]*l^2*r^2-4*lambda[2,2]*l^3*r^2+230*lambda[1,2]*l*r^2-202*lambda[2,2]*l^2*lambda[1,1]*r^2+470*lambda[2,1]*lambda[1,2]*l*r^2-470*lambda[2,2]*l*lambda[1,1]*r^2+22*lambda[1,1]*l*r^2+2*lambda[1,1]*l^2*r^2-22*lambda[2,1]*l*r^2-2*lambda[2,1]*l^2*r^2-230*lambda[2,2]*l*r^2+153*lambda[2,2]*lambda[1,1]*l*r^4+77*lambda[2,2]*lambda[1,1]*l^2*r^4+300*lambda[2,1]*lambda[1,2]*r^2-300*lambda[2,2]*lambda[1,1]*r^2+2*lambda[2,2]*l^3*r^4+25*lambda[2,2]*l^2*r^4+93*lambda[2,2]*l*r^4+lambda[2,1]*l^2*r^4+11*lambda[2,1]*l*r^4-25*lambda[1,2]*l^2*r^4-93*lambda[1,2]*l*r^4-2*lambda[1,2]*l^3*r^4-153*lambda[2,1]*lambda[1,2]*l*r^4-77*lambda[2,1]*lambda[1,2]*l^2*r^4-lambda[1,1]*l^2*r^4-11*lambda[1,1]*l*r^4+90*lambda[2,2]*lambda[1,1]*r^4-90*lambda[2,1]*lambda[1,2]*r^4-lambda[2,1]*l^4*lambda[1,2]*r^4-15*lambda[2,1]*l^3*lambda[1,2]*r^4+15*lambda[2,2]*l^3*lambda[1,1]*r^4+lambda[2,2]*l^4*lambda[1,1]*r^4+lambda[2,2]*l^4*lambda[1,1]);  
 
c[1]:=8*n*(n+1)*(2*n+l+1)*(2*n+2+l)*(n+4+l)*(-11340*lambda[2,1]*lambda[1,2]*l-11340*lambda[2,2]*l*lambda[1,1]+5670*lambda[2,1]*lambda[1,2]+5670*lambda[2,2]*lambda[1,1]-5460*lambda[1,2]^2*l*lambda[2,1]+6048*lambda[2,1]^2*n*lambda[1,2]-8960*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+65280*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+126720*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-14480*n*lambda[2,2]^2*lambda[1,1]^2*l+32640*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2+5460*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+3840*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+23040*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+11520*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4-15120*n*lambda[2,2]*lambda[1,1]^2*l-53760*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+64960*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+15360*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3-18816*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+69120*n^5*lambda[2,2]^2*lambda[1,1]^2+33264*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+6048*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+9072*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+15120*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-138240*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-7680*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]-4368*lambda[2,2]^2*n^2*lambda[1,1]*l-54640*n*lambda[2,2]^2*lambda[1,1]^2*l^3-83472*n*lambda[2,2]^2*lambda[1,1]^2*l^2-70224*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+11340*lambda[1,2]*l*lambda[1,1]+7560*lambda[2,1]^2*lambda[1,2]*l+30720*lambda[1,2]^2*n^7*lambda[2,1]^2+69120*lambda[1,2]^2*n^5*lambda[2,1]^2-50528*lambda[1,2]^2*n^4*lambda[2,1]^2+3840*lambda[1,2]^2*n^8*lambda[2,1]^2+83200*lambda[1,2]^2*n^6*lambda[2,1]^2-8064*lambda[1,2]^2*n*lambda[2,1]-21168*lambda[2,1]^2*n^2*lambda[1,2]+30720*n^7*lambda[2,2]^2*lambda[1,1]^2+3840*n^8*lambda[2,2]^2*lambda[1,1]^2+17568*lambda[1,2]^2*n*lambda[2,1]^2-9008*lambda[1,2]^2*n^2*lambda[2,1]^2-89472*lambda[1,2]^2*n^3*lambda[2,1]^2+30240*lambda[1,2]*n*lambda[1,1]-2800*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+24192*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+56896*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-9072*n*lambda[2,2]*lambda[1,1]^2*l^2+17568*n*lambda[2,2]^2*lambda[1,1]^2-33264*n^2*lambda[2,2]*lambda[1,1]^2*l-12096*n^3*lambda[2,2]*lambda[1,1]^2*l-6048*n^2*lambda[2,2]*lambda[1,1]^2*l^2-6048*lambda[2,1]^2*n^2*l^2*lambda[1,2]+166944*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-127680*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-245760*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-8400*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-33264*lambda[2,1]^2*n^2*lambda[1,2]*l+5460*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+26880*lambda[1,2]^2*n^5*lambda[2,1]*l-23040*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+6048*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+33264*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-9072*lambda[2,1]^2*n*l^2*lambda[1,2]+19320*lambda[1,2]*l*lambda[2,2]-8190*lambda[1,2]*lambda[2,2]-5670*lambda[2,2]*lambda[2,1]-13230*lambda[1,1]*lambda[2,1]+27888*lambda[1,2]^2*n^2+1890*lambda[2,2]*l^2*lambda[1,1]^2+83200*n^6*lambda[2,2]^2*lambda[1,1]^2-7560*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-36960*lambda[2,2]*n*lambda[1,2]*l-94304*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-8190*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-161728*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-7560*lambda[1,2]^2*l^3*lambda[2,1]^2-5670*lambda[2,1]*lambda[1,2]*lambda[1,1]+4200*lambda[2,2]^2*l*lambda[1,1]^2+26880*lambda[2,2]^2*n^4*lambda[1,1]*l^2+15120*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]+7560*lambda[2,2]*l*lambda[1,1]^2-18816*lambda[2,2]*n^2*lambda[1,2]*l^2-103488*lambda[2,2]*n^2*lambda[1,2]*l+5460*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+19110*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-7560*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-5670*lambda[2,2]^2*l^2*lambda[1,1]^2+5460*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+2940*lambda[2,2]^2*l^2+37632*lambda[1,2]^2*n^3+15120*lambda[1,2]*n*lambda[1,1]*l+6615*lambda[2,1]^2+4095*lambda[1,2]^2+6615*lambda[1,1]^2+4095*lambda[2,2]^2+9408*lambda[2,2]^2*n^4-19488*lambda[2,2]^2*n+5670*lambda[2,2]*lambda[1,1]^2+4095*lambda[2,2]^2*lambda[1,1]^2-26880*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-127680*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l-20160*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+15120*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+9072*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]+4368*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+18480*lambda[2,2]^2*n*l+27888*lambda[2,2]^2*n^2+304608*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+307296*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+9408*lambda[1,2]^2*n^4-5880*lambda[1,2]*l^2*lambda[2,2]-21168*n^2*lambda[2,2]*lambda[1,1]^2-30720*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-6048*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+18816*lambda[1,2]^2*n^3*lambda[2,1]+8960*lambda[1,2]^2*n^6*lambda[2,1]-56896*lambda[1,2]^2*n^2*lambda[2,1]+18480*lambda[1,2]^2*n*l+178944*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+53760*lambda[1,2]^2*n^5*lambda[2,1]-453120*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-19488*lambda[1,2]^2*n-15120*n*lambda[2,2]*lambda[1,1]*l+8064*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-26544*lambda[2,2]^2*n*l^2*lambda[1,1]-15120*lambda[2,1]^2*n*lambda[1,2]*l+26544*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+21168*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+68320*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l-26544*lambda[1,2]^2*n*lambda[2,1]*l^2-68320*lambda[2,2]^2*n*l*lambda[1,1]-15120*n^2*lambda[2,1]*lambda[1,2]+3570*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-15120*n^2*lambda[2,2]*lambda[1,1]-30240*n*lambda[2,1]*lambda[1,2]+8190*lambda[2,2]^2*lambda[1,1]+94304*lambda[1,2]^2*n^4*lambda[2,1]-26880*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-35136*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+4200*lambda[1,2]^2*l*lambda[2,1]^2-8064*lambda[2,2]^2*n*lambda[1,1]+30240*lambda[2,2]*n*lambda[2,1]-5670*lambda[1,2]*lambda[1,1]-46080*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-68320*lambda[1,2]^2*n*lambda[2,1]*l+24192*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-9360*n*lambda[2,2]^2*lambda[1,1]^2*l^4-152304*lambda[1,2]^2*n^2*lambda[2,1]^2*l-153648*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-37632*lambda[2,2]*n^3*lambda[1,2]*l+26880*lambda[2,2]^2*n^5*lambda[1,1]*l+103680*n^6*lambda[2,2]^2*lambda[1,1]^2*l+15360*n^7*lambda[2,2]^2*lambda[1,1]^2*l-147136*n^3*lambda[2,2]^2*lambda[1,1]^2*l-153648*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+122880*n^4*lambda[2,2]^2*lambda[1,1]^2*l+226560*n^5*lambda[2,2]^2*lambda[1,1]^2*l-129920*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+26544*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+68320*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-94080*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+161728*lambda[1,2]^2*n^3*lambda[2,1]*l+56896*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+23040*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+127680*lambda[1,2]^2*n^4*lambda[2,1]*l+11520*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+127680*lambda[2,2]^2*n^4*lambda[1,1]*l+70224*lambda[1,2]^2*n^2*lambda[2,1]*l^2+2800*lambda[1,2]^2*n*lambda[2,1]*l^3+21168*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+15360*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+205920*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+64960*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+14112*lambda[1,2]^2*n*l^2-9360*lambda[1,2]^2*n*lambda[2,1]^2*l^4-54640*lambda[1,2]^2*n*lambda[2,1]^2*l^3+161728*lambda[2,2]^2*n^3*lambda[1,1]*l+51744*lambda[1,2]^2*n^2*l+9408*lambda[1,2]^2*n^2*l^2+18816*lambda[1,2]^2*n^3*l+4368*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l-30480*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-2800*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+15120*lambda[1,2]*n^2*lambda[1,1]-6048*n^4*lambda[2,2]*lambda[1,1]^2+38976*lambda[2,2]*n*lambda[1,2]+103680*lambda[1,2]^2*n^6*lambda[2,1]^2*l+226560*lambda[1,2]^2*n^5*lambda[2,1]^2*l-83472*lambda[1,2]^2*n*lambda[2,1]^2*l^2+2400*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+94080*lambda[1,2]^2*n^3*lambda[2,1]*l^2+8064*lambda[1,2]*n*lambda[2,2]*lambda[1,1]+11340*lambda[2,1]*l*lambda[2,2]-5670*lambda[1,2]^2*l^2*lambda[2,1]^2-94304*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-53760*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-8960*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+18016*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]-18816*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+15360*lambda[1,2]^2*n^7*lambda[2,1]^2*l-8960*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3-14480*lambda[1,2]^2*n*lambda[2,1]^2*l+3840*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+32640*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-147136*lambda[1,2]^2*n^3*lambda[2,1]^2*l+26880*lambda[1,2]^2*n^4*lambda[2,1]*l^2+8960*lambda[1,2]^2*n^3*lambda[2,1]*l^3+20160*lambda[2,2]^2*n^2*l^3*lambda[1,1]+19110*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+8960*lambda[2,2]^2*n^3*lambda[1,1]*l^3-56896*lambda[2,2]^2*n^2*lambda[1,1]-9008*n^2*lambda[2,2]^2*lambda[1,1]^2-18816*lambda[2,2]*n^4*lambda[1,2]+12096*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-19110*lambda[1,2]^2*l^2*lambda[2,1]+51744*lambda[2,2]^2*n^2*l+18816*lambda[2,2]^2*n^3*l-55776*lambda[2,2]*n^2*lambda[1,2]-75264*lambda[2,2]*n^3*lambda[1,2]+14112*lambda[2,2]^2*n*l^2+4095*lambda[2,1]^2*lambda[1,2]^2+15120*lambda[2,2]*n^2*lambda[2,1]-30240*n*lambda[2,2]*lambda[1,1]-1785*lambda[2,2]^2*l^4*lambda[1,1]^2+12096*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-6048*lambda[2,1]^2*n^4*lambda[1,2]-24192*lambda[2,1]^2*n^3*lambda[1,2]+8190*lambda[2,1]*lambda[1,2]^2-1890*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]+94080*lambda[2,2]^2*n^3*lambda[1,1]*l^2-24192*n^3*lambda[2,2]*lambda[1,1]^2-89472*n^3*lambda[2,2]^2*lambda[1,1]^2+6048*n*lambda[2,2]*lambda[1,1]^2-411840*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-130560*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-1890*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+9408*lambda[2,2]^2*n^2*l^2-26880*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-5670*lambda[2,2]*lambda[1,1]*lambda[2,1]-15120*n*lambda[2,1]*lambda[1,2]*l-12096*lambda[2,1]^2*n^3*lambda[1,2]*l-207360*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+28960*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]+11340*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-20160*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]+18720*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-253440*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-70224*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-5460*lambda[1,2]^2*l^3*lambda[2,1]-161728*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-26880*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l+60960*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-4800*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-1785*lambda[1,2]^2*l^4*lambda[2,1]^2-50528*n^4*lambda[2,2]^2*lambda[1,1]^2+18816*lambda[2,2]^2*n^3*lambda[1,1]+126720*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+20160*lambda[1,2]^2*n^2*lambda[2,1]*l^3-9660*lambda[1,2]^2*l+2940*lambda[1,2]^2*l^2-9660*lambda[2,2]^2*l+5670*lambda[2,1]^2*lambda[1,2]-8960*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+6048*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+109280*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+65280*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3-4368*lambda[1,2]^2*n^2*lambda[2,1]*l+122880*lambda[1,2]^2*n^4*lambda[2,1]^2*l-6048*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+6048*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-166400*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-61440*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-7680*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-94080*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2+101056*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]+294272*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-5460*lambda[2,2]^2*l^3*lambda[1,1]+8960*lambda[2,2]^2*n^6*lambda[1,1]-65280*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-30720*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-7560*lambda[2,2]^2*l^3*lambda[1,1]^2+53760*lambda[2,2]^2*n^5*lambda[1,1]+94304*lambda[2,2]^2*n^4*lambda[1,1]-30480*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+2400*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4-152304*n^2*lambda[2,2]^2*lambda[1,1]^2*l+205920*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-28224*lambda[2,2]*n*lambda[1,2]*l^2+15120*lambda[2,2]*n*lambda[2,1]*l+2800*lambda[2,2]^2*n*l^3*lambda[1,1]-8190*lambda[2,2]*lambda[1,1]*lambda[1,2]-8190*lambda[2,1]*lambda[1,2]*lambda[2,2]+1890*lambda[2,1]^2*l^2*lambda[1,2]+37632*lambda[2,2]^2*n^3-19110*lambda[2,2]^2*l^2*lambda[1,1]-5460*lambda[2,2]^2*l*lambda[1,1]+70224*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[2]:=-12*(2*n+l+1)*n*(4+l+2*n)*(-52920*lambda[2,1]*l^2*lambda[1,2]-202860*lambda[2,1]*lambda[1,2]*l-202860*lambda[2,2]*l*lambda[1,1]-52920*lambda[2,2]*l^2*lambda[1,1]-127890*lambda[2,1]*lambda[1,2]-127890*lambda[2,2]*lambda[1,1]-126560*lambda[2,2]*n^2*lambda[2,1]*l^4*lambda[1,2]-314300*lambda[1,2]^2*l*lambda[2,1]+109494*lambda[2,1]^2*n*lambda[1,2]-36288*n^5*lambda[2,2]*lambda[1,1]^2*l-1093568*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+4057120*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+8163680*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-472474*n*lambda[2,2]^2*lambda[1,1]^2*l-2296304*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-5880*lambda[2,2]*n*lambda[2,1]*l^4*lambda[1,2]+309960*lambda[2,2]*n^2*lambda[2,1]*l+242620*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+836160*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+3979200*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+697120*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4+38400*n^6*lambda[2,2]^2*lambda[1,1]^2*l^4+38400*n^9*lambda[2,2]^2*lambda[1,1]^2*l-251244*n*lambda[2,2]*lambda[1,1]^2*l-2565472*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+1194224*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+2726720*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3+311040*n^5*lambda[2,2]^2*lambda[1,1]^2*l^4+757760*n^6*lambda[2,2]^2*lambda[1,1]^2*l^3-526400*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+23800*lambda[1,2]*l^5*lambda[2,2]*lambda[1,1]*lambda[2,1]+1213856*n^5*lambda[2,2]^2*lambda[1,1]^2+71680*lambda[2,2]^2*n^7*l*lambda[1,1]+946512*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+50400*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^3+428652*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+18816*lambda[1,2]^2*n^6-232960*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*lambda[1,1]+231966*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+251244*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]+5440*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-2427712*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-1415680*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]-230104*lambda[2,2]^2*n^2*lambda[1,1]*l-2136724*n*lambda[2,2]^2*lambda[1,1]^2*l^3-2564806*n*lambda[2,2]^2*lambda[1,1]^2*l^2+60480*lambda[2,2]*n^3*lambda[2,1]*l-224000*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-1510516*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+202860*lambda[1,2]*l*lambda[1,1]+153720*lambda[2,1]^2*lambda[1,2]*l-622080*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4-76800*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4+2151680*lambda[1,2]^2*n^7*lambda[2,1]^2-15360*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^5-766080*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l+1213856*lambda[1,2]^2*n^5*lambda[2,1]^2-2344000*lambda[1,2]^2*n^4*lambda[2,1]^2+707840*lambda[1,2]^2*n^8*lambda[2,1]^2+3182144*lambda[1,2]^2*n^6*lambda[2,1]^2-429842*lambda[1,2]^2*n*lambda[2,1]+116480*n^9*lambda[2,2]^2*lambda[1,1]^2-425124*lambda[2,1]^2*n^2*lambda[1,2]+2151680*n^7*lambda[2,2]^2*lambda[1,1]^2+707840*n^8*lambda[2,2]^2*lambda[1,1]^2+533079*lambda[1,2]^2*n*lambda[2,1]^2-240114*lambda[1,2]^2*n^2*lambda[2,1]^2-2572080*lambda[1,2]^2*n^3*lambda[2,1]^2+523530*lambda[1,2]*n*lambda[1,1]+219744*lambda[2,1]*n^3*lambda[2,2]*l^2*lambda[1,1]+12096*lambda[2,1]*n^3*lambda[2,2]*l^3*lambda[1,1]+155008*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+730800*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+32760*lambda[2,1]*l^4*lambda[1,2]*lambda[2,2]-30240*n^2*lambda[2,2]*lambda[1,1]*l^2+1041348*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-288288*n^4*lambda[2,2]*lambda[1,1]^2*l-231966*n*lambda[2,2]*lambda[1,1]^2*l^2-107520*lambda[2,2]*n^6*lambda[2,1]*l^2*lambda[1,2]+533079*n*lambda[2,2]^2*lambda[1,1]^2-946512*n^2*lambda[2,2]*lambda[1,1]^2*l-827568*n^3*lambda[2,2]*lambda[1,1]^2*l-36288*n^4*lambda[2,2]*lambda[1,1]^2*l^2-219744*n^3*lambda[2,2]*lambda[1,1]^2*l^2-428652*n^2*lambda[2,2]*lambda[1,1]^2*l^2-428652*lambda[2,1]^2*n^2*l^2*lambda[1,2]-94080*lambda[2,2]*n^3*lambda[2,1]*l^4*lambda[1,2]+5129612*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-506240*lambda[2,2]*n^4*lambda[2,1]*l^3*lambda[1,2]-5797344*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-71680*lambda[1,2]*n^7*lambda[2,2]*l*lambda[1,1]+12096*lambda[1,2]*n^6*lambda[2,1]*lambda[1,1]-1980864*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-308280*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-946512*lambda[2,1]^2*n^2*lambda[1,2]*l+314300*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+71680*lambda[1,2]^2*n^7*lambda[2,1]*l+757760*lambda[1,2]^2*n^6*lambda[2,1]^2*l^3+3112704*lambda[1,2]^2*n^5*lambda[2,1]*l+766080*lambda[1,2]^2*n^6*lambda[2,1]*l-112896*lambda[2,2]*n^4*lambda[1,2]*l^2-1394240*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-11900*lambda[1,2]^2*l^5*lambda[2,1]^2+428652*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+946512*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-231966*lambda[2,1]^2*n*l^2*lambda[1,2]+18816*lambda[2,2]^2*n^3*l^3-3920*lambda[1,2]*l*lambda[2,2]+78400*lambda[2,2]^2*n^2*l^3+26460*lambda[1,1]^2*l+13230*lambda[2,1]^2*n^2+27930*lambda[1,2]*lambda[2,2]+127890*lambda[2,2]*lambda[2,1]-171990*lambda[1,1]*lambda[2,1]+782894*lambda[1,2]^2*n^2+81144*lambda[2,2]^2*n*l^3+69930*lambda[2,2]*l^2*lambda[1,1]^2-32760*lambda[2,2]^2*l^4*lambda[1,1]+3182144*n^6*lambda[2,2]^2*lambda[1,1]^2-153720*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-112896*lambda[2,2]*n^5*lambda[1,2]*l-1166788*lambda[2,2]*n*lambda[1,2]*l-2724960*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-308070*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-37632*lambda[2,2]*n^3*lambda[1,2]*l^3-4343024*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-266560*lambda[1,2]^2*l^3*lambda[2,1]^2+52920*lambda[2,2]*l^2*lambda[2,1]-174510*lambda[2,1]*lambda[1,2]*lambda[1,1]+154140*lambda[2,2]^2*l*lambda[1,1]^2+3071264*lambda[2,2]^2*n^4*lambda[1,1]*l^2+36288*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]*l+533120*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]+153720*lambda[2,2]*l*lambda[1,1]^2-1336944*lambda[2,2]*n^2*lambda[1,2]*l^2-2949744*lambda[2,2]*n^2*lambda[1,2]*l-896896*lambda[2,2]*n^4*lambda[1,2]*l+94080*lambda[2,2]^2*n^3*lambda[1,1]*l^4-156800*lambda[2,2]*n^2*lambda[1,2]*l^3-683648*lambda[2,2]*n^3*lambda[1,2]*l^2+314300*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+529830*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-12096*n^6*lambda[2,2]*lambda[1,1]^2+7680*n^10*lambda[2,2]^2*lambda[1,1]^2+17920*lambda[2,2]^2*n^4*lambda[1,1]*l^4-153720*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-177310*lambda[2,2]^2*l^2*lambda[1,1]^2+242620*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+32760*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]+185024*lambda[1,2]^2*n^5+15680*lambda[2,2]^2*l^3+44100*lambda[2,2]^2*l^2+26460*lambda[2,1]^2*l+1127280*lambda[1,2]^2*n^3+493920*lambda[1,2]*n*lambda[1,1]*l+60480*lambda[1,2]*n^3*lambda[1,1]*l+85995*lambda[2,1]^2-13965*lambda[1,2]^2+85995*lambda[1,1]^2-13965*lambda[2,2]^2+18816*lambda[2,2]^2*n^6+679840*lambda[2,2]^2*n^4+185024*lambda[2,2]^2*n^5+130711*lambda[2,2]^2*n+174510*lambda[2,2]*lambda[1,1]^2+154035*lambda[2,2]^2*lambda[1,1]^2-766080*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]*l-3112704*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-5797344*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l+288288*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l-890120*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+251244*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+231966*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]+230104*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+17920*lambda[2,2]^2*n^8*lambda[1,1]+583394*lambda[2,2]^2*n*l+78400*lambda[1,2]^2*n^2*l^3+81144*lambda[1,2]^2*n*l^3-71680*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]*l+782894*lambda[2,2]^2*n^2+9046944*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+12313624*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+679840*lambda[1,2]^2*n^4-31360*lambda[1,2]*l^3*lambda[2,2]-88200*lambda[1,2]*l^2*lambda[2,2]-119070*lambda[2,1]*n*lambda[1,1]-93240*lambda[2,1]*l^2*lambda[1,2]*n-425124*n^2*lambda[2,2]*lambda[1,1]^2-30240*n^4*lambda[2,1]*lambda[1,2]-5453440*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+36288*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]*l-109494*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+526400*lambda[1,2]^2*n^3*lambda[2,1]+1093568*lambda[1,2]^2*n^6*lambda[2,1]+116480*lambda[1,2]^2*n^9*lambda[2,1]^2-1041348*lambda[1,2]^2*n^2*lambda[2,1]+583394*lambda[1,2]^2*n*l-1515520*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+5144160*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+224000*lambda[1,2]^2*n^7*lambda[2,1]+2565472*lambda[1,2]^2*n^5*lambda[2,1]-1029120*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-16177024*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+17920*lambda[1,2]^2*n^8*lambda[2,1]+130711*lambda[1,2]^2*n-493920*n*lambda[2,2]*lambda[1,1]*l+429842*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-974302*lambda[2,2]^2*n*l^2*lambda[1,1]-251244*lambda[2,1]^2*n*lambda[1,2]*l+974302*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+425124*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+1507128*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l-974302*lambda[1,2]^2*n*lambda[2,1]*l^2-1507128*lambda[2,2]^2*n*l*lambda[1,1]-548100*n^2*lambda[2,1]*lambda[1,2]-216720*n^3*lambda[2,2]*lambda[1,1]-30240*n^4*lambda[2,2]*lambda[1,1]+202090*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-548100*n^2*lambda[2,2]*lambda[1,1]-523530*n*lambda[2,1]*lambda[1,2]+140070*lambda[2,2]^2*lambda[1,1]+2724960*lambda[1,2]^2*n^4*lambda[2,1]+7680*lambda[1,2]^2*n^10*lambda[2,1]^2+18816*lambda[1,2]^2*n^3*l^3+30240*lambda[1,2]*n^4*lambda[1,1]-3071264*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-1066158*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+154140*lambda[1,2]^2*l*lambda[2,1]^2-429842*lambda[2,2]^2*n*lambda[1,1]+523530*lambda[2,2]*n*lambda[2,1]+127890*lambda[1,2]*lambda[1,1]-7958400*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-1507128*lambda[1,2]^2*n*lambda[2,1]*l+730800*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-65970*n*lambda[2,2]^2*lambda[1,1]^2*l^5-649585*n*lambda[2,2]^2*lambda[1,1]^2*l^4-50400*n^2*lambda[2,2]*lambda[1,1]^2*l^3+309960*lambda[1,2]*n^2*lambda[1,1]*l-4523472*lambda[1,2]^2*n^2*lambda[2,1]^2*l-6156812*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-2534336*lambda[2,2]*n^3*lambda[1,2]*l-44604*n*lambda[2,2]*lambda[1,1]^2*l^3+3112704*lambda[2,2]^2*n^5*lambda[1,1]*l+6958080*n^6*lambda[2,2]^2*lambda[1,1]^2*l+2714880*n^7*lambda[2,2]^2*lambda[1,1]^2*l-6256048*n^3*lambda[2,2]^2*lambda[1,1]^2*l-6156812*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+990432*n^4*lambda[2,2]^2*lambda[1,1]^2*l+8088512*n^5*lambda[2,2]^2*lambda[1,1]^2*l+93240*lambda[1,2]*n*lambda[1,1]*l^2+5880*lambda[1,2]^2*n*lambda[2,1]*l^4-2388448*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+974302*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+1507128*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-4116112*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+4343024*lambda[1,2]^2*n^3*lambda[2,1]*l+126560*lambda[1,2]^2*n^2*lambda[2,1]*l^4+1041348*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+3979200*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+5797344*lambda[1,2]^2*n^4*lambda[2,1]*l+38400*lambda[1,2]^2*n^6*lambda[2,1]^2*l^4+697120*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+5797344*lambda[2,2]^2*n^4*lambda[1,1]*l+30240*lambda[1,2]*n^2*lambda[1,1]*l^2+1510516*lambda[1,2]^2*n^2*lambda[2,1]*l^2-155008*lambda[1,2]^2*n*lambda[2,1]*l^3+425124*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+38400*lambda[1,2]^2*n^9*lambda[2,1]^2*l-17920*lambda[1,2]*n^8*lambda[2,2]*lambda[1,1]+2726720*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+6408192*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+1194224*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+893440*lambda[1,2]^2*n^7*lambda[2,1]^2*l^2+7680*lambda[1,2]^2*n^5*lambda[2,1]^2*l^5+76800*lambda[1,2]^2*n^8*lambda[2,1]^2*l^2+441476*lambda[1,2]^2*n*l^2+56448*lambda[1,2]^2*n^4*l^2+56448*lambda[1,2]^2*n^5*l-65970*lambda[1,2]^2*n*lambda[2,1]^2*l^5-649585*lambda[1,2]^2*n*lambda[2,1]^2*l^4-2136724*lambda[1,2]^2*n*lambda[2,1]^2*l^3+311040*lambda[1,2]^2*n^5*lambda[2,1]^2*l^4+4343024*lambda[2,2]^2*n^3*lambda[1,1]*l+1474872*lambda[1,2]^2*n^2*l+668472*lambda[1,2]^2*n^2*l^2+448448*lambda[1,2]^2*n^4*l+341824*lambda[1,2]^2*n^3*l^2+1267168*lambda[1,2]^2*n^3*l+30240*lambda[2,2]*n^2*lambda[2,1]*l^2+506240*lambda[2,2]^2*n^4*lambda[1,1]*l^3+44604*lambda[1,2]*n*lambda[1,1]*l^3*lambda[2,1]+230104*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l-2678480*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-5880*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]+155008*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+59535*lambda[1,1]^2*n+548100*lambda[1,2]*n^2*lambda[1,1]+216720*lambda[1,2]*n^3*lambda[1,1]-443520*n^4*lambda[2,2]*lambda[1,1]^2-118944*n^5*lambda[2,2]*lambda[1,1]^2-261422*lambda[2,2]*n*lambda[1,2]-216720*n^3*lambda[2,1]*lambda[1,2]+10080*lambda[2,2]*l^3*lambda[1,1]^2+6958080*lambda[1,2]^2*n^6*lambda[2,1]^2*l+8088512*lambda[1,2]^2*n^5*lambda[2,1]^2*l-2564806*lambda[1,2]^2*n*lambda[2,1]^2*l^2-373570*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4-2720*lambda[1,2]^2*n^2*lambda[2,1]^2*l^5+4116112*lambda[1,2]^2*n^3*lambda[2,1]*l^2+429842*lambda[1,2]*n*lambda[2,2]*lambda[1,1]-11900*lambda[2,2]^2*l^5*lambda[1,1]^2+202860*lambda[2,1]*l*lambda[2,2]-177310*lambda[1,2]^2*l^2*lambda[2,1]^2+56448*lambda[2,2]^2*n^4*l^2+30240*lambda[2,2]*n^4*lambda[2,1]-2724960*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-2565472*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-1093568*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+480228*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]+107520*lambda[1,2]^2*n^6*lambda[2,1]*l^2+94080*lambda[1,2]^2*n^3*lambda[2,1]*l^4+506240*lambda[1,2]^2*n^4*lambda[2,1]*l^3+514560*lambda[1,2]^2*n^8*lambda[2,1]^2*l-224000*lambda[1,2]*n^7*lambda[2,2]*lambda[1,1]-526400*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+2714880*lambda[1,2]^2*n^7*lambda[2,1]^2*l-1178688*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+76800*lambda[1,2]^2*n^7*lambda[2,1]^2*l^3+81600*lambda[1,2]^2*n^3*lambda[2,1]^2*l^5-472474*lambda[1,2]^2*n*lambda[2,1]^2*l+836160*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+13230*lambda[1,1]^2*n^2+71680*lambda[1,2]^2*n^5*lambda[2,1]*l^3+17920*lambda[1,2]^2*n^4*lambda[2,1]*l^4-2296304*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-6256048*lambda[1,2]^2*n^3*lambda[2,1]^2*l+3071264*lambda[1,2]^2*n^4*lambda[2,1]*l^2+93240*lambda[2,2]*n*lambda[2,1]*l^2+954240*lambda[1,2]^2*n^5*lambda[2,1]*l^2+1178688*lambda[1,2]^2*n^3*lambda[2,1]*l^3+890120*lambda[2,2]^2*n^2*l^3*lambda[1,1]+529830*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+766080*lambda[2,2]^2*n^6*lambda[1,1]*l+1178688*lambda[2,2]^2*n^3*lambda[1,1]*l^3-1041348*lambda[2,2]^2*n^2*lambda[1,1]+59535*lambda[2,1]^2*n+126560*lambda[2,2]^2*n^2*l^4*lambda[1,1]-240114*n^2*lambda[2,2]^2*lambda[1,1]^2-1359680*lambda[2,2]*n^4*lambda[1,2]-37632*lambda[2,2]*n^6*lambda[1,2]-94080*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^4-17920*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^4-93240*lambda[2,2]*l^2*lambda[1,1]*n-36288*lambda[2,1]^2*n^4*l^2*lambda[1,2]+827568*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-153600*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-529830*lambda[1,2]^2*l^2*lambda[2,1]+1474872*lambda[2,2]^2*n^2*l+1267168*lambda[2,2]^2*n^3*l-370048*lambda[2,2]*n^5*lambda[1,2]-1565788*lambda[2,2]*n^2*lambda[1,2]+50400*lambda[2,1]*n^2*lambda[2,2]*l^3*lambda[1,1]-2254560*lambda[2,2]*n^3*lambda[1,2]+216720*lambda[2,2]*n^3*lambda[2,1]+441476*lambda[2,2]^2*n*l^2+154035*lambda[2,1]^2*lambda[1,2]^2+219744*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^2-12096*lambda[2,1]^2*n^6*lambda[1,2]+12096*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^3+36288*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l^2+548100*lambda[2,2]*n^2*lambda[2,1]-523530*n*lambda[2,2]*lambda[1,1]-101045*lambda[2,2]^2*l^4*lambda[1,1]^2+827568*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-443520*lambda[2,1]^2*n^4*lambda[1,2]-730800*lambda[2,1]^2*n^3*lambda[1,2]+52920*lambda[1,2]*l^2*lambda[1,1]+140070*lambda[2,1]*lambda[1,2]^2-10080*lambda[1,2]*l^3*lambda[1,1]*lambda[2,1]-50400*lambda[2,1]^2*n^2*l^3*lambda[1,2]-60480*n^3*lambda[2,2]*lambda[1,1]*l-69930*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-219744*lambda[2,1]^2*n^3*l^2*lambda[1,2]-60480*n^3*lambda[2,1]*lambda[1,2]*l-309960*n^2*lambda[2,1]*lambda[1,2]*l+4116112*lambda[2,2]^2*n^3*lambda[1,1]*l^2-730800*n^3*lambda[2,2]*lambda[1,1]^2-2572080*n^3*lambda[2,2]^2*lambda[1,1]^2+109494*n*lambda[2,2]*lambda[1,1]^2-12816384*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+954240*lambda[2,2]^2*n^5*lambda[1,1]*l^2-8114240*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-97280*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]+71680*lambda[2,2]^2*n^5*lambda[1,1]*l^3-69930*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]-10080*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]-118944*lambda[2,1]^2*n^5*lambda[1,2]+448448*lambda[2,2]^2*n^4*l+668472*lambda[2,2]^2*n^2*l^2+56448*lambda[2,2]^2*n^5*l-3071264*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-32760*lambda[1,2]^2*l^4*lambda[2,1]-71680*lambda[2,2]*n^5*lambda[2,1]*l^3*lambda[1,2]+107520*lambda[2,2]^2*n^6*lambda[1,1]*l^2-12096*lambda[2,1]^2*n^3*l^3*lambda[1,2]+118944*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+12096*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+341824*lambda[2,2]^2*n^3*l^2-174510*lambda[2,2]*lambda[1,1]*lambda[2,1]-493920*n*lambda[2,1]*lambda[1,2]*l-827568*lambda[2,1]^2*n^3*lambda[1,2]*l-17920*lambda[2,2]*n^4*lambda[2,1]*l^4*lambda[1,2]-26460*lambda[2,1]*n*lambda[1,1]*l-13916160*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+13230*lambda[2,1]^2*n*l+944948*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-76800*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-126560*lambda[1,2]*n^2*lambda[2,2]*l^4*lambda[1,1]+354620*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-890120*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-1786880*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+36288*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l^2+1299170*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-153600*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-16327360*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-1510516*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-242620*lambda[1,2]^2*l^3*lambda[2,1]-4343024*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-506240*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^3-3112704*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l+5356960*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+747140*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-26460*lambda[2,1]*n^2*lambda[1,1]-52920*lambda[1,1]*l*lambda[2,1]-101045*lambda[1,2]^2*l^4*lambda[2,1]^2-2344000*n^4*lambda[2,2]^2*lambda[1,1]^2-954240*lambda[2,2]*n^5*lambda[2,1]*l^2*lambda[1,2]+526400*lambda[2,2]^2*n^3*lambda[1,1]+8163680*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+890120*lambda[1,2]^2*n^2*lambda[2,1]*l^3+1960*lambda[1,2]^2*l+44100*lambda[1,2]^2*l^2+1960*lambda[2,2]^2*l+174510*lambda[2,1]^2*lambda[1,2]-1178688*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+443520*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+10080*lambda[2,1]^2*l^3*lambda[1,2]+4273448*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+4057120*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3-230104*lambda[1,2]^2*n^2*lambda[2,1]*l+48640*lambda[1,2]^2*n^4*lambda[2,1]^2*l^5+990432*lambda[1,2]^2*n^4*lambda[2,1]^2*l+118944*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]-44604*lambda[2,1]^2*n*l^3*lambda[1,2]-109494*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+443520*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-6364288*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-4303360*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-30240*n^2*lambda[2,1]*l^2*lambda[1,2]+44604*lambda[2,1]*n*lambda[2,2]*l^3*lambda[1,1]-1672320*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-4116112*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-954240*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^2+4688000*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-15360*lambda[1,2]*n^10*lambda[2,1]*lambda[2,2]*lambda[1,1]+12512096*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-242620*lambda[2,2]^2*l^3*lambda[1,1]+1093568*lambda[2,2]^2*n^6*lambda[1,1]+224000*lambda[2,2]^2*n^7*lambda[1,1]-71680*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^3-107520*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l^2+131940*lambda[1,2]*n*lambda[2,2]*l^5*lambda[1,1]*lambda[2,1]+4592608*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+288288*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l-163200*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-5429760*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-266560*lambda[2,2]^2*l^3*lambda[1,1]^2+13230*lambda[1,1]^2*l*n+2565472*lambda[2,2]^2*n^5*lambda[1,1]+2724960*lambda[2,2]^2*n^4*lambda[1,1]-12096*n^3*lambda[2,2]*lambda[1,1]^2*l^3+48640*n^4*lambda[2,2]^2*lambda[1,1]^2*l^5+81600*n^3*lambda[2,2]^2*lambda[1,1]^2*l^5+7680*n^5*lambda[2,2]^2*lambda[1,1]^2*l^5-2678480*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3-373570*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+893440*n^7*lambda[2,2]^2*lambda[1,1]^2*l^2+76800*n^7*lambda[2,2]^2*lambda[1,1]^2*l^3+76800*n^8*lambda[2,2]^2*lambda[1,1]^2*l^2-4523472*n^2*lambda[2,2]^2*lambda[1,1]^2*l+514560*n^8*lambda[2,2]^2*lambda[1,1]^2*l+6408192*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-2720*n^2*lambda[2,2]^2*lambda[1,1]^2*l^5-17920*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-309960*n^2*lambda[2,2]*lambda[1,1]*l-162288*lambda[2,2]*n*lambda[1,2]*l^3-882952*lambda[2,2]*n*lambda[1,2]*l^2+493920*lambda[2,2]*n*lambda[2,1]*l-155008*lambda[2,2]^2*n*l^3*lambda[1,1]+5880*lambda[2,2]^2*n*l^4*lambda[1,1]-36288*lambda[2,1]^2*n^5*lambda[1,2]*l-288288*lambda[2,1]^2*n^4*lambda[1,2]*l-140070*lambda[2,2]*lambda[1,1]*lambda[1,2]-140070*lambda[2,1]*lambda[1,2]*lambda[2,2]+69930*lambda[2,1]^2*l^2*lambda[1,2]+15680*lambda[1,2]^2*l^3+1127280*lambda[2,2]^2*n^3-529830*lambda[2,2]^2*l^2*lambda[1,1]-314300*lambda[2,2]^2*l*lambda[1,1]+1510516*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[3]:=6*(2*n+2+l)*(2*n+5)*(5+l+2*n)*(-8820*lambda[2,1]*l^2*lambda[1,2]-57330*lambda[2,1]*lambda[1,2]*l-57330*lambda[2,2]*l*lambda[1,1]-8820*lambda[2,2]*l^2*lambda[1,1]-88200*lambda[2,1]*lambda[1,2]-88200*lambda[2,2]*lambda[1,1]-92960*lambda[2,2]*n^2*lambda[2,1]*l^4*lambda[1,2]-92610*lambda[1,2]^2*l*lambda[2,1]-292446*lambda[2,1]^2*n*lambda[1,2]-36288*n^5*lambda[2,2]*lambda[1,1]^2*l-905408*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+3653120*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+7447840*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-364154*n*lambda[2,2]^2*lambda[1,1]^2*l-2023824*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2+17080*lambda[2,2]*n*lambda[2,1]*l^4*lambda[1,2]+204120*lambda[2,2]*n^2*lambda[2,1]*l+171990*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+784960*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+3773120*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+600480*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4+38400*n^6*lambda[2,2]^2*lambda[1,1]^2*l^4+38400*n^9*lambda[2,2]^2*lambda[1,1]^2*l-281484*n*lambda[2,2]*lambda[1,1]^2*l-1877792*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+892944*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+2576960*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3+303360*n^5*lambda[2,2]^2*lambda[1,1]^2*l^4+739840*n^6*lambda[2,2]^2*lambda[1,1]^2*l^3-622720*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+22050*lambda[1,2]*l^5*lambda[2,2]*lambda[1,1]*lambda[2,1]+1148896*n^5*lambda[2,2]^2*lambda[1,1]^2+71680*lambda[2,2]^2*n^7*l*lambda[1,1]+523152*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+40320*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^3+262332*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+18816*lambda[1,2]^2*n^6-227840*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*lambda[1,1]+117306*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+281484*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]+18560*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-2297792*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-1346560*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+181496*lambda[2,2]^2*n^2*lambda[1,1]*l-1850884*n*lambda[2,2]^2*lambda[1,1]^2*l^3-2062466*n*lambda[2,2]^2*lambda[1,1]^2*l^2+60480*lambda[2,2]*n^3*lambda[2,1]*l-206080*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-767956*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+57330*lambda[1,2]*l*lambda[1,1]-92610*lambda[2,1]^2*lambda[1,2]*l-606720*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4-76800*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4+1980160*lambda[1,2]^2*n^7*lambda[2,1]^2-15360*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^5-703360*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l+1148896*lambda[1,2]^2*n^5*lambda[2,1]^2-1500640*lambda[1,2]^2*n^4*lambda[2,1]^2+673280*lambda[1,2]^2*n^8*lambda[2,1]^2+2832704*lambda[1,2]^2*n^6*lambda[2,1]^2+126938*lambda[1,2]^2*n*lambda[2,1]+113920*n^9*lambda[2,2]^2*lambda[1,1]^2-379764*lambda[2,1]^2*n^2*lambda[1,2]+1980160*n^7*lambda[2,2]^2*lambda[1,1]^2+673280*n^8*lambda[2,2]^2*lambda[1,1]^2+247149*lambda[1,2]^2*n*lambda[2,1]^2+81726*lambda[1,2]^2*n^2*lambda[2,1]^2-1401360*lambda[1,2]^2*n^3*lambda[2,1]^2+179550*lambda[1,2]*n*lambda[1,1]+179424*lambda[2,1]*n^3*lambda[2,2]*l^2*lambda[1,1]+12096*lambda[2,1]*n^3*lambda[2,2]*l^3*lambda[1,1]+213528*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+418320*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+26460*lambda[2,1]*l^4*lambda[1,2]*lambda[2,2]-30240*n^2*lambda[2,2]*lambda[1,1]*l^2-87612*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-237888*n^4*lambda[2,2]*lambda[1,1]^2*l-117306*n*lambda[2,2]*lambda[1,1]^2*l^2-107520*lambda[2,2]*n^6*lambda[2,1]*l^2*lambda[1,2]+247149*n*lambda[2,2]^2*lambda[1,1]^2-523152*n^2*lambda[2,2]*lambda[1,1]^2*l-535248*n^3*lambda[2,2]*lambda[1,1]^2*l-36288*n^4*lambda[2,2]*lambda[1,1]^2*l^2-179424*n^3*lambda[2,2]*lambda[1,1]^2*l^2-262332*n^2*lambda[2,2]*lambda[1,1]^2*l^2-262332*lambda[2,1]^2*n^2*l^2*lambda[1,2]-85120*lambda[2,2]*n^3*lambda[2,1]*l^4*lambda[1,2]+4124932*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-461440*lambda[2,2]*n^4*lambda[2,1]*l^3*lambda[1,2]-4178944*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-71680*lambda[1,2]*n^7*lambda[2,2]*l*lambda[1,1]+12096*lambda[1,2]*n^6*lambda[2,1]*lambda[1,1]-2020864*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+127890*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-523152*lambda[2,1]^2*n^2*lambda[1,2]*l+92610*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+71680*lambda[1,2]^2*n^7*lambda[2,1]*l+739840*lambda[1,2]^2*n^6*lambda[2,1]^2*l^3+2561664*lambda[1,2]^2*n^5*lambda[2,1]*l+703360*lambda[1,2]^2*n^6*lambda[2,1]*l-112896*lambda[2,2]*n^4*lambda[1,2]*l^2-1200960*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-11025*lambda[1,2]^2*l^5*lambda[2,1]^2+262332*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+523152*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-117306*lambda[2,1]^2*n*l^2*lambda[1,2]+18816*lambda[2,2]^2*n^3*l^3+57330*lambda[1,2]*l*lambda[2,2]+62720*lambda[2,2]^2*n^2*l^3+6615*lambda[1,1]^2*l+13230*lambda[2,1]^2*n^2-52920*lambda[1,2]*lambda[2,2]+88200*lambda[2,2]*lambda[2,1]-52920*lambda[1,1]*lambda[2,1]+253694*lambda[1,2]^2*n^2+41944*lambda[2,2]^2*n*l^3-26460*lambda[2,2]^2*l^4*lambda[1,1]+2832704*n^6*lambda[2,2]^2*lambda[1,1]^2+92610*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-112896*lambda[2,2]*n^5*lambda[1,2]*l-261268*lambda[2,2]*n*lambda[1,2]*l-1800960*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-52920*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-37632*lambda[2,2]*n^3*lambda[1,2]*l^3-2755984*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-277830*lambda[1,2]^2*l^3*lambda[2,1]^2+8820*lambda[2,2]*l^2*lambda[2,1]+88200*lambda[2,1]*lambda[1,2]*lambda[1,1]-63945*lambda[2,2]^2*l*lambda[1,1]^2+2500064*lambda[2,2]^2*n^4*lambda[1,1]*l^2+36288*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]*l+555660*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]-92610*lambda[2,2]*l*lambda[1,1]^2-819504*lambda[2,2]*n^2*lambda[1,2]*l^2-1326864*lambda[2,2]*n^2*lambda[1,2]*l-740096*lambda[2,2]*n^4*lambda[1,2]*l+85120*lambda[2,2]^2*n^3*lambda[1,1]*l^4-125440*lambda[2,2]*n^2*lambda[1,2]*l^3-558208*lambda[2,2]*n^3*lambda[1,2]*l^2+92610*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+291060*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-12096*n^6*lambda[2,2]*lambda[1,1]^2+7680*n^10*lambda[2,2]^2*lambda[1,1]^2+17920*lambda[2,2]^2*n^4*lambda[1,1]*l^4+92610*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-282240*lambda[2,2]^2*l^2*lambda[1,1]^2+171990*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+26460*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]+153664*lambda[1,2]^2*n^5-8820*lambda[2,2]^2*l^3-44100*lambda[2,2]^2*l^2+6615*lambda[2,1]^2*l+539280*lambda[1,2]^2*n^3+194040*lambda[1,2]*n*lambda[1,1]*l+60480*lambda[1,2]*n^3*lambda[1,1]*l+26460*lambda[2,1]^2+26460*lambda[1,2]^2+26460*lambda[1,1]^2+26460*lambda[2,2]^2+18816*lambda[2,2]^2*n^6+444640*lambda[2,2]^2*n^4+153664*lambda[2,2]^2*n^5+51821*lambda[2,2]^2*n-88200*lambda[2,2]*lambda[1,1]^2+26460*lambda[2,2]^2*lambda[1,1]^2-703360*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]*l-2561664*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-4178944*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l+237888*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l-537880*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+281484*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+117306*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-181496*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+17920*lambda[2,2]^2*n^8*lambda[1,1]+130634*lambda[2,2]^2*n*l+62720*lambda[1,2]^2*n^2*l^3+41944*lambda[1,2]^2*n*l^3-71680*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]*l+253694*lambda[2,2]^2*n^2+5827104*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+9857944*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+444640*lambda[1,2]^2*n^4+17640*lambda[1,2]*l^3*lambda[2,2]+88200*lambda[1,2]*l^2*lambda[2,2]-39690*lambda[2,1]*n*lambda[1,1]-57960*lambda[2,1]*l^2*lambda[1,2]*n-379764*n^2*lambda[2,2]*lambda[1,1]^2-30240*n^4*lambda[2,1]*lambda[1,2]-5153920*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+36288*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]*l+292446*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+622720*lambda[1,2]^2*n^3*lambda[2,1]+905408*lambda[1,2]^2*n^6*lambda[2,1]+113920*lambda[1,2]^2*n^9*lambda[2,1]^2+87612*lambda[1,2]^2*n^2*lambda[2,1]+130634*lambda[1,2]^2*n*l-1479680*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+2802720*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+206080*lambda[1,2]^2*n^7*lambda[2,1]+1877792*lambda[1,2]^2*n^5*lambda[2,1]-1006080*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-14290304*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+17920*lambda[1,2]^2*n^8*lambda[2,1]+51821*lambda[1,2]^2*n-194040*n*lambda[2,2]*lambda[1,1]*l-126938*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-609322*lambda[2,2]^2*n*l^2*lambda[1,1]-281484*lambda[2,1]^2*n*lambda[1,2]*l+609322*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+379764*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+330288*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l-609322*lambda[1,2]^2*n*lambda[2,1]*l^2-330288*lambda[2,2]^2*n*l*lambda[1,1]-230580*n^2*lambda[2,1]*lambda[1,2]-146160*n^3*lambda[2,2]*lambda[1,1]-30240*n^4*lambda[2,2]*lambda[1,1]+194040*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-230580*n^2*lambda[2,2]*lambda[1,1]-179550*n*lambda[2,1]*lambda[1,2]+52920*lambda[2,2]^2*lambda[1,1]+1800960*lambda[1,2]^2*n^4*lambda[2,1]+7680*lambda[1,2]^2*n^10*lambda[2,1]^2+18816*lambda[1,2]^2*n^3*l^3+30240*lambda[1,2]*n^4*lambda[1,1]-2500064*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-494298*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]-63945*lambda[1,2]^2*l*lambda[2,1]^2+126938*lambda[2,2]^2*n*lambda[1,1]+179550*lambda[2,2]*n*lambda[2,1]+88200*lambda[1,2]*lambda[1,1]-7546240*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-330288*lambda[1,2]^2*n*lambda[2,1]*l+418320*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-62370*n*lambda[2,2]^2*lambda[1,1]^2*l^5-591115*n*lambda[2,2]^2*lambda[1,1]^2*l^4-40320*n^2*lambda[2,2]*lambda[1,1]^2*l^3+204120*lambda[1,2]*n^2*lambda[1,1]*l-2913552*lambda[1,2]^2*n^2*lambda[2,1]^2*l-4928972*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-1624896*lambda[2,2]*n^3*lambda[1,2]*l-19404*n*lambda[2,2]*lambda[1,1]^2*l^3+2561664*lambda[2,2]^2*n^5*lambda[1,1]*l+6384640*n^6*lambda[2,2]^2*lambda[1,1]^2*l+2579200*n^7*lambda[2,2]^2*lambda[1,1]^2*l-4478928*n^3*lambda[2,2]^2*lambda[1,1]^2*l-4928972*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+1010432*n^4*lambda[2,2]^2*lambda[1,1]^2*l+7145152*n^5*lambda[2,2]^2*lambda[1,1]^2*l+57960*lambda[1,2]*n*lambda[1,1]*l^2-17080*lambda[1,2]^2*n*lambda[2,1]*l^4-1785888*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+609322*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+330288*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-2856112*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+2755984*lambda[1,2]^2*n^3*lambda[2,1]*l+92960*lambda[1,2]^2*n^2*lambda[2,1]*l^4-87612*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+3773120*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+4178944*lambda[1,2]^2*n^4*lambda[2,1]*l+38400*lambda[1,2]^2*n^6*lambda[2,1]^2*l^4+600480*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+4178944*lambda[2,2]^2*n^4*lambda[1,1]*l+30240*lambda[1,2]*n^2*lambda[1,1]*l^2+767956*lambda[1,2]^2*n^2*lambda[2,1]*l^2-213528*lambda[1,2]^2*n*lambda[2,1]*l^3+379764*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+38400*lambda[1,2]^2*n^9*lambda[2,1]^2*l-17920*lambda[1,2]*n^8*lambda[2,2]*lambda[1,1]+2576960*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+5535392*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+892944*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+872960*lambda[1,2]^2*n^7*lambda[2,1]^2*l^2+7680*lambda[1,2]^2*n^5*lambda[2,1]^2*l^5+76800*lambda[1,2]^2*n^8*lambda[2,1]^2*l^2+145516*lambda[1,2]^2*n*l^2+56448*lambda[1,2]^2*n^4*l^2+56448*lambda[1,2]^2*n^5*l-62370*lambda[1,2]^2*n*lambda[2,1]^2*l^5-591115*lambda[1,2]^2*n*lambda[2,1]^2*l^4-1850884*lambda[1,2]^2*n*lambda[2,1]^2*l^3+303360*lambda[1,2]^2*n^5*lambda[2,1]^2*l^4+2755984*lambda[2,2]^2*n^3*lambda[1,1]*l+663432*lambda[1,2]^2*n^2*l+409752*lambda[1,2]^2*n^2*l^2+370048*lambda[1,2]^2*n^4*l+279104*lambda[1,2]^2*n^3*l^2+812448*lambda[1,2]^2*n^3*l+30240*lambda[2,2]*n^2*lambda[2,1]*l^2+461440*lambda[2,2]^2*n^4*lambda[1,1]*l^3+19404*lambda[1,2]*n*lambda[1,1]*l^3*lambda[2,1]-181496*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l-2433520*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3+17080*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]+213528*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+19845*lambda[1,1]^2*n+230580*lambda[1,2]*n^2*lambda[1,1]+146160*lambda[1,2]*n^3*lambda[1,1]-292320*n^4*lambda[2,2]*lambda[1,1]^2-98784*n^5*lambda[2,2]*lambda[1,1]^2-103642*lambda[2,2]*n*lambda[1,2]-146160*n^3*lambda[2,1]*lambda[1,2]+4410*lambda[2,2]*l^3*lambda[1,1]^2+6384640*lambda[1,2]^2*n^6*lambda[2,1]^2*l+7145152*lambda[1,2]^2*n^5*lambda[2,1]^2*l-2062466*lambda[1,2]^2*n*lambda[2,1]^2*l^2-392370*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4-9280*lambda[1,2]^2*n^2*lambda[2,1]^2*l^5+2856112*lambda[1,2]^2*n^3*lambda[2,1]*l^2-126938*lambda[1,2]*n*lambda[2,2]*lambda[1,1]-11025*lambda[2,2]^2*l^5*lambda[1,1]^2+57330*lambda[2,1]*l*lambda[2,2]-282240*lambda[1,2]^2*l^2*lambda[2,1]^2+56448*lambda[2,2]^2*n^4*l^2+30240*lambda[2,2]*n^4*lambda[2,1]-1800960*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-1877792*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-905408*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]-163452*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]+107520*lambda[1,2]^2*n^6*lambda[2,1]*l^2+85120*lambda[1,2]^2*n^3*lambda[2,1]*l^4+461440*lambda[1,2]^2*n^4*lambda[2,1]*l^3+503040*lambda[1,2]^2*n^8*lambda[2,1]^2*l-206080*lambda[1,2]*n^7*lambda[2,2]*lambda[1,1]-622720*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+2579200*lambda[1,2]^2*n^7*lambda[2,1]^2*l-936768*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+76800*lambda[1,2]^2*n^7*lambda[2,1]^2*l^3+75200*lambda[1,2]^2*n^3*lambda[2,1]^2*l^5-364154*lambda[1,2]^2*n*lambda[2,1]^2*l+784960*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+13230*lambda[1,1]^2*n^2+71680*lambda[1,2]^2*n^5*lambda[2,1]*l^3+17920*lambda[1,2]^2*n^4*lambda[2,1]*l^4-2023824*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-4478928*lambda[1,2]^2*n^3*lambda[2,1]^2*l+2500064*lambda[1,2]^2*n^4*lambda[2,1]*l^2+57960*lambda[2,2]*n*lambda[2,1]*l^2+873600*lambda[1,2]^2*n^5*lambda[2,1]*l^2+936768*lambda[1,2]^2*n^3*lambda[2,1]*l^3+537880*lambda[2,2]^2*n^2*l^3*lambda[1,1]+291060*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+703360*lambda[2,2]^2*n^6*lambda[1,1]*l+936768*lambda[2,2]^2*n^3*lambda[1,1]*l^3+87612*lambda[2,2]^2*n^2*lambda[1,1]+19845*lambda[2,1]^2*n+92960*lambda[2,2]^2*n^2*l^4*lambda[1,1]+81726*n^2*lambda[2,2]^2*lambda[1,1]^2-889280*lambda[2,2]*n^4*lambda[1,2]-37632*lambda[2,2]*n^6*lambda[1,2]-85120*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^4-17920*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^4-57960*lambda[2,2]*l^2*lambda[1,1]*n-36288*lambda[2,1]^2*n^4*l^2*lambda[1,2]+535248*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-153600*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-291060*lambda[1,2]^2*l^2*lambda[2,1]+663432*lambda[2,2]^2*n^2*l+812448*lambda[2,2]^2*n^3*l-307328*lambda[2,2]*n^5*lambda[1,2]-507388*lambda[2,2]*n^2*lambda[1,2]+40320*lambda[2,1]*n^2*lambda[2,2]*l^3*lambda[1,1]-1078560*lambda[2,2]*n^3*lambda[1,2]+146160*lambda[2,2]*n^3*lambda[2,1]+145516*lambda[2,2]^2*n*l^2+26460*lambda[2,1]^2*lambda[1,2]^2+179424*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^2-12096*lambda[2,1]^2*n^6*lambda[1,2]+12096*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^3+36288*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l^2+230580*lambda[2,2]*n^2*lambda[2,1]-179550*n*lambda[2,2]*lambda[1,1]-97020*lambda[2,2]^2*l^4*lambda[1,1]^2+535248*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-292320*lambda[2,1]^2*n^4*lambda[1,2]-418320*lambda[2,1]^2*n^3*lambda[1,2]+8820*lambda[1,2]*l^2*lambda[1,1]+52920*lambda[2,1]*lambda[1,2]^2-4410*lambda[1,2]*l^3*lambda[1,1]*lambda[2,1]-40320*lambda[2,1]^2*n^2*l^3*lambda[1,2]-60480*n^3*lambda[2,2]*lambda[1,1]*l-179424*lambda[2,1]^2*n^3*l^2*lambda[1,2]-60480*n^3*lambda[2,1]*lambda[1,2]*l-204120*n^2*lambda[2,1]*lambda[1,2]*l+2856112*lambda[2,2]^2*n^3*lambda[1,1]*l^2-418320*n^3*lambda[2,2]*lambda[1,1]^2-1401360*n^3*lambda[2,2]^2*lambda[1,1]^2-292446*n*lambda[2,2]*lambda[1,1]^2-11070784*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+873600*lambda[2,2]^2*n^5*lambda[1,1]*l^2-7306240*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-94720*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]+71680*lambda[2,2]^2*n^5*lambda[1,1]*l^3-4410*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]-98784*lambda[2,1]^2*n^5*lambda[1,2]+370048*lambda[2,2]^2*n^4*l+409752*lambda[2,2]^2*n^2*l^2+56448*lambda[2,2]^2*n^5*l-2500064*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-26460*lambda[1,2]^2*l^4*lambda[2,1]-71680*lambda[2,2]*n^5*lambda[2,1]*l^3*lambda[1,2]+107520*lambda[2,2]^2*n^6*lambda[1,1]*l^2-12096*lambda[2,1]^2*n^3*l^3*lambda[1,2]+98784*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+12096*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+279104*lambda[2,2]^2*n^3*l^2+88200*lambda[2,2]*lambda[1,1]*lambda[2,1]-194040*n*lambda[2,1]*lambda[1,2]*l-535248*lambda[2,1]^2*n^3*lambda[1,2]*l-17920*lambda[2,2]*n^4*lambda[2,1]*l^4*lambda[1,2]-26460*lambda[2,1]*n*lambda[1,1]*l-12769280*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+13230*lambda[2,1]^2*n*l+728308*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-76800*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-92960*lambda[1,2]*n^2*lambda[2,2]*l^4*lambda[1,1]+564480*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-537880*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-1745920*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+36288*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l^2+1182230*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-153600*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-14895680*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-767956*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-171990*lambda[1,2]^2*l^3*lambda[2,1]-2755984*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-461440*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^3-2561664*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l+4867040*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+784740*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-26460*lambda[2,1]*n^2*lambda[1,1]-13230*lambda[1,1]*l*lambda[2,1]-97020*lambda[1,2]^2*l^4*lambda[2,1]^2-1500640*n^4*lambda[2,2]^2*lambda[1,1]^2-873600*lambda[2,2]*n^5*lambda[2,1]*l^2*lambda[1,2]+622720*lambda[2,2]^2*n^3*lambda[1,1]+7447840*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+537880*lambda[1,2]^2*n^2*lambda[2,1]*l^3-28665*lambda[1,2]^2*l-44100*lambda[1,2]^2*l^2-28665*lambda[2,2]^2*l-88200*lambda[2,1]^2*lambda[1,2]-936768*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+292320*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+4410*lambda[2,1]^2*l^3*lambda[1,2]+3701768*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+3653120*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+181496*lambda[1,2]^2*n^2*lambda[2,1]*l+47360*lambda[1,2]^2*n^4*lambda[2,1]^2*l^5+1010432*lambda[1,2]^2*n^4*lambda[2,1]^2*l+98784*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]-19404*lambda[2,1]^2*n*l^3*lambda[1,2]+292446*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+292320*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-5665408*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-3960320*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-30240*n^2*lambda[2,1]*l^2*lambda[1,2]+19404*lambda[2,1]*n*lambda[2,2]*l^3*lambda[1,1]-1569920*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-2856112*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-873600*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^2+3001280*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-15360*lambda[1,2]*n^10*lambda[2,1]*lambda[2,2]*lambda[1,1]+8957856*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-171990*lambda[2,2]^2*l^3*lambda[1,1]+905408*lambda[2,2]^2*n^6*lambda[1,1]+206080*lambda[2,2]^2*n^7*lambda[1,1]-71680*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^3-107520*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l^2+124740*lambda[1,2]*n*lambda[2,2]*l^5*lambda[1,1]*lambda[2,1]+4047648*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+237888*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l-150400*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-5158400*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-277830*lambda[2,2]^2*l^3*lambda[1,1]^2+13230*lambda[1,1]^2*l*n+1877792*lambda[2,2]^2*n^5*lambda[1,1]+1800960*lambda[2,2]^2*n^4*lambda[1,1]-12096*n^3*lambda[2,2]*lambda[1,1]^2*l^3+47360*n^4*lambda[2,2]^2*lambda[1,1]^2*l^5+75200*n^3*lambda[2,2]^2*lambda[1,1]^2*l^5+7680*n^5*lambda[2,2]^2*lambda[1,1]^2*l^5-2433520*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3-392370*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+872960*n^7*lambda[2,2]^2*lambda[1,1]^2*l^2+76800*n^7*lambda[2,2]^2*lambda[1,1]^2*l^3+76800*n^8*lambda[2,2]^2*lambda[1,1]^2*l^2-2913552*n^2*lambda[2,2]^2*lambda[1,1]^2*l+503040*n^8*lambda[2,2]^2*lambda[1,1]^2*l+5535392*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-9280*n^2*lambda[2,2]^2*lambda[1,1]^2*l^5-17920*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-204120*n^2*lambda[2,2]*lambda[1,1]*l-83888*lambda[2,2]*n*lambda[1,2]*l^3-291032*lambda[2,2]*n*lambda[1,2]*l^2+194040*lambda[2,2]*n*lambda[2,1]*l-213528*lambda[2,2]^2*n*l^3*lambda[1,1]-17080*lambda[2,2]^2*n*l^4*lambda[1,1]-36288*lambda[2,1]^2*n^5*lambda[1,2]*l-237888*lambda[2,1]^2*n^4*lambda[1,2]*l-52920*lambda[2,2]*lambda[1,1]*lambda[1,2]-52920*lambda[2,1]*lambda[1,2]*lambda[2,2]-8820*lambda[1,2]^2*l^3+539280*lambda[2,2]^2*n^3-291060*lambda[2,2]^2*l^2*lambda[1,1]-92610*lambda[2,2]^2*l*lambda[1,1]+767956*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[4]:=-(2*n+5)*(2*n+3)*(5+l+2*n)*(4+l+2*n)*(2*l-1+2*n)*(-26460*lambda[2,1]*lambda[1,2]*l-26460*lambda[2,2]*l*lambda[1,1]-39690*lambda[2,1]*lambda[1,2]-39690*lambda[2,2]*lambda[1,1]+238140*lambda[1,2]^2*l*lambda[2,1]-133056*lambda[2,1]^2*n*lambda[1,2]-8960*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+142080*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+264960*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2+1593424*n*lambda[2,2]^2*lambda[1,1]^2*l+2584320*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-26460*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+3840*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+23040*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+26880*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4-117936*n*lambda[2,2]*lambda[1,1]^2*l-107520*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+479680*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+15360*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3-1112832*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+1428480*n^5*lambda[2,2]^2*lambda[1,1]^2+69552*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+6048*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+21168*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+117936*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-2856960*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-7680*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+1515696*lambda[2,2]^2*n^2*lambda[1,1]*l+417200*n*lambda[2,2]^2*lambda[1,1]^2*l^3+1302672*n*lambda[2,2]^2*lambda[1,1]^2*l^2-513744*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+26460*lambda[1,2]*l*lambda[1,1]-52920*lambda[2,1]^2*lambda[1,2]*l+61440*lambda[1,2]^2*n^7*lambda[2,1]^2+1428480*lambda[1,2]^2*n^5*lambda[2,1]^2+2887072*lambda[1,2]^2*n^4*lambda[2,1]^2+3840*lambda[1,2]^2*n^8*lambda[2,1]^2+405760*lambda[1,2]^2*n^6*lambda[2,1]^2+634368*lambda[1,2]^2*n*lambda[2,1]-130032*lambda[2,1]^2*n^2*lambda[1,2]+61440*n^7*lambda[2,2]^2*lambda[1,1]^2+3840*n^8*lambda[2,2]^2*lambda[1,1]^2+619584*lambda[1,2]^2*n*lambda[2,1]^2+2111248*lambda[1,2]^2*n^2*lambda[2,1]^2+3353856*lambda[1,2]^2*n^3*lambda[2,1]^2+60480*lambda[1,2]*n*lambda[1,1]-70000*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+48384*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-1237376*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-21168*n*lambda[2,2]*lambda[1,1]^2*l^2+619584*n*lambda[2,2]^2*lambda[1,1]^2-69552*n^2*lambda[2,2]*lambda[1,1]^2*l-12096*n^3*lambda[2,2]*lambda[1,1]^2*l-6048*n^2*lambda[2,2]*lambda[1,1]^2*l^2-6048*lambda[2,1]^2*n^2*l^2*lambda[1,2]-2605344*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-262080*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-6696960*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-317520*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-69552*lambda[2,1]^2*n^2*lambda[1,2]*l-238140*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+26880*lambda[1,2]^2*n^5*lambda[2,1]*l-53760*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+6048*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+69552*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-21168*lambda[2,1]^2*n*l^2*lambda[1,2]-158760*lambda[1,2]*l*lambda[2,2]-119070*lambda[1,2]*lambda[2,2]+39690*lambda[2,2]*lambda[2,1]-13230*lambda[1,1]*lambda[2,1]+197232*lambda[1,2]^2*n^2-13230*lambda[2,2]*l^2*lambda[1,1]^2+405760*n^6*lambda[2,2]^2*lambda[1,1]^2+52920*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-356832*lambda[2,2]*n*lambda[1,2]*l-497504*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-119070*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-941248*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l+52920*lambda[1,2]^2*l^3*lambda[2,1]^2+39690*lambda[2,1]*lambda[1,2]*lambda[1,1]+158760*lambda[2,2]^2*l*lambda[1,1]^2+26880*lambda[2,2]^2*n^4*lambda[1,1]*l^2-105840*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]-52920*lambda[2,2]*l*lambda[1,1]^2-18816*lambda[2,2]*n^2*lambda[1,2]*l^2-216384*lambda[2,2]*n^2*lambda[1,2]*l-238140*lambda[2,1]*lambda[1,2]*lambda[2,2]*l-145530*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]+52920*lambda[1,2]*l*lambda[1,1]*lambda[2,1]+145530*lambda[2,2]^2*l^2*lambda[1,1]^2-26460*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+26460*lambda[2,2]^2*l^2+75264*lambda[1,2]^2*n^3+15120*lambda[1,2]*n*lambda[1,1]*l+6615*lambda[2,1]^2+59535*lambda[1,2]^2+6615*lambda[1,1]^2+59535*lambda[2,2]^2+9408*lambda[2,2]^2*n^4+186816*lambda[2,2]^2*n-39690*lambda[2,2]*lambda[1,1]^2+59535*lambda[2,2]^2*lambda[1,1]^2-26880*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-262080*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l-47040*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+117936*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+21168*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-1515696*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+178416*lambda[2,2]^2*n*l+197232*lambda[2,2]^2*n^2-8573856*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-5585184*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+9408*lambda[1,2]^2*n^4-52920*lambda[1,2]*l^2*lambda[2,2]-130032*n^2*lambda[2,2]*lambda[1,1]^2-30720*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+133056*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+1112832*lambda[1,2]^2*n^3*lambda[2,1]+8960*lambda[1,2]^2*n^6*lambda[2,1]+1237376*lambda[1,2]^2*n^2*lambda[2,1]+178416*lambda[1,2]^2*n*l-6707712*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+107520*lambda[1,2]^2*n^5*lambda[2,1]-2342400*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+186816*lambda[1,2]^2*n-15120*n*lambda[2,2]*lambda[1,1]*l-634368*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+503664*lambda[2,2]^2*n*l^2*lambda[1,1]-117936*lambda[2,1]^2*n*lambda[1,2]*l-503664*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+130032*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-1053248*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l+503664*lambda[1,2]^2*n*lambda[2,1]*l^2+1053248*lambda[2,2]^2*n*l*lambda[1,1]-15120*n^2*lambda[2,1]*lambda[1,2]-13230*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-15120*n^2*lambda[2,2]*lambda[1,1]-60480*n*lambda[2,1]*lambda[1,2]+119070*lambda[2,2]^2*lambda[1,1]+497504*lambda[1,2]^2*n^4*lambda[2,1]-26880*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-1239168*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+158760*lambda[1,2]^2*l*lambda[2,1]^2+634368*lambda[2,2]^2*n*lambda[1,1]+60480*lambda[2,2]*n*lambda[2,1]+39690*lambda[1,2]*lambda[1,1]-46080*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+1053248*lambda[1,2]^2*n*lambda[2,1]*l+48384*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]+45360*n*lambda[2,2]^2*lambda[1,1]^2*l^4+4286928*lambda[1,2]^2*n^2*lambda[2,1]^2*l+2792592*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-37632*lambda[2,2]*n^3*lambda[1,2]*l+26880*lambda[2,2]^2*n^5*lambda[1,1]*l+211200*n^6*lambda[2,2]^2*lambda[1,1]^2*l+15360*n^7*lambda[2,2]^2*lambda[1,1]^2*l+5221184*n^3*lambda[2,2]^2*lambda[1,1]^2*l+2792592*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+3348480*n^4*lambda[2,2]^2*lambda[1,1]^2*l+1171200*n^5*lambda[2,2]^2*lambda[1,1]^2*l-959360*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-503664*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]-1053248*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-201600*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+941248*lambda[1,2]^2*n^3*lambda[2,1]*l-1237376*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+23040*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+262080*lambda[1,2]^2*n^4*lambda[2,1]*l+26880*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+262080*lambda[2,2]^2*n^4*lambda[1,1]*l+513744*lambda[1,2]^2*n^2*lambda[2,1]*l^2+70000*lambda[1,2]^2*n*lambda[2,1]*l^3+130032*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+15360*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+1185120*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+479680*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+32928*lambda[1,2]^2*n*l^2+45360*lambda[1,2]^2*n*lambda[2,1]^2*l^4+417200*lambda[1,2]^2*n*lambda[2,1]^2*l^3+941248*lambda[2,2]^2*n^3*lambda[1,1]*l+108192*lambda[1,2]^2*n^2*l+9408*lambda[1,2]^2*n^2*l^2+18816*lambda[1,2]^2*n^3*l-1515696*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+709680*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-70000*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+15120*lambda[1,2]*n^2*lambda[1,1]-6048*n^4*lambda[2,2]*lambda[1,1]^2-373632*lambda[2,2]*n*lambda[1,2]+211200*lambda[1,2]^2*n^6*lambda[2,1]^2*l+1171200*lambda[1,2]^2*n^5*lambda[2,1]^2*l+1302672*lambda[1,2]^2*n*lambda[2,1]^2*l^2+60000*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+201600*lambda[1,2]^2*n^3*lambda[2,1]*l^2-634368*lambda[1,2]*n*lambda[2,2]*lambda[1,1]+26460*lambda[2,1]*l*lambda[2,2]+145530*lambda[1,2]^2*l^2*lambda[2,1]^2-497504*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-107520*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-8960*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]-4222496*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]-1112832*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+15360*lambda[1,2]^2*n^7*lambda[2,1]^2*l-8960*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+1593424*lambda[1,2]^2*n*lambda[2,1]^2*l+3840*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+2584320*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2+5221184*lambda[1,2]^2*n^3*lambda[2,1]^2*l+26880*lambda[1,2]^2*n^4*lambda[2,1]*l^2+8960*lambda[1,2]^2*n^3*lambda[2,1]*l^3+47040*lambda[2,2]^2*n^2*l^3*lambda[1,1]-145530*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+8960*lambda[2,2]^2*n^3*lambda[1,1]*l^3+1237376*lambda[2,2]^2*n^2*lambda[1,1]+2111248*n^2*lambda[2,2]^2*lambda[1,1]^2-18816*lambda[2,2]*n^4*lambda[1,2]+12096*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l+145530*lambda[1,2]^2*l^2*lambda[2,1]+108192*lambda[2,2]^2*n^2*l+18816*lambda[2,2]^2*n^3*l-394464*lambda[2,2]*n^2*lambda[1,2]-150528*lambda[2,2]*n^3*lambda[1,2]+32928*lambda[2,2]^2*n*l^2+59535*lambda[2,1]^2*lambda[1,2]^2+15120*lambda[2,2]*n^2*lambda[2,1]-60480*n*lambda[2,2]*lambda[1,1]+6615*lambda[2,2]^2*l^4*lambda[1,1]^2+12096*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-6048*lambda[2,1]^2*n^4*lambda[1,2]-48384*lambda[2,1]^2*n^3*lambda[1,2]+119070*lambda[2,1]*lambda[1,2]^2+13230*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]+201600*lambda[2,2]^2*n^3*lambda[1,1]*l^2-48384*n^3*lambda[2,2]*lambda[1,1]^2+3353856*n^3*lambda[2,2]^2*lambda[1,1]^2-133056*n*lambda[2,2]*lambda[1,1]^2-2370240*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-284160*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+13230*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+9408*lambda[2,2]^2*n^2*l^2-26880*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]+39690*lambda[2,2]*lambda[1,1]*lambda[2,1]-15120*n*lambda[2,1]*lambda[1,2]*l-12096*lambda[2,1]^2*n^3*lambda[1,2]*l-422400*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-3186848*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-291060*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-47040*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-90720*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-529920*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-513744*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]+26460*lambda[1,2]^2*l^3*lambda[2,1]-941248*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-26880*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-1419360*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-120000*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+6615*lambda[1,2]^2*l^4*lambda[2,1]^2+2887072*n^4*lambda[2,2]^2*lambda[1,1]^2+1112832*lambda[2,2]^2*n^3*lambda[1,1]+264960*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+47040*lambda[1,2]^2*n^2*lambda[2,1]*l^3+79380*lambda[1,2]^2*l+26460*lambda[1,2]^2*l^2+79380*lambda[2,2]^2*l-39690*lambda[2,1]^2*lambda[1,2]-8960*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+6048*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-834400*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+142080*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+1515696*lambda[1,2]^2*n^2*lambda[2,1]*l+3348480*lambda[1,2]^2*n^4*lambda[2,1]^2*l+133056*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+6048*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-811520*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-122880*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-7680*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-201600*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-5774144*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-10442368*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+26460*lambda[2,2]^2*l^3*lambda[1,1]+8960*lambda[2,2]^2*n^6*lambda[1,1]-5168640*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-30720*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+52920*lambda[2,2]^2*l^3*lambda[1,1]^2+107520*lambda[2,2]^2*n^5*lambda[1,1]+497504*lambda[2,2]^2*n^4*lambda[1,1]+709680*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+60000*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+4286928*n^2*lambda[2,2]^2*lambda[1,1]^2*l+1185120*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-65856*lambda[2,2]*n*lambda[1,2]*l^2+15120*lambda[2,2]*n*lambda[2,1]*l+70000*lambda[2,2]^2*n*l^3*lambda[1,1]-119070*lambda[2,2]*lambda[1,1]*lambda[1,2]-119070*lambda[2,1]*lambda[1,2]*lambda[2,2]-13230*lambda[2,1]^2*l^2*lambda[1,2]+75264*lambda[2,2]^2*n^3+145530*lambda[2,2]^2*l^2*lambda[1,1]+238140*lambda[2,2]^2*l*lambda[1,1]+513744*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  

Case(ii) α = 12

The ‘starting’ functions are given by

       l+1       3           3            2     2         2                                                       2                                        2                 2                                  2 2       3 2       2 2       3 2       3      3         2         2          2         2      2 2         2      2 2          2            2        2        2             2     4             4        2 4         4        4         4         2    2
Ψ1 = 4r   (21λ2,2l λ1,1- 21λ2,1l λ1,2- 161λ2,1l λ1,2- lλ1,1+λ2,1l- 531λ2,1λ1,2l+531λ2,2lλ1,1- 42λ1,1- 294 λ1,2- 13λ1,1l- 33λ1,2l- 175λ1,2l+42 λ2,1+294 λ2,2+13 

c[1] = 8n(n + 1)(2n + 2 + l)(l + 2n + 3)(n + 5 + l)(-207900λ2,1λ1,2l - 207900λ2,21,1 + 103950λ2,1λ1,2 + 103950λ2,2λ1,1 - 109620λ1,22 2,1 + 71280λ2,12 1,2 - 48384λ2,2n6λ 2,1λ1,2 + 241920n4λ 2,22λ 1,12l3 + 456960n5λ 2,22λ 1,12l2 - 325472nλ 2,22λ 1,12l + 1214528n3λ 2,22λ 1,12l2 + 3780λ 1,2l3λ 2,2λ1,1 + 8960n4λ 2,22λ 1,12l4 + 53760n6λ 2,22λ 1,12l2 + 44800n3λ 2,22λ 1,12l4 - 332640 2,2λ1,12l - 435456λ 2,2n5λ 2,1λ1,2 + 496832n3λ 2,22λ 1,12l3 + 35840n5λ 2,22λ 1,12l3
- 855360λ2,2n3λ 2,1λ1,2 + 822528n5λ 2,22λ 1,12 + 403920λ 1,2n2λ 2,1λ1,1l + 47520λ1,2n2λ 2,1λ1,1l2 + 118800λ 1,21,1l2λ 2,1 + 332640λ1,21,12,1 - 1645056λ1,2n5λ 2,1λ2,2λ1,1 - 17920λ1,2n8λ 2,1λ2,2λ1,1 + 915408λ2,22n2λ 1,1l - 179872nλ2,22λ 1,12l3 - 635648nλ 2,22λ 1,12l2 - 1161648λ 2,2n2λ 2,1l2λ 1,2 + 207900λ1,21,1 + 83160λ2,12λ 1,2l + 107520λ1,22n7λ 2,12 + 822528λ 1,22n5λ 2,12 + 251040λ 1,22n4λ 2,12 + 8960λ 1,22n8λ 2,12 + 467712λ 1,22n6λ 2,12
- 241056λ1,22 2,1 - 403920λ2,12n2λ 1,2 + 107520n7λ 2,22λ 1,12 + 8960n8λ 2,22λ 1,12 + 114672λ 1,22nλ 2,12 - 315152λ 1,22n2λ 2,12 - 671040λ 1,22n3λ 2,12 + 498960λ 1,21,1 - 148176λ2,22,1l3λ 1,2
+ 285120λ2,1n3λ 2,2λ1,1 + 756864λ2,2n2λ 2,1λ1,2 - 1188002,2λ1,12l2 + 114672nλ 2,22λ 1,12 - 403920n2λ 2,2λ1,12l - 95040n3λ 2,2λ1,12l - 47520n2λ 2,2λ1,12l2 - 47520λ 2,12n2l2λ 1,2 + 1271296λ1,22,2l2λ 1,1λ2,1 - 1052352λ1,2n4λ 2,2λ1,1l - 3594752λ1,2n4λ 2,1λ2,2λ1,1l - 105840λ1,22,2λ1,1λ2,1 - 403920λ2,12n2λ 1,2l + 109620λ1,22,2λ1,1 + 145152λ1,22n5λ 2,1l - 89600λ1,2n3λ 2,1λ2,2l4λ 1,1 + 47520λ2,1n2λ 2,2l2λ 1,1 + 403920λ2,1n2λ 2,21,1 - 118800λ2,12nl2λ 1,2 + 325080λ1,22,2 - 111510λ1,2λ2,2 - 103950λ2,2λ2,1 - 187110λ1,1λ2,1 + 585360λ1,22n2 - 20790λ 2,2l2λ 1,12 + 467712n6λ 2,22λ 1,12 - 83160λ 2,21,1λ2,1 - 937440λ2,21,2l - 1231200λ2,2n4λ 2,1λ1,2 - 111510λ2,1λ1,2λ2,2λ1,1 - 2244672λ2,2n3λ 2,1λ1,2l - 83160λ1,22l3λ 2,12
- 103950λ2,1λ1,2λ1,1 + 52920λ2,22lλ 1,12 + 145152λ 2,22n4λ 1,1l2 + 166320λ 1,2l3λ 2,2λ1,1λ2,1 + 83160λ2,2lλ1,12 - 155520λ 2,2n2λ 1,2l2 - 1321920λ 2,2n2λ 1,2l + 109620λ2,1λ1,2λ2,2l + 224910λ1,2l2λ 2,2λ1,1 - 83160λ1,21,1λ2,1 - 73710λ2,22l2λ 1,12 + 3780λ 2,1l3λ 1,2λ2,2 + 102060λ2,22l2 + 466560λ 1,22n3 + 166320λ 1,21,1l + 93555λ2,12 + 55755λ 1,22 + 93555λ 1,12 + 55755λ 2,22 + 77760λ 2,22n4 - 343440λ 2,22n + 103950λ 2,2λ1,12 + 55755λ 2,22λ 1,12 - 145152λ 2,2n5λ 2,1λ1,2l - 1052352λ2,2n4λ 2,1λ1,2l - 181440λ2,2n2λ 2,1l3λ 1,2 + 332640λ2,12,21,1
+ 118800λ2,12,2l2λ 1,1 - 915408λ2,2n2λ 2,1λ1,2l + 468720λ2,22nl + 585360λ 2,22n2 + 2326432λ 1,2n2λ 2,1λ2,21,1 + 508832λ1,2n2λ 2,1λ2,2l2λ 1,1 + 77760λ1,22n4 - 204120λ 1,2l2λ 2,2 - 403920n2λ 2,2λ1,12 - 71680λ 1,2n5λ 2,1λ2,2λ1,1l3 - 71280λ 2,12,2λ1,1 + 855360λ1,22n3λ 2,1 + 48384λ1,22n6λ 2,1 - 756864λ1,22n2λ 2,1 + 468720λ1,22nl + 1342080λ 1,2n3λ 2,1λ2,2λ1,1
+ 435456λ1,22n5λ 2,1 - 2644992λ1,2n5λ 2,1λ2,2λ1,1l - 343440λ1,22n - 166320 2,2λ1,1l + 241056λ2,22,1λ1,2 + 177984λ2,22nl2λ 1,1 - 332640λ2,12 1,2l - 177984λ2,22,1l2λ 1,2 + 403920λ2,1n2λ 2,2λ1,1 + 879984λ2,22,1λ1,2l + 177984λ1,22 2,1l2 - 879984λ 2,22nlλ 1,1 - 166320n2λ 2,1λ1,2 + 24570λ1,2l4λ 2,2λ1,1λ2,1 - 166320n2λ 2,2λ1,1 - 4989602,1λ1,2 + 111510λ2,22λ 1,1
+ 1231200λ1,22n4λ 2,1 - 145152λ1,2n4λ 2,2λ1,1l2 - 229344λ 1,22,2λ1,1λ2,1 + 52920λ1,22lλ 2,12 - 241056λ 2,22 1,1 + 498960λ2,22,1 - 103950λ1,2λ1,1 - 107520λ1,2n6λ 2,1λ2,2λ1,1l2 - 879984λ 1,22 2,1l + 285120λ1,2n3λ 2,1λ1,1 - 2800nλ2,22λ 1,12l4 - 1163216λ 1,22n2λ 2,12l - 254416λ 1,22n2λ 2,12l2 - 311040λ 2,2n3λ 1,2l + 145152λ2,22n5λ 1,1l + 367360n6λ 2,22λ 1,12l + 35840n7λ 2,22λ 1,12l + 158016n3λ 2,22λ 1,12l - 254416n2λ 2,22λ 1,12l2 + 1797376n4λ 2,22λ 1,12l + 1322496n5λ 2,22λ 1,12l - 993664λ 1,2n3λ 2,1λ2,2l3λ 1,1 - 177984λ1,22,2l2λ 1,1 + 879984λ1,22,21,1 - 798336λ2,2n3λ 2,1l2λ 1,2 + 2244672λ1,22n3λ 2,1l
+ 756864λ1,2n2λ 2,2λ1,1 + 53760λ1,22n6λ 2,12l2 + 1052352λ 1,22n4λ 2,1l + 44800λ1,22n3λ 2,12l4 + 1052352λ 2,22n4λ 1,1l + 1161648λ1,22n2λ 2,1l2 + 148176λ 1,22 2,1l3 + 403920λ 1,2n2λ 2,1λ1,1 + 35840λ1,22n5λ 2,12l3 + 1296736λ 1,22n4λ 2,12l2 + 496832λ 1,22n3λ 2,12l3 + 194400λ 1,22nl2 - 2800λ 1,22nλ 2,12l4 - 179872λ 1,22nλ 2,12l3 + 2244672λ 2,22n3λ 1,1l + 660960λ1,22n2l + 77760λ 1,22n2l2 + 155520λ 1,22n3l - 915408λ 1,2n2λ 2,2λ1,1l + 236880λ1,22n2λ 2,12l3
- 148176λ1,22,2l3λ 1,1 + 166320λ1,2n2λ 1,1 - 47520n4λ 2,2λ1,12 + 686880λ 2,21,2 + 367360λ1,22n6λ 2,12l + 1322496λ 1,22n5λ 2,12l - 635648λ 1,22nλ 2,12l2 + 54880λ 1,22n2λ 2,12l4 + 798336λ 1,22n3λ 2,1l2 + 241056λ 1,22,2λ1,1 + 207900λ2,12,2 - 73710λ1,22l2λ 2,12 - 1231200λ 1,2n4λ 2,2λ1,1 - 435456λ1,2n5λ 2,2λ1,1 - 48384λ1,2n6λ 2,2λ1,1 + 630304λ1,2n2λ 2,1λ2,2λ1,1 - 855360λ1,2n3λ 2,2λ1,1 + 35840λ1,22n7λ 2,12l - 48384λ 1,2n3λ 2,2λ1,1l3
- 325472λ1,22nλ 2,12l + 8960λ 1,22n4λ 2,12l4 + 1214528λ 1,22n3λ 2,12l2 + 158016λ 1,22n3λ 2,12l + 145152λ 1,22n4λ 2,1l2 + 48384λ 1,22n3λ 2,1l3 + 181440λ 2,22n2l3λ 1,1 + 224910λ2,1λ1,2λ2,2l2 + 48384λ 2,22n3λ 1,1l3 - 756864λ 2,22n2λ 1,1 - 315152n2λ 2,22λ 1,12 - 155520λ 2,2n4λ 1,2 + 95040λ1,2n3λ 2,1λ1,1l - 224910λ1,22l2λ 2,1 + 660960λ2,22n2l + 155520λ 2,22n3l - 1170720λ 2,2n2λ 1,2 - 933120λ2,2n3λ 1,2 + 194400λ2,22nl2 + 55755λ 2,12λ 1,22 + 166320λ 2,2n2λ 2,1 - 4989602,2λ1,1 - 12285λ2,22l4λ 1,12 + 95040λ 2,1n3λ 2,2λ1,1l - 47520λ2,12n4λ 1,2 - 285120λ2,12n3λ 1,2 + 111510λ2,1λ1,22 + 20790λ 2,2l2λ 1,1λ2,1 + 798336λ2,22n3λ 1,1l2 - 285120n3λ 2,2λ1,12
- 671040n3λ 2,22λ 1,12 + 71280 2,2λ1,12 - 2593472λ 1,2n4λ 2,1λ2,2l2λ 1,1 - 483840λ1,2n4λ 2,1λ2,2l3λ 1,1 + 20790λ1,2l2λ 1,1λ2,1 + 77760λ2,22n2l2 - 145152λ 2,2n4λ 2,1l2λ 1,2 - 103950λ2,2λ1,1λ2,1 - 1663202,1λ1,2l - 95040λ2,12n3λ 1,2l - 734720λ1,2n6λ 2,1λ2,2λ1,1l + 650944λ1,22,21,1λ2,1 + 147420λ1,2l2λ 2,2λ1,1λ2,1 - 181440λ1,2n2λ 2,2l3λ 1,1 + 5600λ1,22,2l4λ 1,1λ2,1 - 913920λ1,2n5λ 2,1λ2,2λ1,1l2 - 1161648λ 1,2n2λ 2,2l2λ 1,1
- 3780λ1,22l3λ 2,1 - 2244672λ1,2n3λ 2,2λ1,1l - 145152λ1,2n5λ 2,2λ1,1l - 473760λ1,2n2λ 2,1λ2,2l3λ 1,1 - 109760λ1,2n2λ 2,1λ2,2l4λ 1,1 - 12285λ1,22l4λ 2,12 + 251040n4λ 2,22λ 1,12 + 855360λ 2,22n3λ 1,1 + 456960λ1,22n5λ 2,12l2 + 181440λ 1,22n2λ 2,1l3 - 162540λ 1,22l + 102060λ 1,22l2 - 162540λ 2,22l + 103950λ 2,12λ 1,2 - 48384λ2,2n3λ 2,1l3λ 1,2 + 47520λ2,1n4λ 2,2λ1,1 + 359744λ1,22,2l3λ 1,1λ2,1 + 241920λ1,22n4λ 2,12l3 + 915408λ 1,22n2λ 2,1l
+ 1797376λ1,22n4λ 2,12l - 71280λ 1,21,1λ2,1 + 47520λ1,2n4λ 2,1λ1,1 - 935424λ1,2n6λ 2,1λ2,2λ1,1 - 215040λ1,2n7λ 2,1λ2,2λ1,1 - 17920λ1,2n4λ 2,1λ2,2l4λ 1,1 - 798336λ1,2n3λ 2,2λ1,1l2 - 502080λ 1,2n4λ 2,1λ2,2λ1,1 - 316032λ1,2n3λ 2,1λ2,21,1 - 3780λ2,22l3λ 1,1 + 48384λ2,22n6λ 1,1
- 2429056λ1,2n3λ 2,1λ2,2l2λ 1,1 - 71680λ1,2n7λ 2,1λ2,2λ1,1l - 83160λ2,22l3λ 1,12 + 435456λ 2,22n5λ 1,1 + 1231200λ2,22n4λ 1,1 + 236880n2λ 2,22λ 1,12l3 + 54880n2λ 2,22λ 1,12l4 - 1163216n2λ 2,22λ 1,12l + 1296736n4λ 2,22λ 1,12l2 - 388800λ 2,21,2l2 + 166320λ 2,22,1l + 148176λ2,22nl3λ 1,1 - 111510λ2,2λ1,1λ1,2 - 111510λ2,1λ1,2λ2,2 - 20790λ2,12l2λ 1,2 + 466560λ2,22n3 - 224910λ 2,22l2λ 1,1 - 109620λ2,22 1,1 + 1161648λ2,22n2l2λ 1,1)
c[2] = -12(2n + 2 + l)n(5 + l + 2n)(-1247400λ2,1l2λ 1,2 - 5862780λ2,1λ1,2l - 5862780λ2,21,1 - 1247400λ2,2l2λ 1,1 - 2432430λ2,1λ1,2 - 2432430λ2,2λ1,1 - 1626912λ2,2n2λ 2,1l4λ 1,2 - 9809100λ1,22 2,1 + 484110λ2,12 1,2 - 285120n5λ 2,2λ1,12l - 10977984λ 2,2n6λ 2,1λ1,2 + 31480288n4λ 2,22λ 1,12l3 + 57050336n5λ 2,22λ 1,12l2 - 20762802nλ 2,22λ 1,12l + 52931792n3λ 2,22λ 1,12l2 - 1079064λ 2,22,1l4λ 1,2
+ 4573800λ2,2n2λ 2,1l + 1412460λ1,2l3λ 2,2λ1,1 + 4149824n4λ 2,22λ 1,12l4 + 18042304n6λ 2,22λ 1,12l2 + 7187488n3λ 2,22λ 1,12l4 + 89600n6λ 2,22λ 1,12l4 + 89600n9λ 2,22λ 1,12l - 10987020 2,2λ1,12l - 37098720λ 2,2n5λ 2,1λ1,2 + 34186416n3λ 2,22λ 1,12l3 + 12753216n5λ 2,22λ 1,12l3 + 1012480n5λ 2,22λ 1,12l4 + 2437120n6λ 2,22λ 1,12l3 - 39494592λ 2,2n3λ 2,1λ1,2 + 196560λ1,2l5λ 2,2λ1,1λ2,1 + 41644320n5λ 2,22λ 1,12 + 387072λ 2,22n7 1,1 + 20338560λ1,2n2λ 2,1λ1,1l + 554400λ1,2n2λ 2,1λ1,1l3 + 6575580λ 1,2n2λ 2,1λ1,1l2 + 155520λ 1,22n6
- 734720λ1,2n9λ 2,1λ2,2λ1,1 + 6253830λ1,21,1l2λ 2,1 + 10987020λ1,21,12,1 - 866880λ1,2n2λ 2,1λ2,2l5λ 1,1 - 83288640λ1,2n5λ 2,1λ2,2λ1,1 - 6225408λ1,2n8λ 2,1λ2,2λ1,1 + 42271416λ2,22n2λ 1,1l - 12407092nλ2,22λ 1,12l3 - 30339838nλ 2,22λ 1,12l2 + 665280λ 2,2n3λ 2,1l - 1628928λ2,2n7λ 2,1λ1,2 - 56317140λ2,2n2λ 2,1l2λ 1,2 + 5862780λ1,21,1 + 1995840λ2,12λ 1,2l - 2024960λ1,2n5λ 2,1λ2,2λ1,1l4 - 179200λ 1,2n6λ 2,1λ2,2λ1,1l4 + 13918464λ 1,22n7λ 2,12
- 35840λ1,2n5λ 2,1λ2,2λ1,1l5 - 5604480λ 1,2n6λ 2,2λ1,1l + 41644320λ1,22n5λ 2,12 + 8742656λ 1,22n4λ 2,12 + 3112704λ 1,22n8λ 2,12 + 34274112λ 1,22n6λ 2,12 - 18568170λ 1,22 2,1 + 367360n9λ 2,22λ 1,12 - 13953060λ 2,12n2λ 1,2 + 13918464n7λ 2,22λ 1,12 + 3112704n8λ 2,22λ 1,12 + 4636395λ 1,22nλ 2,12 - 19969002λ 1,22n2λ 2,12 - 29832304λ 1,22n3λ 2,12 + 13866930λ 1,21,1 + 2360160λ2,1n3λ 2,2l2λ 1,1 + 95040λ2,1n3λ 2,2l3λ 1,1 - 7055136λ2,22,1l3λ 1,2 + 14929200λ2,1n3λ 2,2λ1,1 + 27720λ2,1l4λ 1,2λ2,2 - 332640n2λ 2,2λ1,1l2 + 14526324λ 2,2n2λ 2,1λ1,2 - 3057120n4λ 2,2λ1,12l - 6253830 2,2λ1,12l2 - 580608λ 2,2n6λ 2,1l2λ 1,2 + 4636395nλ2,22λ 1,12
- 20338560n2λ 2,2λ1,12l - 12109680n3λ 2,2λ1,12l - 285120n4λ 2,2λ1,12l2 - 2360160n3λ 2,2λ1,12l2 - 6575580n2λ 2,2λ1,12l2 - 6575580λ 2,12n2l2λ 1,2 - 717696λ2,2n3λ 2,1l4λ 1,2 + 60679676λ1,22,2l2λ 1,1λ2,1 - 3782016λ2,2n4λ 2,1l3λ 1,2 - 86714784λ1,2n4λ 2,2λ1,1l - 387072λ1,2n7λ 2,21,1 + 95040λ1,2n6λ 2,1λ1,1 - 173706304λ1,2n4λ 2,1λ2,2λ1,1l - 5171040λ1,22,2λ1,1λ2,1 - 20338560λ2,12n2λ 1,2l + 9809100λ1,22,2λ1,1 + 387072λ1,22n7λ 2,1l + 2437120λ1,22n6λ 2,12l3 + 31712256λ 1,22n5λ 2,1l + 5604480λ1,22n6λ 2,1l - 933120λ2,2n4λ 1,2l2 - 14374976λ 1,2n3λ 2,1λ2,2l4λ 1,1 - 98280λ1,22l5λ 2,12 + 6575580λ 2,1n2λ 2,2l2λ 1,1 + 20338560λ2,1n2λ 2,21,1
- 6253830λ2,12nl2λ 1,2 + 155520λ2,22n3l3 - 1338120λ 1,22,2 + 907200λ2,22n2l3 + 498960λ 1,12l + 187110λ 2,12n2 + 2364390λ 1,2λ2,2 + 2432430λ2,2λ2,1 - 4303530λ1,1λ2,1 + 22648950λ1,22n2 + 1500120λ 2,22nl3 - 367290λ 2,2l2λ 1,12 - 27720λ 2,22l4λ 1,1 + 34274112n6λ 2,22λ 1,12 - 1995840λ 2,21,1λ2,1 - 933120λ2,2n5λ 1,2l - 37896660λ2,21,2l - 62703072λ2,2n4λ 2,1λ1,2 - 7796250λ2,1λ1,2λ2,2λ1,1 - 311040λ2,2n3λ 1,2l3 - 110923056λ 2,2n3λ 2,1λ1,2l - 4190760λ1,22l3λ 2,12 + 1247400λ 2,2l2λ 2,1 - 5550930λ2,1λ1,2λ1,1 + 2585520λ2,22lλ 1,12 + 32117472λ 2,22n4λ 1,1l2 + 285120λ 2,1n5λ 2,2λ1,1l + 8381520λ1,2l3λ 2,2λ1,1λ2,1 + 1995840λ2,2lλ1,12 - 21489840λ 2,2n2λ 1,2l2 - 64854000λ 2,2n2λ 1,2l
- 10005120λ2,2n4λ 1,2l + 717696λ2,22n3λ 1,1l4 - 1814400λ 2,2n2λ 1,2l3 - 7724160λ 2,2n3λ 1,2l2 + 9809100λ 2,1λ1,2λ2,2l + 7559370λ1,2l2λ 2,2λ1,1 - 95040n6λ 2,2λ1,12 + 17920n10λ 2,22λ 1,12 + 96768λ 2,22n4λ 1,1l4 - 1995840λ 1,21,1λ2,1 - 4452210λ2,22l2λ 1,12 + 1412460λ 2,1l3λ 1,2λ2,2 + 27720λ1,2l4λ 2,2λ1,1 + 2047680λ1,22n5 + 680400λ 2,22l3 + 3050460λ 2,22l2 + 498960λ 2,12l + 23718960λ 1,22n3 + 9979200λ 1,21,1l + 665280λ1,2n3λ 1,1l + 2151765λ2,12 - 1182195λ 1,22 + 2151765λ 1,12 - 1182195λ 2,22
+ 155520λ2,22n6 + 10268640λ 2,22n4 + 2047680λ 2,22n5 + 3153195λ 2,22n + 5550930λ 2,2λ1,12 + 3898125λ 2,22λ 1,12 - 5604480λ 2,2n6λ 2,1λ1,2l - 31712256λ2,2n5λ 2,1λ1,2l - 86714784λ2,2n4λ 2,1λ1,2l + 3057120λ2,1n4λ 2,2λ1,1l - 17968104λ2,2n2λ 2,1l3λ 1,2 + 10987020λ2,12,21,1 + 6253830λ2,12,2l2λ 1,1 - 42271416λ2,2n2λ 2,1λ1,2l + 96768λ2,22n8λ 1,1 + 18948330λ2,22nl + 907200λ 1,22n2l3 + 1500120λ 1,22nl3 - 387072λ 2,2n7λ 2,1λ1,2l + 22648950λ2,22n2 + 107547904λ 1,2n2λ 2,1λ2,21,1 + 42159000λ1,2n2λ 2,1λ2,2l2λ 1,1 + 10268640λ1,22n4 - 1360800λ 1,2l3λ 2,2 - 6100920λ1,2l2λ 2,2
- 2182950λ2,11,1 - 1413720λ2,1l2λ 1,2n - 13953060n2λ 2,2λ1,12 - 332640n4λ 2,1λ1,2 - 25506432λ1,2n5λ 2,1λ2,2λ1,1l3 + 285120λ 1,2n5λ 2,1λ1,1l - 484110λ2,12,2λ1,1 + 39494592λ1,22n3λ 2,1 + 10977984λ1,22n6λ 2,1 + 367360λ1,22n9λ 2,12 - 14526324λ 1,22n2λ 2,1 + 18948330λ1,22nl - 4874240λ 1,2n6λ 2,1λ2,2λ1,1l3 + 59664608λ 1,2n3λ 2,1λ2,2λ1,1 + 1628928λ1,22n7λ 2,1 + 37098720λ1,22n5λ 2,1 - 3261440λ1,2n8λ 2,1λ2,2λ1,1l - 188158336λ1,2n5λ 2,1λ2,2λ1,1l + 96768λ1,22n8λ 2,1 + 3153195λ1,22n - 9979200 2,2λ1,1l + 18568170λ2,22,1λ1,2 + 5789034λ2,22nl2λ 1,1 - 10987020λ2,12 1,2l - 5789034λ2,22,1l2λ 1,2 + 13953060λ2,1n2λ 2,2λ1,1 + 22689864λ2,22,1λ1,2l + 5789034λ1,22 2,1l2 - 22689864λ 2,22nlλ 1,1 - 10769220n2λ 2,1λ1,2 - 3160080n3λ 2,2λ1,1 - 332640n4λ 2,2λ1,1 + 2298870λ1,2l4λ 2,2λ1,1λ2,1 - 10769220n2λ 2,2λ1,1 - 138669302,1λ1,2 + 2715930λ2,22λ 1,1 + 62703072λ1,22n4λ 2,1 + 17920λ1,22n10λ 2,12 + 155520λ 1,22n3l3 + 332640λ 1,2n4λ 1,1 - 32117472λ1,2n4λ 2,2λ1,1l2 - 9272790λ 1,22,2λ1,1λ2,1 + 2585520λ1,22lλ 2,12 - 18568170λ 2,22 1,1
+ 13866930λ2,22,1 + 2432430λ1,2λ1,1 - 36084608λ1,2n6λ 2,1λ2,2λ1,1l2 - 22689864λ 1,22 2,1l + 14929200λ1,2n3λ 2,1λ1,1 - 46970nλ2,22λ 1,12l5 - 1725773nλ 2,22λ 1,12l4 - 554400n2λ 2,2λ1,12l3 + 4573800λ 1,2n2λ 1,1l - 53773952λ1,22n2λ 2,12l - 21079500λ 1,22n2λ 2,12l2 - 39026880λ 2,2n3λ 1,2l - 8335802,2λ1,12l3 + 31712256λ 2,22n5λ 1,1l + 46242560n6λ 2,22λ 1,12l + 12083456n7λ 2,22λ 1,12l - 940272n3λ 2,22λ 1,12l - 21079500n2λ 2,22λ 1,12l2 + 86853152n4λ 2,22λ 1,12l + 94079168n5λ 2,22λ 1,12l + 1413720λ 1,21,1l2 + 1079064λ 1,22 2,1l4 - 68372832λ 1,2n3λ 2,1λ2,2l3λ 1,1 - 5789034λ1,22,2l2λ 1,1 + 22689864λ1,22,21,1 - 66505104λ2,2n3λ 2,1l2λ 1,2
+ 110923056λ1,22n3λ 2,1l + 1626912λ1,22n2λ 2,1l4 + 14526324λ 1,2n2λ 2,2λ1,1 + 18042304λ1,22n6λ 2,12l2 + 86714784λ 1,22n4λ 2,1l + 89600λ1,22n6λ 2,12l4 + 7187488λ 1,22n3λ 2,12l4 + 86714784λ 2,22n4λ 1,1l + 332640λ1,2n2λ 1,1l2 + 56317140λ 1,22n2λ 2,1l2 + 7055136λ 1,22 2,1l3 + 13953060λ 1,2n2λ 2,1λ1,1 + 89600λ1,22n9λ 2,12l - 96768λ 1,2n8λ 2,2λ1,1 + 12753216λ1,22n5λ 2,12l3 + 90099136λ 1,22n4λ 2,12l2 + 34186416λ 1,22n3λ 2,12l3 + 2849280λ 1,22n7λ 2,12l2 + 17920λ 1,22n5λ 2,12l5 + 179200λ 1,22n8λ 2,12l2 + 11065140λ 1,22nl2 + 466560λ 1,22n4l2 + 466560λ 1,22n5l - 46970λ 1,22nλ 2,12l5 - 1725773λ 1,22nλ 2,12l4 - 12407092λ 1,22nλ 2,12l3 + 1012480λ 1,22n5λ 2,12l4 + 110923056λ 2,22n3λ 1,1l + 32427000λ1,22n2l + 10744920λ 1,22n2l2 + 5002560λ 1,22n4l + 3862080λ 1,22n3l2 + 19513440λ 1,22n3l + 332640λ 2,2n2λ 2,1l2 + 3782016λ 2,22n4λ 1,1l3 + 833580λ 1,21,1l3λ 2,1 - 42271416λ1,2n2λ 2,2λ1,1l + 6039712λ1,22n2λ 2,12l3 - 1079064λ 1,22,2l4λ 1,1 - 7055136λ1,22,2l3λ 1,1 + 1091475λ1,12n + 10769220λ 1,2n2λ 1,1 + 3160080λ1,2n3λ 1,1 - 6367680n4λ 2,2λ1,12 - 1251360n5λ 2,2λ1,12
- 6306390λ2,21,2 - 3160080n3λ 2,1λ1,2 - 138600λ2,2l3λ 1,12 + 46242560λ 1,22n6λ 2,12l + 94079168λ 1,22n5λ 2,12l - 30339838λ 1,22nλ 2,12l2 + 3845366λ 1,22n2λ 2,12l4 + 433440λ 1,22n2λ 2,12l5 + 66505104λ 1,22n3λ 2,1l2 + 18568170λ 1,22,2λ1,1 - 98280λ2,22l5λ 1,12 + 5862780λ 2,12,2 - 4452210λ1,22l2λ 2,12 + 466560λ 2,22n4l2 + 332640λ 2,2n4λ 2,1 - 62703072λ1,2n4λ 2,2λ1,1 - 37098720λ1,2n5λ 2,2λ1,1 - 10977984λ1,2n6λ 2,2λ1,1 + 39938004λ1,2n2λ 2,1λ2,2λ1,1 + 580608λ1,22n6λ 2,1l2 + 717696λ 1,22n3λ 2,1l4 + 3782016λ 1,22n4λ 2,1l3 + 1630720λ 1,22n8λ 2,12l - 1628928λ 1,2n7λ 2,2λ1,1 - 39494592λ1,2n3λ 2,2λ1,1 + 12083456λ1,22n7λ 2,12l - 13010112λ 1,2n3λ 2,2λ1,1l3 + 179200λ 1,22n7λ 2,12l3 + 468160λ 1,22n3λ 2,12l5 - 20762802λ 1,22nλ 2,12l + 4149824λ 1,22n4λ 2,12l4 + 187110λ 1,12n2 + 387072λ 1,22n5λ 2,1l3 + 96768λ 1,22n4λ 2,1l4 + 52931792λ 1,22n3λ 2,12l2 - 940272λ 1,22n3λ 2,12l + 32117472λ 1,22n4λ 2,1l2 + 1413720λ 2,22,1l2 + 7039872λ 1,22n5λ 2,1l2
+ 13010112λ1,22n3λ 2,1l3 + 17968104λ 2,22n2l3λ 1,1 + 7559370λ2,1λ1,2λ2,2l2 + 5604480λ 2,22n6λ 1,1l + 13010112λ2,22n3λ 1,1l3 - 14526324λ 2,22n2λ 1,1 + 1091475λ2,12n + 1626912λ 2,22n2l4λ 1,1 - 19969002n2λ 2,22λ 1,12 - 20537280λ 2,2n4λ 1,2 - 311040λ2,2n6λ 1,2 - 717696λ1,2n3λ 2,2λ1,1l4 - 96768λ 1,2n4λ 2,2λ1,1l4 - 1413720λ 2,2l2λ 1,1n - 285120λ2,12n4l2λ 1,2 + 12109680λ1,2n3λ 2,1λ1,1l - 358400λ1,2n7λ 2,1λ2,2λ1,1l3
- 7559370λ1,22l2λ 2,1 + 32427000λ2,22n2l + 19513440λ 2,22n3l - 4095360λ 2,2n5λ 1,2 - 45297900λ2,2n2λ 1,2 + 554400λ2,1n2λ 2,2l3λ 1,1 - 47437920λ2,2n3λ 1,2 + 3160080λ2,2n3λ 2,1 + 11065140λ2,22nl2 + 3898125λ 2,12λ 1,22 + 2360160λ 1,2n3λ 2,1λ1,1l2 - 95040λ 2,12n6λ 1,2 + 95040λ1,2n3λ 2,1λ1,1l3 + 285120λ 2,1n4λ 2,2λ1,1l2 + 10769220λ 2,2n2λ 2,1 - 138669302,2λ1,1 - 1149435λ2,22l4λ 1,12 + 12109680λ 2,1n3λ 2,2λ1,1l - 6367680λ2,12n4λ 1,2 - 14929200λ2,12n3λ 1,2 + 1247400λ1,2l2λ 1,1 + 2715930λ2,1λ1,22 + 138600λ 1,2l3λ 1,1λ2,1 - 554400λ2,12n2l3λ 1,2 - 665280n3λ 2,2λ1,1l + 367290λ2,2l2λ 1,1λ2,1 - 2360160λ2,12n3l2λ 1,2 - 665280n3λ 2,1λ1,2l - 4573800n2λ 2,1λ1,2l
+ 66505104λ2,22n3λ 1,1l2 - 14929200n3λ 2,2λ1,12 - 29832304n3λ 2,22λ 1,12 + 484110 2,2λ1,12 - 180198272λ 1,2n4λ 2,1λ2,2l2λ 1,1 + 7039872λ2,22n5λ 1,1l2 - 62960576λ 1,2n4λ 2,1λ2,2l3λ 1,1 - 322560λ1,2n4λ 2,1λ2,2l5λ 1,1 + 387072λ2,22n5λ 1,1l3 + 367290λ 1,2l2λ 1,1λ2,1 + 138600λ2,2l3λ 1,1λ2,1 - 1251360λ2,12n5λ 1,2 + 5002560λ2,22n4l + 10744920λ 2,22n2l2 + 466560λ 2,22n5l - 32117472λ 2,2n4λ 2,1l2λ 1,2 - 27720λ1,22l4λ 2,1 - 387072λ2,2n5λ 2,1l3λ 1,2 + 580608λ2,22n6λ 1,1l2 - 95040λ 2,12n3l3λ 1,2 + 1251360λ2,1n5λ 2,2λ1,1 + 95040λ2,1n6λ 2,2λ1,1 + 3862080λ2,22n3l2 - 5550930λ 2,2λ1,1λ2,1 - 99792002,1λ1,2l - 12109680λ2,12n3λ 1,2l - 96768λ2,2n4λ 2,1l4λ 1,2
- 374220λ2,11,1l - 92485120λ1,2n6λ 2,1λ2,2λ1,1l + 187110λ2,12nl + 41525604λ 1,22,21,1λ2,1 - 179200λ1,2n9λ 2,1λ2,21,1 - 1626912λ1,2n2λ 2,2l4λ 1,1 + 8904420λ1,2l2λ 2,2λ1,1λ2,1 - 17968104λ1,2n2λ 2,2l3λ 1,1 - 5698560λ1,2n7λ 2,1λ2,2λ1,1l2 + 285120λ 1,2n4λ 2,1λ1,1l2 + 3451546λ 1,22,2l4λ 1,1λ2,1 - 358400λ1,2n8λ 2,1λ2,2λ1,1l2 - 114100672λ 1,2n5λ 2,1λ2,2λ1,1l2 - 56317140λ 1,2n2λ 2,2l2λ 1,1 - 1412460λ1,22l3λ 2,1 - 110923056λ1,2n3λ 2,2λ1,1l - 3782016λ1,2n4λ 2,2λ1,1l3 - 31712256λ 1,2n5λ 2,2λ1,1l - 12079424λ1,2n2λ 2,1λ2,2l3λ 1,1 - 7690732λ1,2n2λ 2,1λ2,2l4λ 1,1 - 374220λ2,1n2λ 1,1 - 997920λ1,12,1
- 1149435λ1,22l4λ 2,12 + 8742656n4λ 2,22λ 1,12 - 7039872λ 2,2n5λ 2,1l2λ 1,2 + 39494592λ2,22n3λ 1,1 + 57050336λ1,22n5λ 2,12l2 + 17968104λ 1,22n2λ 2,1l3 + 669060λ 1,22l + 3050460λ 1,22l2 + 669060λ 2,22l + 5550930λ 2,12λ 1,2 - 13010112λ2,2n3λ 2,1l3λ 1,2 + 6367680λ2,1n4λ 2,2λ1,1 - 138600λ2,12l3λ 1,2 + 24814184λ1,22,2l3λ 1,1λ2,1 + 31480288λ1,22n4λ 2,12l3 + 42271416λ 1,22n2λ 2,1l + 161280λ1,22n4λ 2,12l5 + 86853152λ 1,22n4λ 2,12l + 1251360λ 1,2n5λ 2,1λ1,1 - 833580λ2,12nl3λ 1,2 - 484110λ1,21,1λ2,1 + 6367680λ1,2n4λ 2,1λ1,1 - 68548224λ1,2n6λ 2,1λ2,2λ1,1 - 27836928λ1,2n7λ 2,1λ2,2λ1,1 - 332640n2λ 2,1l2λ 1,2 + 833580λ2,12,2l3λ 1,1 - 8299648λ1,2n4λ 2,1λ2,2l4λ 1,1 - 66505104λ1,2n3λ 2,2λ1,1l2 - 7039872λ 1,2n5λ 2,2λ1,1l2 - 17485312λ 1,2n4λ 2,1λ2,2λ1,1 - 35840λ1,2n10λ 2,1λ2,2λ1,1 + 1880544λ1,2n3λ 2,1λ2,21,1 - 1412460λ2,22l3λ 1,1 + 10977984λ2,22n6λ 1,1 + 1628928λ2,22n7λ 1,1 - 387072λ1,2n5λ 2,2λ1,1l3 - 580608λ 1,2n6λ 2,2λ1,1l2 + 93940λ 1,22,2l5λ 1,1λ2,1 - 105863584λ1,2n3λ 2,1λ2,2l2λ 1,1 + 3057120λ1,2n4λ 2,1λ1,1l - 936320λ1,2n3λ 2,1λ2,2l5λ 1,1 - 24166912λ1,2n7λ 2,1λ2,2λ1,1l - 4190760λ2,22l3λ 1,12 + 187110λ 1,12ln + 37098720λ 2,22n5λ 1,1 + 62703072λ2,22n4λ 1,1 - 95040n3λ 2,2λ1,12l3 + 161280n4λ 2,22λ 1,12l5 + 468160n3λ 2,22λ 1,12l5 + 17920n5λ 2,22λ 1,12l5
+ 6039712n2λ 2,22λ 1,12l3 + 3845366n2λ 2,22λ 1,12l4 + 2849280n7λ 2,22λ 1,12l2 + 179200n7λ 2,22λ 1,12l3 + 179200n8λ 2,22λ 1,12l2 - 53773952n2λ 2,22λ 1,12l + 1630720n8λ 2,22λ 1,12l + 90099136n4λ 2,22λ 1,12l2 + 433440n2λ 2,22λ 1,12l5 - 96768λ 2,2n8λ 2,1λ1,2 - 4573800n2λ 2,2λ1,1l - 3000240λ2,21,2l3 - 22130280λ 2,21,2l2 + 9979200λ 2,22,1l + 7055136λ2,22nl3λ 1,1 + 1079064λ2,22nl4λ 1,1 - 285120λ2,12n5λ 1,2l - 3057120λ2,12n4λ 1,2l - 2715930λ2,2λ1,1λ1,2 - 2715930λ2,1λ1,2λ2,2 - 367290λ2,12l2λ 1,2 + 680400λ1,22l3 + 23718960λ 2,22n3 - 7559370λ 2,22l2λ 1,1 - 9809100λ2,22 1,1 + 56317140λ2,22n2l2λ 1,1)
c[3] = 6(l + 2n + 3)(2n + 7)(6 + l + 2n)(-374220λ2,1l2λ 1,2 - 2307690λ2,1λ1,2l - 2307690λ2,21,1 - 374220λ2,2l2λ 1,1 - 2182950λ2,1λ1,2 - 2182950λ2,2λ1,1 - 1203552λ2,2n2λ 2,1l4λ 1,2 - 2058210λ1,22 2,1 - 7818030λ2,12 1,2 - 285120n5λ 2,2λ1,12l - 8720064λ 2,2n6λ 2,1λ1,2 + 25897088n4λ 2,22λ 1,12l3 + 47532576n5λ 2,22λ 1,12l2 - 9941922nλ 2,22λ 1,12l + 44400752n3λ 2,22λ 1,12l2 - 529704λ 2,22,1l4λ 1,2 + 3076920λ2,2n2λ 2,1l + 935550λ1,2l3λ 2,2λ1,1 + 3657024n4λ 2,22λ 1,12l4 + 16097984n6λ 2,22λ 1,12l2 + 5740448n3λ 2,22λ 1,12l4 + 89600n6λ 2,22λ 1,12l4 + 89600n9λ 2,22λ 1,12l - 8492220 2,2λ1,12l
- 25869600λ2,2n5λ 2,1λ1,2 + 26000336n3λ 2,22λ 1,12l3 + 11328576n5λ 2,22λ 1,12l3 + 958720n5λ 2,22λ 1,12l4 + 2311680n6λ 2,22λ 1,12l3 - 33648192λ 2,2n3λ 2,1λ1,2 + 187110λ1,2l5λ 2,2λ1,1λ2,1 + 34917600n5λ 2,22λ 1,12 + 387072λ 2,22n7 1,1 + 11190960λ1,2n2λ 2,1λ1,1l + 443520λ1,2n2λ 2,1λ1,1l3 + 4080780λ 1,2n2λ 2,1λ1,1l2 + 155520λ 1,22n6 - 698880λ 1,2n9λ 2,1λ2,2λ1,1 + 3273930λ1,21,1l2λ 2,1 + 8492220λ1,21,12,1 - 622720λ1,2n2λ 2,1λ2,2l5λ 1,1
- 69835200λ1,2n5λ 2,1λ2,2λ1,1 - 5580288λ1,2n8λ 2,1λ2,2λ1,1 + 38521656λ2,22n2λ 1,1l - 7896852nλ2,22λ 1,12l3 - 14716818nλ 2,22λ 1,12l2 + 665280λ 2,2n3λ 2,1l - 1467648λ2,2n7λ 2,1λ1,2 - 34287300λ2,2n2λ 2,1l2λ 1,2 + 2307690λ1,21,1 - 2931390λ2,12λ 1,2l - 1917440λ1,2n5λ 2,1λ2,2λ1,1l4 - 179200λ 1,2n6λ 2,1λ2,2λ1,1l4 + 11714304λ 1,22n7λ 2,12 - 35840λ 1,2n5λ 2,1λ2,2λ1,1l5 - 5040000λ 1,2n6λ 2,2λ1,1l + 34917600λ1,22n5λ 2,12
+ 19750016λ1,22n4λ 2,12 + 2790144λ 1,22n8λ 2,12 + 27500352λ 1,22n6λ 2,12 - 72630λ 1,22 2,1 + 349440n9λ 2,22λ 1,12 - 10183140λ 2,12n2λ 1,2 + 11714304n7λ 2,22λ 1,12 + 2790144n8λ 2,22λ 1,12 - 2304315λ 1,22nλ 2,12 - 4828842λ 1,22n2λ 2,12 - 249744λ 1,22n3λ 2,12 + 5758830λ 1,21,1 + 1916640λ2,1n3λ 2,2l2λ 1,1 + 95040λ2,1n3λ 2,2l3λ 1,1 - 3328056λ2,22,1l3λ 1,2 + 8387280λ2,1n3λ 2,2λ1,1 + 124740λ2,1l4λ 1,2λ2,2 - 332640n2λ 2,2λ1,1l2 - 12971916λ 2,2n2λ 2,1λ1,2 - 2502720n4λ 2,2λ1,12l - 3273930 2,2λ1,12l2 - 580608λ 2,2n6λ 2,1l2λ 1,2 - 2304315nλ2,22λ 1,12 - 11190960n2λ 2,2λ1,12l - 7785360n3λ 2,2λ1,12l - 285120n4λ 2,2λ1,12l2 - 1916640n3λ 2,2λ1,12l2 - 4080780n2λ 2,2λ1,12l2 - 4080780λ 2,12n2l2λ 1,2 - 637056λ2,2n3λ 2,1l4λ 1,2 + 29433636λ1,22,2l2λ 1,1λ2,1
- 3378816λ2,2n4λ 2,1l3λ 1,2 - 59851584λ1,2n4λ 2,2λ1,1l - 387072λ1,2n7λ 2,21,1 + 95040λ1,2n6λ 2,1λ1,1 - 146165504λ1,2n4λ 2,1λ2,2λ1,1l + 5176710λ1,22,2λ1,1λ2,1 - 11190960λ2,12n2λ 1,2l + 2058210λ1,22,2λ1,1 + 387072λ1,22n7λ 2,1l + 2311680λ1,22n6λ 2,12l3 + 25059456λ 1,22n5λ 2,1l + 5040000λ1,22n6λ 2,1l - 933120λ2,2n4λ 1,2l2 - 11480896λ 1,2n3λ 2,1λ2,2l4λ 1,1 - 93555λ1,22l5λ 2,12 + 4080780λ 2,1n2λ 2,2l2λ 1,1 + 11190960λ2,1n2λ 2,21,1 - 3273930λ2,12nl2λ 1,2 + 155520λ2,22n3l3 - 1060290λ 1,22,2 + 725760λ2,22n2l3 + 155925λ 1,12l + 187110λ 2,12n2 + 935550λ 1,2λ2,2 + 2182950λ2,2λ2,1
- 1559250λ1,1λ2,1 + 10492470λ1,22n2 + 865080λ 2,22nl3 - 810810λ 2,2l2λ 1,12 - 124740λ 2,22l4λ 1,1 + 27500352n6λ 2,22λ 1,12 + 2931390λ 2,21,1λ2,1 - 933120λ2,2n5λ 1,2l - 16532100λ2,21,2l - 40728672λ2,2n4λ 2,1λ1,2 + 935550λ2,1λ1,2λ2,2λ1,1 - 311040λ2,2n3λ 1,2l3 - 71036496λ 2,2n3λ 2,1λ1,2l - 3305610λ1,22l3λ 2,12 + 374220λ 2,2l2λ 2,1 + 2182950λ2,1λ1,2λ1,1 - 2588355λ2,22lλ 1,12 + 25162272λ 2,22n4λ 1,1l2 + 285120λ 2,1n5λ 2,2λ1,1l + 6611220λ1,2l3λ 2,2λ1,1λ2,1 - 2931390λ2,2lλ1,12 - 13325040λ 2,2n2λ 1,2l2 - 31922640λ 2,2n2λ 1,2l - 8190720λ2,2n4λ 1,2l + 637056λ2,22n3λ 1,1l4 - 1451520λ 2,2n2λ 1,2l3 - 6272640λ 2,2n3λ 1,2l2 + 2058210λ 2,1λ1,2λ2,2l + 1933470λ1,2l2λ 2,2λ1,1 - 95040n6λ 2,2λ1,12 + 17920n10λ 2,22λ 1,12 + 96768λ 2,22n4λ 1,1l4 + 2931390λ 1,21,1λ2,1
- 4553010λ2,22l2λ 1,12 + 935550λ 2,1l3λ 1,2λ2,2 + 124740λ1,2l4λ 2,2λ1,1 + 1684800λ1,22n5 + 124740λ 2,22l3 + 748440λ 2,22l2 + 155925λ 2,12l + 12016080λ 1,22n3 + 4241160λ 1,21,1l + 665280λ1,2n3λ 1,1l + 779625λ2,12 - 467775λ 1,22 + 779625λ 1,12 - 467775λ 2,22 + 155520λ 2,22n6 + 6639840λ 2,22n4 + 1684800λ 2,22n5 + 2784645λ 2,22n - 2182950λ 2,2λ1,12 - 467775λ 2,22λ 1,12 - 5040000λ 2,2n6λ 2,1λ1,2l - 25059456λ2,2n5λ 2,1λ1,2l - 59851584λ2,2n4λ 2,1λ1,2l + 2502720λ2,1n4λ 2,2λ1,1l - 11431224λ2,2n2λ 2,1l3λ 1,2 + 8492220λ2,12,21,1 + 3273930λ2,12,2l2λ 1,1 - 38521656λ2,2n2λ 2,1λ1,2l + 96768λ2,22n8λ 1,1 + 8266050λ2,22nl + 725760λ 1,22n2l3
+ 865080λ1,22nl3 - 387072λ 2,2n7λ 2,1λ1,2l + 10492470λ2,22n2 + 22854624λ 1,2n2λ 2,1λ2,21,1 + 6629240λ1,2n2λ 2,1λ2,2l2λ 1,1 + 6639840λ1,22n4 - 249480λ 1,2l3λ 2,2 - 1496880λ1,2l2λ 2,2 - 810810λ2,11,1 - 914760λ2,1l2λ 1,2n - 10183140n2λ 2,2λ1,12 - 332640n4λ 2,1λ1,2 - 22657152λ1,2n5λ 2,1λ2,2λ1,1l3 + 285120λ 1,2n5λ 2,1λ1,1l + 7818030λ2,12,2λ1,1 + 33648192λ1,22n3λ 2,1 + 8720064λ1,22n6λ 2,1 + 349440λ1,22n9λ 2,12 + 12971916λ 1,22n2λ 2,1 + 8266050λ1,22nl - 4623360λ 1,2n6λ 2,1λ2,2λ1,1l3 + 499488λ 1,2n3λ 2,1λ2,2λ1,1 + 1467648λ1,22n7λ 2,1 + 25869600λ1,22n5λ 2,1 - 3100160λ1,2n8λ 2,1λ2,2λ1,1l - 150132096λ1,2n5λ 2,1λ2,2λ1,1l + 96768λ1,22n8λ 2,1 + 2784645λ1,22n - 4241160 2,2λ1,1l + 72630λ2,22,1λ1,2 + 6894054λ2,22nl2λ 1,1 - 8492220λ2,12 1,2l - 6894054λ2,22,1l2λ 1,2 + 10183140λ2,1n2λ 2,2λ1,1 - 5592096λ2,22,1λ1,2l + 6894054λ1,22 2,1l2
+ 5592096λ2,22nlλ 1,1 - 4781700n2λ 2,1λ1,2 - 2162160n3λ 2,2λ1,1 - 332640n4λ 2,2λ1,1 + 1933470λ1,2l4λ 2,2λ1,1λ2,1 - 4781700n2λ 2,2λ1,1 - 57588302,1λ1,2 - 935550λ2,22λ 1,1 + 40728672λ1,22n4λ 2,1 + 17920λ1,22n10λ 2,12 + 155520λ 1,22n3l3 + 332640λ 1,2n4λ 1,1 - 25162272λ1,2n4λ 2,2λ1,1l2 + 4608630λ 1,22,2λ1,1λ2,1 - 2588355λ1,22lλ 2,12 - 72630λ 2,22 1,1 + 5758830λ2,22,1 + 2182950λ1,2λ1,1 - 32195968λ1,2n6λ 2,1λ2,2λ1,1l2 + 5592096λ 1,22 2,1l + 8387280λ1,2n3λ 2,1λ1,1 - 90090nλ2,22λ 1,12l5 - 1571283nλ 2,22λ 1,12l4
- 443520n2λ 2,2λ1,12l3 + 3076920λ 1,2n2λ 1,1l - 11427312λ1,22n2λ 2,12l - 3314620λ 1,22n2λ 2,12l2 - 24874560λ 2,2n3λ 1,2l - 4455002,2λ1,12l3 + 25059456λ 2,22n5λ 1,1l + 38778880n6λ 2,22λ 1,12l + 10811136n7λ 2,22λ 1,12l + 23508208n3λ 2,22λ 1,12l - 3314620n2λ 2,22λ 1,12l2 + 73082752n4λ 2,22λ 1,12l + 75066048n5λ 2,22λ 1,12l + 914760λ 1,21,1l2 + 529704λ 1,22 2,1l4 - 52000672λ 1,2n3λ 2,1λ2,2l3λ 1,1 - 6894054λ1,22,2l2λ 1,1 - 5592096λ1,22,21,1
- 44883504λ2,2n3λ 2,1l2λ 1,2 + 71036496λ1,22n3λ 2,1l + 1203552λ1,22n2λ 2,1l4 - 12971916λ 1,2n2λ 2,2λ1,1 + 16097984λ1,22n6λ 2,12l2 + 59851584λ 1,22n4λ 2,1l + 89600λ1,22n6λ 2,12l4 + 5740448λ 1,22n3λ 2,12l4 + 59851584λ 2,22n4λ 1,1l + 332640λ1,2n2λ 1,1l2 + 34287300λ 1,22n2λ 2,1l2 + 3328056λ 1,22 2,1l3 + 10183140λ 1,2n2λ 2,1λ1,1 + 89600λ1,22n9λ 2,12l - 96768λ 1,2n8λ 2,2λ1,1 + 11328576λ1,22n5λ 2,12l3 + 70947136λ 1,22n4λ 2,12l2 + 26000336λ 1,22n3λ 2,12l3 + 2705920λ 1,22n7λ 2,12l2 + 17920λ 1,22n5λ 2,12l5 + 179200λ 1,22n8λ 2,12l2 + 4828140λ 1,22nl2 + 466560λ 1,22n4l2 + 466560λ 1,22n5l - 90090λ 1,22nλ 2,12l5 - 1571283λ 1,22nλ 2,12l4 - 7896852λ 1,22nλ 2,12l3 + 958720λ 1,22n5λ 2,12l4 + 71036496λ 2,22n3λ 1,1l + 15961320λ1,22n2l + 6662520λ 1,22n2l2 + 4095360λ 1,22n4l + 3136320λ 1,22n3l2
+ 12437280λ1,22n3l + 332640λ 2,2n2λ 2,1l2 + 3378816λ 2,22n4λ 1,1l3 + 445500λ 1,21,1l3λ 2,1 - 38521656λ1,2n2λ 2,2λ1,1l + 4757872λ1,22n2λ 2,12l3 - 529704λ 1,22,2l4λ 1,1 - 3328056λ1,22,2l3λ 1,1 + 405405λ1,12n + 4781700λ 1,2n2λ 1,1 + 2162160λ1,2n3λ 1,1 - 4150080n4λ 2,2λ1,12 - 1029600n5λ 2,2λ1,12 - 5569290λ 2,21,2 - 2162160n3λ 2,1λ1,2 - 62370λ2,2l3λ 1,12 + 38778880λ 1,22n6λ 2,12l + 75066048λ 1,22n5λ 2,12l - 14716818λ 1,22nλ 2,12l2 + 2528806λ 1,22n2λ 2,12l4 + 311360λ 1,22n2λ 2,12l5 + 44883504λ 1,22n3λ 2,1l2 + 72630λ 1,22,2λ1,1 - 93555λ2,22l5λ 1,12 + 2307690λ 2,12,2 - 4553010λ1,22l2λ 2,12 + 466560λ 2,22n4l2 + 332640λ 2,2n4λ 2,1 - 40728672λ1,2n4λ 2,2λ1,1 - 25869600λ1,2n5λ 2,2λ1,1 - 8720064λ1,2n6λ 2,2λ1,1 + 9657684λ1,2n2λ 2,1λ2,2λ1,1 + 580608λ1,22n6λ 2,1l2 + 637056λ 1,22n3λ 2,1l4 + 3378816λ 1,22n4λ 2,1l3 + 1550080λ 1,22n8λ 2,12l - 1467648λ 1,2n7λ 2,2λ1,1 - 33648192λ1,2n3λ 2,2λ1,1 + 10811136λ1,22n7λ 2,12l
- 10026432λ1,2n3λ 2,2λ1,1l3 + 179200λ 1,22n7λ 2,12l3 + 405440λ 1,22n3λ 2,12l5 - 9941922λ 1,22nλ 2,12l + 3657024λ 1,22n4λ 2,12l4 + 187110λ 1,12n2 + 387072λ 1,22n5λ 2,1l3 + 96768λ 1,22n4λ 2,1l4 + 44400752λ 1,22n3λ 2,12l2 + 23508208λ 1,22n3λ 2,12l + 25162272λ 1,22n4λ 2,1l2 + 914760λ 2,22,1l2 + 6314112λ 1,22n5λ 2,1l2 + 10026432λ 1,22n3λ 2,1l3 + 11431224λ 2,22n2l3λ 1,1 + 1933470λ2,1λ1,2λ2,2l2 + 5040000λ 2,22n6λ 1,1l + 10026432λ2,22n3λ 1,1l3 + 12971916λ 2,22n2λ 1,1 + 405405λ2,12n + 1203552λ 2,22n2l4λ 1,1 - 4828842n2λ 2,22λ 1,12 - 13279680λ 2,2n4λ 1,2 - 311040λ2,2n6λ 1,2 - 637056λ1,2n3λ 2,2λ1,1l4 - 96768λ 1,2n4λ 2,2λ1,1l4 - 914760λ 2,2l2λ 1,1n - 285120λ2,12n4l2λ 1,2 + 7785360λ1,2n3λ 2,1λ1,1l - 358400λ1,2n7λ 2,1λ2,2λ1,1l3 - 1933470λ 1,22l2λ 2,1 + 15961320λ2,22n2l + 12437280λ 2,22n3l - 3369600λ 2,2n5λ 1,2 - 20984940λ2,2n2λ 1,2 + 443520λ2,1n2λ 2,2l3λ 1,1 - 24032160λ2,2n3λ 1,2 + 2162160λ2,2n3λ 2,1 + 4828140λ2,22nl2 - 467775λ 2,12λ 1,22 + 1916640λ 1,2n3λ 2,1λ1,1l2 - 95040λ 2,12n6λ 1,2 + 95040λ1,2n3λ 2,1λ1,1l3 + 285120λ 2,1n4λ 2,2λ1,1l2
+ 4781700λ2,2n2λ 2,1 - 57588302,2λ1,1 - 966735λ2,22l4λ 1,12 + 7785360λ 2,1n3λ 2,2λ1,1l - 4150080λ2,12n4λ 1,2 - 8387280λ2,12n3λ 1,2 + 374220λ1,2l2λ 1,1 - 935550λ2,1λ1,22 + 62370λ 1,2l3λ 1,1λ2,1 - 443520λ2,12n2l3λ 1,2 - 665280n3λ 2,2λ1,1l + 810810λ2,2l2λ 1,1λ2,1 - 1916640λ2,12n3l2λ 1,2 - 665280n3λ 2,1λ1,2l - 3076920n2λ 2,1λ1,2l + 44883504λ2,22n3λ 1,1l2 - 8387280n3λ 2,2λ1,12 - 249744n3λ 2,22λ 1,12 - 7818030 2,2λ1,12
- 141894272λ1,2n4λ 2,1λ2,2l2λ 1,1 + 6314112λ2,22n5λ 1,1l2 - 51794176λ 1,2n4λ 2,1λ2,2l3λ 1,1 - 304640λ1,2n4λ 2,1λ2,2l5λ 1,1 + 387072λ2,22n5λ 1,1l3 + 810810λ 1,2l2λ 1,1λ2,1 + 62370λ2,2l3λ 1,1λ2,1 - 1029600λ2,12n5λ 1,2 + 4095360λ2,22n4l + 6662520λ 2,22n2l2 + 466560λ 2,22n5l - 25162272λ 2,2n4λ 2,1l2λ 1,2 - 124740λ1,22l4λ 2,1 - 387072λ2,2n5λ 2,1l3λ 1,2
+ 580608λ2,22n6λ 1,1l2 - 95040λ 2,12n3l3λ 1,2 + 1029600λ2,1n5λ 2,2λ1,1 + 95040λ2,1n6λ 2,2λ1,1 + 3136320λ2,22n3l2 + 2182950λ 2,2λ1,1λ2,1 - 42411602,1λ1,2l - 7785360λ2,12n3λ 1,2l - 96768λ2,2n4λ 2,1l4λ 1,2 - 374220λ2,11,1l - 77557760λ1,2n6λ 2,1λ2,2λ1,1l + 187110λ2,12nl + 19883844λ 1,22,21,1λ2,1 - 179200λ1,2n9λ 2,1λ2,21,1 - 1203552λ1,2n2λ 2,2l4λ 1,1 + 9106020λ1,2l2λ 2,2λ1,1λ2,1 - 11431224λ1,2n2λ 2,2l3λ 1,1 - 5411840λ1,2n7λ 2,1λ2,2λ1,1l2 + 285120λ 1,2n4λ 2,1λ1,1l2 + 3142566λ 1,22,2l4λ 1,1λ2,1 - 358400λ1,2n8λ 2,1λ2,2λ1,1l2
- 95065152λ1,2n5λ 2,1λ2,2λ1,1l2 - 34287300λ 1,2n2λ 2,2l2λ 1,1 - 935550λ1,22l3λ 2,1 - 71036496λ1,2n3λ 2,2λ1,1l - 3378816λ1,2n4λ 2,2λ1,1l3 - 25059456λ 1,2n5λ 2,2λ1,1l - 9515744λ1,2n2λ 2,1λ2,2l3λ 1,1 - 5057612λ1,2n2λ 2,1λ2,2l4λ 1,1 - 374220λ2,1n2λ 1,1 - 311850λ1,12,1 - 966735λ1,22l4λ 2,12 + 19750016n4λ 2,22λ 1,12
- 6314112λ2,2n5λ 2,1l2λ 1,2 + 33648192λ2,22n3λ 1,1 + 47532576λ1,22n5λ 2,12l2 + 11431224λ 1,22n2λ 2,1l3 + 530145λ 1,22l + 748440λ 1,22l2 + 530145λ 2,22l - 2182950λ 2,12λ 1,2 - 10026432λ2,2n3λ 2,1l3λ 1,2 + 4150080λ2,1n4λ 2,2λ1,1 - 62370λ2,12l3λ 1,2 + 15793704λ1,22,2l3λ 1,1λ2,1 + 25897088λ1,22n4λ 2,12l3 + 38521656λ 1,22n2λ 2,1l + 152320λ1,22n4λ 2,12l5 + 73082752λ 1,22n4λ 2,12l + 1029600λ 1,2n5λ 2,1λ1,1 - 445500λ2,12nl3λ 1,2 + 7818030λ1,21,1λ2,1 + 4150080λ1,2n4λ 2,1λ1,1 - 55000704λ1,2n6λ 2,1λ2,2λ1,1 - 23428608λ1,2n7λ 2,1λ2,2λ1,1 - 332640n2λ 2,1l2λ 1,2 + 445500λ2,12,2l3λ 1,1 - 7314048λ1,2n4λ 2,1λ2,2l4λ 1,1 - 44883504λ1,2n3λ 2,2λ1,1l2 - 6314112λ 1,2n5λ 2,2λ1,1l2 - 39500032λ 1,2n4λ 2,1λ2,2λ1,1 - 35840λ1,2n10λ 2,1λ2,2λ1,1 - 47016416λ1,2n3λ 2,1λ2,21,1 - 935550λ2,22l3λ 1,1 + 8720064λ2,22n6λ 1,1 + 1467648λ2,22n7λ 1,1 - 387072λ1,2n5λ 2,2λ1,1l3 - 580608λ 1,2n6λ 2,2λ1,1l2
+ 180180λ1,22,2l5λ 1,1λ2,1 - 88801504λ1,2n3λ 2,1λ2,2l2λ 1,1 + 2502720λ1,2n4λ 2,1λ1,1l - 810880λ1,2n3λ 2,1λ2,2l5λ 1,1 - 21622272λ1,2n7λ 2,1λ2,2λ1,1l - 3305610λ2,22l3λ 1,12 + 187110λ 1,12ln + 25869600λ 2,22n5λ 1,1 + 40728672λ2,22n4λ 1,1 - 95040n3λ 2,2λ1,12l3 + 152320n4λ 2,22λ 1,12l5 + 405440n3λ 2,22λ 1,12l5 + 17920n5λ 2,22λ 1,12l5 + 4757872n2λ 2,22λ 1,12l3 + 2528806n2λ 2,22λ 1,12l4 + 2705920n7λ 2,22λ 1,12l2 + 179200n7λ 2,22λ 1,12l3 + 179200n8λ 2,22λ 1,12l2 - 11427312n2λ 2,22λ 1,12l + 1550080n8λ 2,22λ 1,12l + 70947136n4λ 2,22λ 1,12l2 + 311360n2λ 2,22λ 1,12l5 - 96768λ 2,2n8λ 2,1λ1,2 - 3076920n2λ 2,2λ1,1l - 1730160λ2,21,2l3 - 9656280λ 2,21,2l2 + 4241160λ 2,22,1l + 3328056λ2,22nl3λ 1,1 + 529704λ2,22nl4λ 1,1 - 285120λ2,12n5λ 1,2l - 2502720λ2,12n4λ 1,2l + 935550λ2,2λ1,1λ1,2 + 935550λ2,1λ1,2λ2,2 - 810810λ2,12l2λ 1,2 + 124740λ1,22l3 + 12016080λ 2,22n3 - 1933470λ 2,22l2λ 1,1 - 2058210λ2,22 1,1 + 34287300λ2,22n2l2λ 1,1)
c[4] = -(2n + 7)(2n + 5)(6 + l + 2n)(5 + l + 2n)(2l - 1 + 2n)(-374220λ2,1λ1,2l - 374220λ2,21,1 - 561330λ2,1λ1,2 - 561330λ2,2λ1,1 + 3367980λ1,22 2,1 - 1782000λ2,12 1,2 - 48384λ2,2n6λ 2,1λ1,2 + 421120n4λ 2,22λ 1,12l3 + 779520n5λ 2,22λ 1,12l2 + 14079168nλ 2,22λ 1,12l + 12046272n3λ 2,22λ 1,12l2 - 374220λ 1,2l3λ 2,2λ1,1 + 8960n4λ 2,22λ 1,12l4 + 53760n6λ 2,22λ 1,12l2 + 80640n3λ 2,22λ 1,12l4 - 1425600 2,2λ1,12l - 725760λ 2,2n5λ 2,1λ1,2 + 1822912n3λ 2,22λ 1,12l3 + 35840n5λ 2,22λ 1,12l3 - 11102400λ 2,2n3λ 2,1λ1,2 + 6388480n5λ 2,22λ 1,12 + 689040λ 1,2n2λ 2,1λ1,1l
+ 47520λ1,2n2λ 2,1λ1,1l2 + 213840λ 1,21,1l2λ 2,1 + 1425600λ1,21,12,1 - 12776960λ1,2n5λ 2,1λ2,2λ1,1 - 17920λ1,2n8λ 2,1λ2,2λ1,1 + 15415056λ2,22n2λ 1,1l + 2931264nλ2,22λ 1,12l3 + 10293408nλ 2,22λ 1,12l2 - 4427568λ 2,2n2λ 2,1l2λ 1,2 + 374220λ1,21,1 - 748440λ2,12λ 1,2l + 179200λ1,22n7λ 2,12 + 6388480λ 1,22n5λ 2,12 + 15769760λ 1,22n4λ 2,12 + 8960λ 1,22n8λ 2,12 + 1471232λ 1,22n6λ 2,12 + 8203680λ 1,22 2,1 - 1544400λ2,12n2λ 1,2 + 179200n7λ 2,22λ 1,12 + 8960n8λ 2,22λ 1,12 + 6218640λ 1,22nλ 2,12 + 16927728λ 1,22n2λ 2,12 + 22177600λ 1,22n3λ 2,12 + 831600λ 1,21,1 - 656208λ2,22,1l3λ 1,2 + 475200λ2,1n3λ 2,2λ1,1
- 14276736λ2,2n2λ 2,1λ1,2 - 2138402,2λ1,12l2 + 6218640nλ 2,22λ 1,12 - 689040n2λ 2,2λ1,12l - 95040n3λ 2,2λ1,12l - 47520n2λ 2,2λ1,12l2 - 47520λ 2,12n2l2λ 1,2 - 20586816λ1,22,2l2λ 1,1λ2,1 - 1778112λ1,2n4λ 2,2λ1,1l - 30349312λ1,2n4λ 2,1λ2,2λ1,1l - 4490640λ1,22,2λ1,1λ2,1 - 689040λ2,12n2λ 1,2l - 3367980λ1,22,2λ1,1 + 145152λ1,22n5λ 2,1l - 161280λ1,2n3λ 2,1λ2,2l4λ 1,1 + 47520λ2,1n2λ 2,2l2λ 1,1 + 689040λ2,1n2λ 2,21,1 - 213840λ2,12nl2λ 1,2 - 2245320λ1,22,2 - 1683990λ1,2λ2,2 + 561330λ2,2λ2,1 - 187110λ1,1λ2,1
+ 2451600λ1,22n2 - 187110λ 2,2l2λ 1,12 + 1471232n6λ 2,22λ 1,12 + 748440λ 2,21,1λ2,1 - 4514400λ2,21,2l - 4134240λ2,2n4λ 2,1λ1,2 - 1683990λ2,1λ1,2λ2,2λ1,1 - 7905600λ2,2n3λ 2,1λ1,2l + 748440λ1,22l3λ 2,12 + 561330λ 2,1λ1,2λ1,1 + 2245320λ2,22lλ 1,12 + 145152λ 2,22n4λ 1,1l2 - 1496880λ 1,2l3λ 2,2λ1,1λ2,1 - 748440λ2,2lλ1,12 - 155520λ 2,2n2λ 1,2l2 - 2255040λ 2,2n2λ 1,2l - 3367980λ2,1λ1,2λ2,2l - 2058210λ1,2l2λ 2,2λ1,1 + 748440λ1,21,1λ2,1 + 2058210λ2,22l2λ 1,12 - 374220λ 2,1l3λ 1,2λ2,2 + 374220λ2,22l2 + 777600λ 1,22n3 + 166320λ 1,21,1l + 93555λ2,12
+ 841995λ1,22 + 93555λ 1,12 + 841995λ 2,22 + 77760λ 2,22n4 + 2538000λ 2,22n - 561330λ 2,2λ1,12 + 841995λ 2,22λ 1,12 - 145152λ 2,2n5λ 2,1λ1,2l - 1778112λ2,2n4λ 2,1λ1,2l - 326592λ2,2n2λ 2,1l3λ 1,2 + 1425600λ2,12,21,1 + 213840λ2,12,2l2λ 1,1 - 15415056λ2,2n2λ 2,1λ1,2l + 2257200λ2,22nl + 2451600λ 2,22n2 - 59166176λ 1,2n2λ 2,1λ2,21,1 - 33091168λ1,2n2λ 2,1λ2,2l2λ 1,1 + 77760λ1,22n4 - 748440λ 1,2l2λ 2,2 - 1544400n2λ 2,2λ1,12 - 71680λ 1,2n5λ 2,1λ2,2λ1,1l3 + 1782000λ 2,12,2λ1,1 + 11102400λ1,22n3λ 2,1 + 48384λ1,22n6λ 2,1 + 14276736λ1,22n2λ 2,1 + 2257200λ1,22nl - 44355200λ 1,2n3λ 2,1λ2,2λ1,1 + 725760λ1,22n5λ 2,1 - 8558592λ1,2n5λ 2,1λ2,2λ1,1l + 2538000λ1,22n - 166320 2,2λ1,1l - 8203680λ2,22,1λ1,2 + 5476896λ2,22nl2λ 1,1 - 1425600λ2,12 1,2l - 5476896λ2,22,1l2λ 1,2 + 1544400λ2,1n2λ 2,2λ1,1
- 12620016λ2,22,1λ1,2l + 5476896λ1,22 2,1l2 + 12620016λ 2,22nlλ 1,1 - 166320n2λ 2,1λ1,2 - 187110λ1,2l4λ 2,2λ1,1λ2,1 - 166320n2λ 2,2λ1,1 - 8316002,1λ1,2 + 1683990λ2,22λ 1,1 + 4134240λ1,22n4λ 2,1 - 145152λ1,2n4λ 2,2λ1,1l2 - 12437280λ 1,22,2λ1,1λ2,1 + 2245320λ1,22lλ 2,12 + 8203680λ 2,22 1,1 + 831600λ2,22,1 + 561330λ1,2λ1,1 - 107520λ1,2n6λ 2,1λ2,2λ1,1l2 + 12620016λ 1,22 2,1l + 475200λ1,2n3λ 2,1λ1,1 + 277200nλ2,22λ 1,12l4 + 29583088λ 1,22n2λ 2,12l + 16545584λ 1,22n2λ 2,12l2 - 311040λ 2,2n3λ 1,2l + 145152λ2,22n5λ 1,1l + 618240n6λ 2,22λ 1,12l + 35840n7λ 2,22λ 1,12l + 29174080n3λ 2,22λ 1,12l + 16545584n2λ 2,22λ 1,12l2 + 15174656n4λ 2,22λ 1,12l
+ 4279296n5λ 2,22λ 1,12l - 3645824λ 1,2n3λ 2,1λ2,2l3λ 1,1 - 5476896λ1,22,2l2λ 1,1 - 12620016λ1,22,21,1 - 1378944λ2,2n3λ 2,1l2λ 1,2 + 7905600λ1,22n3λ 2,1l - 14276736λ1,2n2λ 2,2λ1,1 + 53760λ1,22n6λ 2,12l2 + 1778112λ 1,22n4λ 2,1l + 80640λ1,22n3λ 2,12l4 + 1778112λ 2,22n4λ 1,1l + 4427568λ1,22n2λ 2,1l2 + 656208λ 1,22 2,1l3 + 1544400λ 1,2n2λ 2,1λ1,1 + 35840λ1,22n5λ 2,12l3 + 4387936λ 1,22n4λ 2,12l2 + 1822912λ 1,22n3λ 2,12l3 + 349920λ 1,22nl2 + 277200λ 1,22nλ 2,12l4 + 2931264λ 1,22nλ 2,12l3 + 7905600λ 2,22n3λ 1,1l + 1127520λ1,22n2l + 77760λ 1,22n2l2 + 155520λ 1,22n3l
- 15415056λ1,2n2λ 2,2λ1,1l + 3537296λ1,22n2λ 2,12l3 - 656208λ 1,22,2l3λ 1,1 + 166320λ1,2n2λ 1,1 - 47520n4λ 2,2λ1,12 - 5076000λ 2,21,2 + 618240λ1,22n6λ 2,12l + 4279296λ 1,22n5λ 2,12l + 10293408λ 1,22nλ 2,12l2 + 243040λ 1,22n2λ 2,12l4 + 1378944λ 1,22n3λ 2,1l2 - 8203680λ 1,22,2λ1,1 + 374220λ2,12,2 + 2058210λ1,22l2λ 2,12 - 4134240λ 1,2n4λ 2,2λ1,1 - 725760λ1,2n5λ 2,2λ1,1 - 48384λ1,2n6λ 2,2λ1,1 - 33855456λ1,2n2λ 2,1λ2,2λ1,1 - 11102400λ1,2n3λ 2,2λ1,1 + 35840λ1,22n7λ 2,12l - 48384λ 1,2n3λ 2,2λ1,1l3 + 14079168λ 1,22nλ 2,12l + 8960λ 1,22n4λ 2,12l4 + 12046272λ 1,22n3λ 2,12l2 + 29174080λ 1,22n3λ 2,12l + 145152λ 1,22n4λ 2,1l2
+ 48384λ1,22n3λ 2,1l3 + 326592λ 2,22n2l3λ 1,1 - 2058210λ2,1λ1,2λ2,2l2 + 48384λ 2,22n3λ 1,1l3 + 14276736λ 2,22n2λ 1,1 + 16927728n2λ 2,22λ 1,12 - 155520λ 2,2n4λ 1,2 + 95040λ1,2n3λ 2,1λ1,1l + 2058210λ1,22l2λ 2,1 + 1127520λ2,22n2l + 155520λ 2,22n3l - 4903200λ 2,2n2λ 1,2 - 1555200λ2,2n3λ 1,2 + 349920λ2,22nl2 + 841995λ 2,12λ 1,22 + 166320λ 2,2n2λ 2,1 - 8316002,2λ1,1 + 93555λ2,22l4λ 1,12 + 95040λ 2,1n3λ 2,2λ1,1l - 47520λ2,12n4λ 1,2 - 475200λ2,12n3λ 1,2 + 1683990λ2,1λ1,22 + 187110λ 2,2l2λ 1,1λ2,1 + 1378944λ2,22n3λ 1,1l2 - 475200n3λ 2,2λ1,12 + 22177600n3λ 2,22λ 1,12 - 1782000 2,2λ1,12 - 8775872λ 1,2n4λ 2,1λ2,2l2λ 1,1 - 842240λ1,2n4λ 2,1λ2,2l3λ 1,1 + 187110λ1,2l2λ 1,1λ2,1 + 77760λ2,22n2l2 - 145152λ 2,2n4λ 2,1l2λ 1,2 + 561330λ2,2λ1,1λ2,1
- 1663202,1λ1,2l - 95040λ2,12n3λ 1,2l - 1236480λ1,2n6λ 2,1λ2,2λ1,1l - 28158336λ1,22,21,1λ2,1 - 4116420λ1,2l2λ 2,2λ1,1λ2,1 - 326592λ1,2n2λ 2,2l3λ 1,1 - 554400λ1,22,2l4λ 1,1λ2,1
- 1559040λ1,2n5λ 2,1λ2,2λ1,1l2 - 4427568λ 1,2n2λ 2,2l2λ 1,1 + 374220λ1,22l3λ 2,1 - 7905600λ1,2n3λ 2,2λ1,1l - 145152λ1,2n5λ 2,2λ1,1l - 7074592λ1,2n2λ 2,1λ2,2l3λ 1,1 - 486080λ1,2n2λ 2,1λ2,2l4λ 1,1 + 93555λ1,22l4λ 2,12 + 15769760n4λ 2,22λ 1,12 + 11102400λ 2,22n3λ 1,1 + 779520λ1,22n5λ 2,12l2 + 326592λ 1,22n2λ 2,1l3 + 1122660λ 1,22l + 374220λ 1,22l2 + 1122660λ 2,22l - 561330λ 2,12λ 1,2 - 48384λ2,2n3λ 2,1l3λ 1,2 + 47520λ2,1n4λ 2,2λ1,1 - 5862528λ1,22,2l3λ 1,1λ2,1 + 421120λ1,22n4λ 2,12l3 + 15415056λ 1,22n2λ 2,1l + 15174656λ1,22n4λ 2,12l
+ 1782000λ1,21,1λ2,1 + 47520λ1,2n4λ 2,1λ1,1 - 2942464λ1,2n6λ 2,1λ2,2λ1,1 - 358400λ1,2n7λ 2,1λ2,2λ1,1 - 17920λ1,2n4λ 2,1λ2,2l4λ 1,1 - 1378944λ1,2n3λ 2,2λ1,1l2 - 31539520λ 1,2n4λ 2,1λ2,2λ1,1 - 58348160λ1,2n3λ 2,1λ2,21,1
+ 374220λ2,22l3λ 1,1 + 48384λ2,22n6λ 1,1 - 24092544λ1,2n3λ 2,1λ2,2l2λ 1,1 - 71680λ1,2n7λ 2,1λ2,2λ1,1l + 748440λ2,22l3λ 1,12 + 725760λ 2,22n5λ 1,1 + 4134240λ2,22n4λ 1,1 + 3537296n2λ 2,22λ 1,12l3 + 243040n2λ 2,22λ 1,12l4 + 29583088n2λ 2,22λ 1,12l + 4387936n4λ 2,22λ 1,12l2 - 699840λ 2,21,2l2 + 166320λ 2,22,1l + 656208λ2,22nl3λ 1,1 - 1683990λ2,2λ1,1λ1,2 - 1683990λ2,1λ1,2λ2,2 - 187110λ2,12l2λ 1,2 + 777600λ2,22n3 + 2058210λ 2,22l2λ 1,1 + 3367980λ2,22 1,1 + 4427568λ2,22n2l2λ 1,1)

Expressions for all quantities involved are provided below.

 
Psi_1:=4*r^(l+1)*(21*lambda[2,2]*l^3*lambda[1,1]-21*lambda[2,1]*l^3*lambda[1,2]+123*lambda[2,2]*l*r^4+29*lambda[2,2]*l^2*r^4+13*lambda[2,1]*l*r^4-161*lambda[2,1]*l^2*lambda[1,2]-2*lambda[1,2]*l^3-531*lambda[2,1]*lambda[1,2]*l+531*lambda[2,2]*l*lambda[1,1]+207*lambda[2,2]*l*lambda[1,1]*r^4-42*lambda[1,1]-294*lambda[1,2]-207*lambda[2,1]*lambda[1,2]*l*r^4-13*lambda[1,1]*l-33*lambda[1,2]*l^2-175*lambda[1,2]*l+lambda[2,1]*l^2*r^4-123*lambda[1,2]*l*r^4-29*lambda[1,2]*l^2*r^4-13*lambda[1,1]*l*r^4-lambda[1,1]*l^2*r^4+42*lambda[2,1]+294*lambda[2,2]+2*lambda[2,2]*l^3*r^4+13*lambda[2,1]*l+33*lambda[2,2]*l^2+175*lambda[2,2]*l-2*lambda[1,2]*l^3*r^4+126*lambda[2,2]*lambda[1,1]*r^4+161*lambda[2,2]*l^2*lambda[1,1]+126*lambda[2,2]*r^4-630*lambda[2,1]*lambda[1,2]+630*lambda[2,2]*lambda[1,1]-126*lambda[2,1]*lambda[1,2]*r^4-84*lambda[2,1]*r^2-420*lambda[2,2]*r^2+lambda[2,1]*l^2+420*lambda[1,2]*r^2-lambda[2,1]*l^4*lambda[1,2]+2*lambda[2,2]*l^3+42*lambda[2,1]*r^4-42*lambda[1,1]*r^4-126*lambda[1,2]*r^4-lambda[1,1]*l^2+84*lambda[1,1]*r^2+38*lambda[2,1]*l^3*lambda[1,2]*r^2+2*lambda[2,1]*l^4*lambda[1,2]*r^2-38*lambda[2,2]*l^3*lambda[1,1]*r^2-2*lambda[2,2]*l^4*lambda[1,1]*r^2+250*lambda[2,1]*l^2*lambda[1,2]*r^2+62*lambda[1,2]*l^2*r^2+4*lambda[1,2]*l^3*r^2-62*lambda[2,2]*l^2*r^2-250*lambda[2,2]*l^2*lambda[1,1]*r^2+634*lambda[2,1]*lambda[1,2]*l*r^2-634*lambda[2,2]*l*lambda[1,1]*r^2+lambda[2,2]*l^4*lambda[1,1]-4*lambda[2,2]*l^3*r^2+298*lambda[1,2]*l*r^2-26*lambda[2,1]*l*r^2-2*lambda[2,1]*l^2*r^2+26*lambda[1,1]*l*r^2+2*lambda[1,1]*l^2*r^2-298*lambda[2,2]*l*r^2+420*lambda[2,1]*lambda[1,2]*r^2-420*lambda[2,2]*lambda[1,1]*r^2+17*lambda[2,2]*l^3*lambda[1,1]*r^4+lambda[2,2]*l^4*lambda[1,1]*r^4+97*lambda[2,2]*l^2*lambda[1,1]*r^4-17*lambda[2,1]*l^3*lambda[1,2]*r^4-lambda[2,1]*l^4*lambda[1,2]*r^4-97*lambda[2,1]*l^2*lambda[1,2]*r^4);  
 
c[1]:=8*n*(n+1)*(2*n+2+l)*(l+2*n+3)*(n+5+l)*(-207900*lambda[2,1]*lambda[1,2]*l-207900*lambda[2,2]*l*lambda[1,1]+103950*lambda[2,1]*lambda[1,2]+103950*lambda[2,2]*lambda[1,1]-109620*lambda[1,2]^2*l*lambda[2,1]+71280*lambda[2,1]^2*n*lambda[1,2]-48384*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+241920*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+456960*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-325472*n*lambda[2,2]^2*lambda[1,1]^2*l+1214528*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2+3780*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+8960*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+53760*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+44800*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4-332640*n*lambda[2,2]*lambda[1,1]^2*l-435456*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+496832*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+35840*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3-855360*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+822528*n^5*lambda[2,2]^2*lambda[1,1]^2+403920*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+47520*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+118800*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+332640*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-1645056*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-17920*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+915408*lambda[2,2]^2*n^2*lambda[1,1]*l-179872*n*lambda[2,2]^2*lambda[1,1]^2*l^3-635648*n*lambda[2,2]^2*lambda[1,1]^2*l^2-1161648*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+207900*lambda[1,2]*l*lambda[1,1]+83160*lambda[2,1]^2*lambda[1,2]*l+107520*lambda[1,2]^2*n^7*lambda[2,1]^2+822528*lambda[1,2]^2*n^5*lambda[2,1]^2+251040*lambda[1,2]^2*n^4*lambda[2,1]^2+8960*lambda[1,2]^2*n^8*lambda[2,1]^2+467712*lambda[1,2]^2*n^6*lambda[2,1]^2-241056*lambda[1,2]^2*n*lambda[2,1]-403920*lambda[2,1]^2*n^2*lambda[1,2]+107520*n^7*lambda[2,2]^2*lambda[1,1]^2+8960*n^8*lambda[2,2]^2*lambda[1,1]^2+114672*lambda[1,2]^2*n*lambda[2,1]^2-315152*lambda[1,2]^2*n^2*lambda[2,1]^2-671040*lambda[1,2]^2*n^3*lambda[2,1]^2+498960*lambda[1,2]*n*lambda[1,1]-148176*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+285120*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+756864*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-118800*n*lambda[2,2]*lambda[1,1]^2*l^2+114672*n*lambda[2,2]^2*lambda[1,1]^2-403920*n^2*lambda[2,2]*lambda[1,1]^2*l-95040*n^3*lambda[2,2]*lambda[1,1]^2*l-47520*n^2*lambda[2,2]*lambda[1,1]^2*l^2-47520*lambda[2,1]^2*n^2*l^2*lambda[1,2]+1271296*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-1052352*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-3594752*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-105840*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-403920*lambda[2,1]^2*n^2*lambda[1,2]*l+109620*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+145152*lambda[1,2]^2*n^5*lambda[2,1]*l-89600*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+47520*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+403920*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-118800*lambda[2,1]^2*n*l^2*lambda[1,2]+325080*lambda[1,2]*l*lambda[2,2]-111510*lambda[1,2]*lambda[2,2]-103950*lambda[2,2]*lambda[2,1]-187110*lambda[1,1]*lambda[2,1]+585360*lambda[1,2]^2*n^2-20790*lambda[2,2]*l^2*lambda[1,1]^2+467712*n^6*lambda[2,2]^2*lambda[1,1]^2-83160*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-937440*lambda[2,2]*n*lambda[1,2]*l-1231200*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-111510*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-2244672*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-83160*lambda[1,2]^2*l^3*lambda[2,1]^2-103950*lambda[2,1]*lambda[1,2]*lambda[1,1]+52920*lambda[2,2]^2*l*lambda[1,1]^2+145152*lambda[2,2]^2*n^4*lambda[1,1]*l^2+166320*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]+83160*lambda[2,2]*l*lambda[1,1]^2-155520*lambda[2,2]*n^2*lambda[1,2]*l^2-1321920*lambda[2,2]*n^2*lambda[1,2]*l+109620*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+224910*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-83160*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-73710*lambda[2,2]^2*l^2*lambda[1,1]^2+3780*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+102060*lambda[2,2]^2*l^2+466560*lambda[1,2]^2*n^3+166320*lambda[1,2]*n*lambda[1,1]*l+93555*lambda[2,1]^2+55755*lambda[1,2]^2+93555*lambda[1,1]^2+55755*lambda[2,2]^2+77760*lambda[2,2]^2*n^4-343440*lambda[2,2]^2*n+103950*lambda[2,2]*lambda[1,1]^2+55755*lambda[2,2]^2*lambda[1,1]^2-145152*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-1052352*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l-181440*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+332640*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+118800*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-915408*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+468720*lambda[2,2]^2*n*l+585360*lambda[2,2]^2*n^2+2326432*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+508832*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+77760*lambda[1,2]^2*n^4-204120*lambda[1,2]*l^2*lambda[2,2]-403920*n^2*lambda[2,2]*lambda[1,1]^2-71680*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-71280*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+855360*lambda[1,2]^2*n^3*lambda[2,1]+48384*lambda[1,2]^2*n^6*lambda[2,1]-756864*lambda[1,2]^2*n^2*lambda[2,1]+468720*lambda[1,2]^2*n*l+1342080*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+435456*lambda[1,2]^2*n^5*lambda[2,1]-2644992*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-343440*lambda[1,2]^2*n-166320*n*lambda[2,2]*lambda[1,1]*l+241056*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+177984*lambda[2,2]^2*n*l^2*lambda[1,1]-332640*lambda[2,1]^2*n*lambda[1,2]*l-177984*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+403920*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+879984*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l+177984*lambda[1,2]^2*n*lambda[2,1]*l^2-879984*lambda[2,2]^2*n*l*lambda[1,1]-166320*n^2*lambda[2,1]*lambda[1,2]+24570*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-166320*n^2*lambda[2,2]*lambda[1,1]-498960*n*lambda[2,1]*lambda[1,2]+111510*lambda[2,2]^2*lambda[1,1]+1231200*lambda[1,2]^2*n^4*lambda[2,1]-145152*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-229344*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+52920*lambda[1,2]^2*l*lambda[2,1]^2-241056*lambda[2,2]^2*n*lambda[1,1]+498960*lambda[2,2]*n*lambda[2,1]-103950*lambda[1,2]*lambda[1,1]-107520*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-879984*lambda[1,2]^2*n*lambda[2,1]*l+285120*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-2800*n*lambda[2,2]^2*lambda[1,1]^2*l^4-1163216*lambda[1,2]^2*n^2*lambda[2,1]^2*l-254416*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-311040*lambda[2,2]*n^3*lambda[1,2]*l+145152*lambda[2,2]^2*n^5*lambda[1,1]*l+367360*n^6*lambda[2,2]^2*lambda[1,1]^2*l+35840*n^7*lambda[2,2]^2*lambda[1,1]^2*l+158016*n^3*lambda[2,2]^2*lambda[1,1]^2*l-254416*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+1797376*n^4*lambda[2,2]^2*lambda[1,1]^2*l+1322496*n^5*lambda[2,2]^2*lambda[1,1]^2*l-993664*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-177984*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+879984*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-798336*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+2244672*lambda[1,2]^2*n^3*lambda[2,1]*l+756864*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+53760*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+1052352*lambda[1,2]^2*n^4*lambda[2,1]*l+44800*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+1052352*lambda[2,2]^2*n^4*lambda[1,1]*l+1161648*lambda[1,2]^2*n^2*lambda[2,1]*l^2+148176*lambda[1,2]^2*n*lambda[2,1]*l^3+403920*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+35840*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+1296736*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+496832*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+194400*lambda[1,2]^2*n*l^2-2800*lambda[1,2]^2*n*lambda[2,1]^2*l^4-179872*lambda[1,2]^2*n*lambda[2,1]^2*l^3+2244672*lambda[2,2]^2*n^3*lambda[1,1]*l+660960*lambda[1,2]^2*n^2*l+77760*lambda[1,2]^2*n^2*l^2+155520*lambda[1,2]^2*n^3*l-915408*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+236880*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-148176*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+166320*lambda[1,2]*n^2*lambda[1,1]-47520*n^4*lambda[2,2]*lambda[1,1]^2+686880*lambda[2,2]*n*lambda[1,2]+367360*lambda[1,2]^2*n^6*lambda[2,1]^2*l+1322496*lambda[1,2]^2*n^5*lambda[2,1]^2*l-635648*lambda[1,2]^2*n*lambda[2,1]^2*l^2+54880*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+798336*lambda[1,2]^2*n^3*lambda[2,1]*l^2+241056*lambda[1,2]*n*lambda[2,2]*lambda[1,1]+207900*lambda[2,1]*l*lambda[2,2]-73710*lambda[1,2]^2*l^2*lambda[2,1]^2-1231200*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-435456*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-48384*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+630304*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]-855360*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+35840*lambda[1,2]^2*n^7*lambda[2,1]^2*l-48384*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3-325472*lambda[1,2]^2*n*lambda[2,1]^2*l+8960*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+1214528*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2+158016*lambda[1,2]^2*n^3*lambda[2,1]^2*l+145152*lambda[1,2]^2*n^4*lambda[2,1]*l^2+48384*lambda[1,2]^2*n^3*lambda[2,1]*l^3+181440*lambda[2,2]^2*n^2*l^3*lambda[1,1]+224910*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+48384*lambda[2,2]^2*n^3*lambda[1,1]*l^3-756864*lambda[2,2]^2*n^2*lambda[1,1]-315152*n^2*lambda[2,2]^2*lambda[1,1]^2-155520*lambda[2,2]*n^4*lambda[1,2]+95040*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-224910*lambda[1,2]^2*l^2*lambda[2,1]+660960*lambda[2,2]^2*n^2*l+155520*lambda[2,2]^2*n^3*l-1170720*lambda[2,2]*n^2*lambda[1,2]-933120*lambda[2,2]*n^3*lambda[1,2]+194400*lambda[2,2]^2*n*l^2+55755*lambda[2,1]^2*lambda[1,2]^2+166320*lambda[2,2]*n^2*lambda[2,1]-498960*n*lambda[2,2]*lambda[1,1]-12285*lambda[2,2]^2*l^4*lambda[1,1]^2+95040*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-47520*lambda[2,1]^2*n^4*lambda[1,2]-285120*lambda[2,1]^2*n^3*lambda[1,2]+111510*lambda[2,1]*lambda[1,2]^2+20790*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]+798336*lambda[2,2]^2*n^3*lambda[1,1]*l^2-285120*n^3*lambda[2,2]*lambda[1,1]^2-671040*n^3*lambda[2,2]^2*lambda[1,1]^2+71280*n*lambda[2,2]*lambda[1,1]^2-2593472*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-483840*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+20790*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+77760*lambda[2,2]^2*n^2*l^2-145152*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-103950*lambda[2,2]*lambda[1,1]*lambda[2,1]-166320*n*lambda[2,1]*lambda[1,2]*l-95040*lambda[2,1]^2*n^3*lambda[1,2]*l-734720*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+650944*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]+147420*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-181440*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]+5600*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-913920*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-1161648*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-3780*lambda[1,2]^2*l^3*lambda[2,1]-2244672*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-145152*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-473760*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-109760*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-12285*lambda[1,2]^2*l^4*lambda[2,1]^2+251040*n^4*lambda[2,2]^2*lambda[1,1]^2+855360*lambda[2,2]^2*n^3*lambda[1,1]+456960*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+181440*lambda[1,2]^2*n^2*lambda[2,1]*l^3-162540*lambda[1,2]^2*l+102060*lambda[1,2]^2*l^2-162540*lambda[2,2]^2*l+103950*lambda[2,1]^2*lambda[1,2]-48384*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+47520*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+359744*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+241920*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+915408*lambda[1,2]^2*n^2*lambda[2,1]*l+1797376*lambda[1,2]^2*n^4*lambda[2,1]^2*l-71280*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+47520*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-935424*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-215040*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-17920*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-798336*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-502080*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-316032*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-3780*lambda[2,2]^2*l^3*lambda[1,1]+48384*lambda[2,2]^2*n^6*lambda[1,1]-2429056*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-71680*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-83160*lambda[2,2]^2*l^3*lambda[1,1]^2+435456*lambda[2,2]^2*n^5*lambda[1,1]+1231200*lambda[2,2]^2*n^4*lambda[1,1]+236880*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+54880*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4-1163216*n^2*lambda[2,2]^2*lambda[1,1]^2*l+1296736*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-388800*lambda[2,2]*n*lambda[1,2]*l^2+166320*lambda[2,2]*n*lambda[2,1]*l+148176*lambda[2,2]^2*n*l^3*lambda[1,1]-111510*lambda[2,2]*lambda[1,1]*lambda[1,2]-111510*lambda[2,1]*lambda[1,2]*lambda[2,2]-20790*lambda[2,1]^2*l^2*lambda[1,2]+466560*lambda[2,2]^2*n^3-224910*lambda[2,2]^2*l^2*lambda[1,1]-109620*lambda[2,2]^2*l*lambda[1,1]+1161648*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[2]:=-12*(2*n+2+l)*n*(5+l+2*n)*(-1247400*lambda[2,1]*l^2*lambda[1,2]-5862780*lambda[2,1]*lambda[1,2]*l-5862780*lambda[2,2]*l*lambda[1,1]-1247400*lambda[2,2]*l^2*lambda[1,1]-2432430*lambda[2,1]*lambda[1,2]-2432430*lambda[2,2]*lambda[1,1]-1626912*lambda[2,2]*n^2*lambda[2,1]*l^4*lambda[1,2]-9809100*lambda[1,2]^2*l*lambda[2,1]+484110*lambda[2,1]^2*n*lambda[1,2]-285120*n^5*lambda[2,2]*lambda[1,1]^2*l-10977984*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+31480288*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+57050336*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-20762802*n*lambda[2,2]^2*lambda[1,1]^2*l+52931792*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-1079064*lambda[2,2]*n*lambda[2,1]*l^4*lambda[1,2]+4573800*lambda[2,2]*n^2*lambda[2,1]*l+1412460*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+4149824*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+18042304*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+7187488*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4+89600*n^6*lambda[2,2]^2*lambda[1,1]^2*l^4+89600*n^9*lambda[2,2]^2*lambda[1,1]^2*l-10987020*n*lambda[2,2]*lambda[1,1]^2*l-37098720*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+34186416*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+12753216*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3+1012480*n^5*lambda[2,2]^2*lambda[1,1]^2*l^4+2437120*n^6*lambda[2,2]^2*lambda[1,1]^2*l^3-39494592*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+196560*lambda[1,2]*l^5*lambda[2,2]*lambda[1,1]*lambda[2,1]+41644320*n^5*lambda[2,2]^2*lambda[1,1]^2+387072*lambda[2,2]^2*n^7*l*lambda[1,1]+20338560*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+554400*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^3+6575580*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+155520*lambda[1,2]^2*n^6-734720*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*lambda[1,1]+6253830*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+10987020*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-866880*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-83288640*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-6225408*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+42271416*lambda[2,2]^2*n^2*lambda[1,1]*l-12407092*n*lambda[2,2]^2*lambda[1,1]^2*l^3-30339838*n*lambda[2,2]^2*lambda[1,1]^2*l^2+665280*lambda[2,2]*n^3*lambda[2,1]*l-1628928*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-56317140*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+5862780*lambda[1,2]*l*lambda[1,1]+1995840*lambda[2,1]^2*lambda[1,2]*l-2024960*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4-179200*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4+13918464*lambda[1,2]^2*n^7*lambda[2,1]^2-35840*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^5-5604480*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l+41644320*lambda[1,2]^2*n^5*lambda[2,1]^2+8742656*lambda[1,2]^2*n^4*lambda[2,1]^2+3112704*lambda[1,2]^2*n^8*lambda[2,1]^2+34274112*lambda[1,2]^2*n^6*lambda[2,1]^2-18568170*lambda[1,2]^2*n*lambda[2,1]+367360*n^9*lambda[2,2]^2*lambda[1,1]^2-13953060*lambda[2,1]^2*n^2*lambda[1,2]+13918464*n^7*lambda[2,2]^2*lambda[1,1]^2+3112704*n^8*lambda[2,2]^2*lambda[1,1]^2+4636395*lambda[1,2]^2*n*lambda[2,1]^2-19969002*lambda[1,2]^2*n^2*lambda[2,1]^2-29832304*lambda[1,2]^2*n^3*lambda[2,1]^2+13866930*lambda[1,2]*n*lambda[1,1]+2360160*lambda[2,1]*n^3*lambda[2,2]*l^2*lambda[1,1]+95040*lambda[2,1]*n^3*lambda[2,2]*l^3*lambda[1,1]-7055136*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+14929200*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+27720*lambda[2,1]*l^4*lambda[1,2]*lambda[2,2]-332640*n^2*lambda[2,2]*lambda[1,1]*l^2+14526324*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-3057120*n^4*lambda[2,2]*lambda[1,1]^2*l-6253830*n*lambda[2,2]*lambda[1,1]^2*l^2-580608*lambda[2,2]*n^6*lambda[2,1]*l^2*lambda[1,2]+4636395*n*lambda[2,2]^2*lambda[1,1]^2-20338560*n^2*lambda[2,2]*lambda[1,1]^2*l-12109680*n^3*lambda[2,2]*lambda[1,1]^2*l-285120*n^4*lambda[2,2]*lambda[1,1]^2*l^2-2360160*n^3*lambda[2,2]*lambda[1,1]^2*l^2-6575580*n^2*lambda[2,2]*lambda[1,1]^2*l^2-6575580*lambda[2,1]^2*n^2*l^2*lambda[1,2]-717696*lambda[2,2]*n^3*lambda[2,1]*l^4*lambda[1,2]+60679676*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-3782016*lambda[2,2]*n^4*lambda[2,1]*l^3*lambda[1,2]-86714784*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-387072*lambda[1,2]*n^7*lambda[2,2]*l*lambda[1,1]+95040*lambda[1,2]*n^6*lambda[2,1]*lambda[1,1]-173706304*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-5171040*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-20338560*lambda[2,1]^2*n^2*lambda[1,2]*l+9809100*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+387072*lambda[1,2]^2*n^7*lambda[2,1]*l+2437120*lambda[1,2]^2*n^6*lambda[2,1]^2*l^3+31712256*lambda[1,2]^2*n^5*lambda[2,1]*l+5604480*lambda[1,2]^2*n^6*lambda[2,1]*l-933120*lambda[2,2]*n^4*lambda[1,2]*l^2-14374976*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-98280*lambda[1,2]^2*l^5*lambda[2,1]^2+6575580*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+20338560*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-6253830*lambda[2,1]^2*n*l^2*lambda[1,2]+155520*lambda[2,2]^2*n^3*l^3-1338120*lambda[1,2]*l*lambda[2,2]+907200*lambda[2,2]^2*n^2*l^3+498960*lambda[1,1]^2*l+187110*lambda[2,1]^2*n^2+2364390*lambda[1,2]*lambda[2,2]+2432430*lambda[2,2]*lambda[2,1]-4303530*lambda[1,1]*lambda[2,1]+22648950*lambda[1,2]^2*n^2+1500120*lambda[2,2]^2*n*l^3-367290*lambda[2,2]*l^2*lambda[1,1]^2-27720*lambda[2,2]^2*l^4*lambda[1,1]+34274112*n^6*lambda[2,2]^2*lambda[1,1]^2-1995840*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-933120*lambda[2,2]*n^5*lambda[1,2]*l-37896660*lambda[2,2]*n*lambda[1,2]*l-62703072*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-7796250*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-311040*lambda[2,2]*n^3*lambda[1,2]*l^3-110923056*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-4190760*lambda[1,2]^2*l^3*lambda[2,1]^2+1247400*lambda[2,2]*l^2*lambda[2,1]-5550930*lambda[2,1]*lambda[1,2]*lambda[1,1]+2585520*lambda[2,2]^2*l*lambda[1,1]^2+32117472*lambda[2,2]^2*n^4*lambda[1,1]*l^2+285120*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]*l+8381520*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]+1995840*lambda[2,2]*l*lambda[1,1]^2-21489840*lambda[2,2]*n^2*lambda[1,2]*l^2-64854000*lambda[2,2]*n^2*lambda[1,2]*l-10005120*lambda[2,2]*n^4*lambda[1,2]*l+717696*lambda[2,2]^2*n^3*lambda[1,1]*l^4-1814400*lambda[2,2]*n^2*lambda[1,2]*l^3-7724160*lambda[2,2]*n^3*lambda[1,2]*l^2+9809100*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+7559370*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-95040*n^6*lambda[2,2]*lambda[1,1]^2+17920*n^10*lambda[2,2]^2*lambda[1,1]^2+96768*lambda[2,2]^2*n^4*lambda[1,1]*l^4-1995840*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-4452210*lambda[2,2]^2*l^2*lambda[1,1]^2+1412460*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+27720*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]+2047680*lambda[1,2]^2*n^5+680400*lambda[2,2]^2*l^3+3050460*lambda[2,2]^2*l^2+498960*lambda[2,1]^2*l+23718960*lambda[1,2]^2*n^3+9979200*lambda[1,2]*n*lambda[1,1]*l+665280*lambda[1,2]*n^3*lambda[1,1]*l+2151765*lambda[2,1]^2-1182195*lambda[1,2]^2+2151765*lambda[1,1]^2-1182195*lambda[2,2]^2+155520*lambda[2,2]^2*n^6+10268640*lambda[2,2]^2*n^4+2047680*lambda[2,2]^2*n^5+3153195*lambda[2,2]^2*n+5550930*lambda[2,2]*lambda[1,1]^2+3898125*lambda[2,2]^2*lambda[1,1]^2-5604480*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]*l-31712256*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-86714784*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l+3057120*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l-17968104*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+10987020*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+6253830*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-42271416*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+96768*lambda[2,2]^2*n^8*lambda[1,1]+18948330*lambda[2,2]^2*n*l+907200*lambda[1,2]^2*n^2*l^3+1500120*lambda[1,2]^2*n*l^3-387072*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]*l+22648950*lambda[2,2]^2*n^2+107547904*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+42159000*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+10268640*lambda[1,2]^2*n^4-1360800*lambda[1,2]*l^3*lambda[2,2]-6100920*lambda[1,2]*l^2*lambda[2,2]-2182950*lambda[2,1]*n*lambda[1,1]-1413720*lambda[2,1]*l^2*lambda[1,2]*n-13953060*n^2*lambda[2,2]*lambda[1,1]^2-332640*n^4*lambda[2,1]*lambda[1,2]-25506432*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+285120*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]*l-484110*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+39494592*lambda[1,2]^2*n^3*lambda[2,1]+10977984*lambda[1,2]^2*n^6*lambda[2,1]+367360*lambda[1,2]^2*n^9*lambda[2,1]^2-14526324*lambda[1,2]^2*n^2*lambda[2,1]+18948330*lambda[1,2]^2*n*l-4874240*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+59664608*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+1628928*lambda[1,2]^2*n^7*lambda[2,1]+37098720*lambda[1,2]^2*n^5*lambda[2,1]-3261440*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-188158336*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+96768*lambda[1,2]^2*n^8*lambda[2,1]+3153195*lambda[1,2]^2*n-9979200*n*lambda[2,2]*lambda[1,1]*l+18568170*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+5789034*lambda[2,2]^2*n*l^2*lambda[1,1]-10987020*lambda[2,1]^2*n*lambda[1,2]*l-5789034*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+13953060*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+22689864*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l+5789034*lambda[1,2]^2*n*lambda[2,1]*l^2-22689864*lambda[2,2]^2*n*l*lambda[1,1]-10769220*n^2*lambda[2,1]*lambda[1,2]-3160080*n^3*lambda[2,2]*lambda[1,1]-332640*n^4*lambda[2,2]*lambda[1,1]+2298870*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-10769220*n^2*lambda[2,2]*lambda[1,1]-13866930*n*lambda[2,1]*lambda[1,2]+2715930*lambda[2,2]^2*lambda[1,1]+62703072*lambda[1,2]^2*n^4*lambda[2,1]+17920*lambda[1,2]^2*n^10*lambda[2,1]^2+155520*lambda[1,2]^2*n^3*l^3+332640*lambda[1,2]*n^4*lambda[1,1]-32117472*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-9272790*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+2585520*lambda[1,2]^2*l*lambda[2,1]^2-18568170*lambda[2,2]^2*n*lambda[1,1]+13866930*lambda[2,2]*n*lambda[2,1]+2432430*lambda[1,2]*lambda[1,1]-36084608*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-22689864*lambda[1,2]^2*n*lambda[2,1]*l+14929200*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-46970*n*lambda[2,2]^2*lambda[1,1]^2*l^5-1725773*n*lambda[2,2]^2*lambda[1,1]^2*l^4-554400*n^2*lambda[2,2]*lambda[1,1]^2*l^3+4573800*lambda[1,2]*n^2*lambda[1,1]*l-53773952*lambda[1,2]^2*n^2*lambda[2,1]^2*l-21079500*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-39026880*lambda[2,2]*n^3*lambda[1,2]*l-833580*n*lambda[2,2]*lambda[1,1]^2*l^3+31712256*lambda[2,2]^2*n^5*lambda[1,1]*l+46242560*n^6*lambda[2,2]^2*lambda[1,1]^2*l+12083456*n^7*lambda[2,2]^2*lambda[1,1]^2*l-940272*n^3*lambda[2,2]^2*lambda[1,1]^2*l-21079500*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+86853152*n^4*lambda[2,2]^2*lambda[1,1]^2*l+94079168*n^5*lambda[2,2]^2*lambda[1,1]^2*l+1413720*lambda[1,2]*n*lambda[1,1]*l^2+1079064*lambda[1,2]^2*n*lambda[2,1]*l^4-68372832*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-5789034*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+22689864*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-66505104*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+110923056*lambda[1,2]^2*n^3*lambda[2,1]*l+1626912*lambda[1,2]^2*n^2*lambda[2,1]*l^4+14526324*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+18042304*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+86714784*lambda[1,2]^2*n^4*lambda[2,1]*l+89600*lambda[1,2]^2*n^6*lambda[2,1]^2*l^4+7187488*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+86714784*lambda[2,2]^2*n^4*lambda[1,1]*l+332640*lambda[1,2]*n^2*lambda[1,1]*l^2+56317140*lambda[1,2]^2*n^2*lambda[2,1]*l^2+7055136*lambda[1,2]^2*n*lambda[2,1]*l^3+13953060*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+89600*lambda[1,2]^2*n^9*lambda[2,1]^2*l-96768*lambda[1,2]*n^8*lambda[2,2]*lambda[1,1]+12753216*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+90099136*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+34186416*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+2849280*lambda[1,2]^2*n^7*lambda[2,1]^2*l^2+17920*lambda[1,2]^2*n^5*lambda[2,1]^2*l^5+179200*lambda[1,2]^2*n^8*lambda[2,1]^2*l^2+11065140*lambda[1,2]^2*n*l^2+466560*lambda[1,2]^2*n^4*l^2+466560*lambda[1,2]^2*n^5*l-46970*lambda[1,2]^2*n*lambda[2,1]^2*l^5-1725773*lambda[1,2]^2*n*lambda[2,1]^2*l^4-12407092*lambda[1,2]^2*n*lambda[2,1]^2*l^3+1012480*lambda[1,2]^2*n^5*lambda[2,1]^2*l^4+110923056*lambda[2,2]^2*n^3*lambda[1,1]*l+32427000*lambda[1,2]^2*n^2*l+10744920*lambda[1,2]^2*n^2*l^2+5002560*lambda[1,2]^2*n^4*l+3862080*lambda[1,2]^2*n^3*l^2+19513440*lambda[1,2]^2*n^3*l+332640*lambda[2,2]*n^2*lambda[2,1]*l^2+3782016*lambda[2,2]^2*n^4*lambda[1,1]*l^3+833580*lambda[1,2]*n*lambda[1,1]*l^3*lambda[2,1]-42271416*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+6039712*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-1079064*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]-7055136*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+1091475*lambda[1,1]^2*n+10769220*lambda[1,2]*n^2*lambda[1,1]+3160080*lambda[1,2]*n^3*lambda[1,1]-6367680*n^4*lambda[2,2]*lambda[1,1]^2-1251360*n^5*lambda[2,2]*lambda[1,1]^2-6306390*lambda[2,2]*n*lambda[1,2]-3160080*n^3*lambda[2,1]*lambda[1,2]-138600*lambda[2,2]*l^3*lambda[1,1]^2+46242560*lambda[1,2]^2*n^6*lambda[2,1]^2*l+94079168*lambda[1,2]^2*n^5*lambda[2,1]^2*l-30339838*lambda[1,2]^2*n*lambda[2,1]^2*l^2+3845366*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+433440*lambda[1,2]^2*n^2*lambda[2,1]^2*l^5+66505104*lambda[1,2]^2*n^3*lambda[2,1]*l^2+18568170*lambda[1,2]*n*lambda[2,2]*lambda[1,1]-98280*lambda[2,2]^2*l^5*lambda[1,1]^2+5862780*lambda[2,1]*l*lambda[2,2]-4452210*lambda[1,2]^2*l^2*lambda[2,1]^2+466560*lambda[2,2]^2*n^4*l^2+332640*lambda[2,2]*n^4*lambda[2,1]-62703072*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-37098720*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-10977984*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+39938004*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]+580608*lambda[1,2]^2*n^6*lambda[2,1]*l^2+717696*lambda[1,2]^2*n^3*lambda[2,1]*l^4+3782016*lambda[1,2]^2*n^4*lambda[2,1]*l^3+1630720*lambda[1,2]^2*n^8*lambda[2,1]^2*l-1628928*lambda[1,2]*n^7*lambda[2,2]*lambda[1,1]-39494592*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+12083456*lambda[1,2]^2*n^7*lambda[2,1]^2*l-13010112*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+179200*lambda[1,2]^2*n^7*lambda[2,1]^2*l^3+468160*lambda[1,2]^2*n^3*lambda[2,1]^2*l^5-20762802*lambda[1,2]^2*n*lambda[2,1]^2*l+4149824*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+187110*lambda[1,1]^2*n^2+387072*lambda[1,2]^2*n^5*lambda[2,1]*l^3+96768*lambda[1,2]^2*n^4*lambda[2,1]*l^4+52931792*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-940272*lambda[1,2]^2*n^3*lambda[2,1]^2*l+32117472*lambda[1,2]^2*n^4*lambda[2,1]*l^2+1413720*lambda[2,2]*n*lambda[2,1]*l^2+7039872*lambda[1,2]^2*n^5*lambda[2,1]*l^2+13010112*lambda[1,2]^2*n^3*lambda[2,1]*l^3+17968104*lambda[2,2]^2*n^2*l^3*lambda[1,1]+7559370*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+5604480*lambda[2,2]^2*n^6*lambda[1,1]*l+13010112*lambda[2,2]^2*n^3*lambda[1,1]*l^3-14526324*lambda[2,2]^2*n^2*lambda[1,1]+1091475*lambda[2,1]^2*n+1626912*lambda[2,2]^2*n^2*l^4*lambda[1,1]-19969002*n^2*lambda[2,2]^2*lambda[1,1]^2-20537280*lambda[2,2]*n^4*lambda[1,2]-311040*lambda[2,2]*n^6*lambda[1,2]-717696*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^4-96768*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^4-1413720*lambda[2,2]*l^2*lambda[1,1]*n-285120*lambda[2,1]^2*n^4*l^2*lambda[1,2]+12109680*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-358400*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-7559370*lambda[1,2]^2*l^2*lambda[2,1]+32427000*lambda[2,2]^2*n^2*l+19513440*lambda[2,2]^2*n^3*l-4095360*lambda[2,2]*n^5*lambda[1,2]-45297900*lambda[2,2]*n^2*lambda[1,2]+554400*lambda[2,1]*n^2*lambda[2,2]*l^3*lambda[1,1]-47437920*lambda[2,2]*n^3*lambda[1,2]+3160080*lambda[2,2]*n^3*lambda[2,1]+11065140*lambda[2,2]^2*n*l^2+3898125*lambda[2,1]^2*lambda[1,2]^2+2360160*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^2-95040*lambda[2,1]^2*n^6*lambda[1,2]+95040*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^3+285120*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l^2+10769220*lambda[2,2]*n^2*lambda[2,1]-13866930*n*lambda[2,2]*lambda[1,1]-1149435*lambda[2,2]^2*l^4*lambda[1,1]^2+12109680*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-6367680*lambda[2,1]^2*n^4*lambda[1,2]-14929200*lambda[2,1]^2*n^3*lambda[1,2]+1247400*lambda[1,2]*l^2*lambda[1,1]+2715930*lambda[2,1]*lambda[1,2]^2+138600*lambda[1,2]*l^3*lambda[1,1]*lambda[2,1]-554400*lambda[2,1]^2*n^2*l^3*lambda[1,2]-665280*n^3*lambda[2,2]*lambda[1,1]*l+367290*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-2360160*lambda[2,1]^2*n^3*l^2*lambda[1,2]-665280*n^3*lambda[2,1]*lambda[1,2]*l-4573800*n^2*lambda[2,1]*lambda[1,2]*l+66505104*lambda[2,2]^2*n^3*lambda[1,1]*l^2-14929200*n^3*lambda[2,2]*lambda[1,1]^2-29832304*n^3*lambda[2,2]^2*lambda[1,1]^2+484110*n*lambda[2,2]*lambda[1,1]^2-180198272*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+7039872*lambda[2,2]^2*n^5*lambda[1,1]*l^2-62960576*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-322560*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]+387072*lambda[2,2]^2*n^5*lambda[1,1]*l^3+367290*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+138600*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]-1251360*lambda[2,1]^2*n^5*lambda[1,2]+5002560*lambda[2,2]^2*n^4*l+10744920*lambda[2,2]^2*n^2*l^2+466560*lambda[2,2]^2*n^5*l-32117472*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-27720*lambda[1,2]^2*l^4*lambda[2,1]-387072*lambda[2,2]*n^5*lambda[2,1]*l^3*lambda[1,2]+580608*lambda[2,2]^2*n^6*lambda[1,1]*l^2-95040*lambda[2,1]^2*n^3*l^3*lambda[1,2]+1251360*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+95040*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+3862080*lambda[2,2]^2*n^3*l^2-5550930*lambda[2,2]*lambda[1,1]*lambda[2,1]-9979200*n*lambda[2,1]*lambda[1,2]*l-12109680*lambda[2,1]^2*n^3*lambda[1,2]*l-96768*lambda[2,2]*n^4*lambda[2,1]*l^4*lambda[1,2]-374220*lambda[2,1]*n*lambda[1,1]*l-92485120*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+187110*lambda[2,1]^2*n*l+41525604*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-179200*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-1626912*lambda[1,2]*n^2*lambda[2,2]*l^4*lambda[1,1]+8904420*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-17968104*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-5698560*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+285120*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l^2+3451546*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-358400*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-114100672*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-56317140*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-1412460*lambda[1,2]^2*l^3*lambda[2,1]-110923056*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-3782016*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^3-31712256*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-12079424*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-7690732*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-374220*lambda[2,1]*n^2*lambda[1,1]-997920*lambda[1,1]*l*lambda[2,1]-1149435*lambda[1,2]^2*l^4*lambda[2,1]^2+8742656*n^4*lambda[2,2]^2*lambda[1,1]^2-7039872*lambda[2,2]*n^5*lambda[2,1]*l^2*lambda[1,2]+39494592*lambda[2,2]^2*n^3*lambda[1,1]+57050336*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+17968104*lambda[1,2]^2*n^2*lambda[2,1]*l^3+669060*lambda[1,2]^2*l+3050460*lambda[1,2]^2*l^2+669060*lambda[2,2]^2*l+5550930*lambda[2,1]^2*lambda[1,2]-13010112*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+6367680*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-138600*lambda[2,1]^2*l^3*lambda[1,2]+24814184*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+31480288*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+42271416*lambda[1,2]^2*n^2*lambda[2,1]*l+161280*lambda[1,2]^2*n^4*lambda[2,1]^2*l^5+86853152*lambda[1,2]^2*n^4*lambda[2,1]^2*l+1251360*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]-833580*lambda[2,1]^2*n*l^3*lambda[1,2]-484110*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+6367680*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-68548224*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-27836928*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-332640*n^2*lambda[2,1]*l^2*lambda[1,2]+833580*lambda[2,1]*n*lambda[2,2]*l^3*lambda[1,1]-8299648*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-66505104*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-7039872*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^2-17485312*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-35840*lambda[1,2]*n^10*lambda[2,1]*lambda[2,2]*lambda[1,1]+1880544*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-1412460*lambda[2,2]^2*l^3*lambda[1,1]+10977984*lambda[2,2]^2*n^6*lambda[1,1]+1628928*lambda[2,2]^2*n^7*lambda[1,1]-387072*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^3-580608*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l^2+93940*lambda[1,2]*n*lambda[2,2]*l^5*lambda[1,1]*lambda[2,1]-105863584*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+3057120*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l-936320*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-24166912*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-4190760*lambda[2,2]^2*l^3*lambda[1,1]^2+187110*lambda[1,1]^2*l*n+37098720*lambda[2,2]^2*n^5*lambda[1,1]+62703072*lambda[2,2]^2*n^4*lambda[1,1]-95040*n^3*lambda[2,2]*lambda[1,1]^2*l^3+161280*n^4*lambda[2,2]^2*lambda[1,1]^2*l^5+468160*n^3*lambda[2,2]^2*lambda[1,1]^2*l^5+17920*n^5*lambda[2,2]^2*lambda[1,1]^2*l^5+6039712*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+3845366*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+2849280*n^7*lambda[2,2]^2*lambda[1,1]^2*l^2+179200*n^7*lambda[2,2]^2*lambda[1,1]^2*l^3+179200*n^8*lambda[2,2]^2*lambda[1,1]^2*l^2-53773952*n^2*lambda[2,2]^2*lambda[1,1]^2*l+1630720*n^8*lambda[2,2]^2*lambda[1,1]^2*l+90099136*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2+433440*n^2*lambda[2,2]^2*lambda[1,1]^2*l^5-96768*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-4573800*n^2*lambda[2,2]*lambda[1,1]*l-3000240*lambda[2,2]*n*lambda[1,2]*l^3-22130280*lambda[2,2]*n*lambda[1,2]*l^2+9979200*lambda[2,2]*n*lambda[2,1]*l+7055136*lambda[2,2]^2*n*l^3*lambda[1,1]+1079064*lambda[2,2]^2*n*l^4*lambda[1,1]-285120*lambda[2,1]^2*n^5*lambda[1,2]*l-3057120*lambda[2,1]^2*n^4*lambda[1,2]*l-2715930*lambda[2,2]*lambda[1,1]*lambda[1,2]-2715930*lambda[2,1]*lambda[1,2]*lambda[2,2]-367290*lambda[2,1]^2*l^2*lambda[1,2]+680400*lambda[1,2]^2*l^3+23718960*lambda[2,2]^2*n^3-7559370*lambda[2,2]^2*l^2*lambda[1,1]-9809100*lambda[2,2]^2*l*lambda[1,1]+56317140*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[3]:=6*(l+2*n+3)*(2*n+7)*(6+l+2*n)*(-374220*lambda[2,1]*l^2*lambda[1,2]-2307690*lambda[2,1]*lambda[1,2]*l-2307690*lambda[2,2]*l*lambda[1,1]-374220*lambda[2,2]*l^2*lambda[1,1]-2182950*lambda[2,1]*lambda[1,2]-2182950*lambda[2,2]*lambda[1,1]-1203552*lambda[2,2]*n^2*lambda[2,1]*l^4*lambda[1,2]-2058210*lambda[1,2]^2*l*lambda[2,1]-7818030*lambda[2,1]^2*n*lambda[1,2]-285120*n^5*lambda[2,2]*lambda[1,1]^2*l-8720064*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+25897088*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+47532576*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-9941922*n*lambda[2,2]^2*lambda[1,1]^2*l+44400752*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-529704*lambda[2,2]*n*lambda[2,1]*l^4*lambda[1,2]+3076920*lambda[2,2]*n^2*lambda[2,1]*l+935550*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+3657024*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+16097984*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+5740448*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4+89600*n^6*lambda[2,2]^2*lambda[1,1]^2*l^4+89600*n^9*lambda[2,2]^2*lambda[1,1]^2*l-8492220*n*lambda[2,2]*lambda[1,1]^2*l-25869600*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+26000336*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+11328576*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3+958720*n^5*lambda[2,2]^2*lambda[1,1]^2*l^4+2311680*n^6*lambda[2,2]^2*lambda[1,1]^2*l^3-33648192*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+187110*lambda[1,2]*l^5*lambda[2,2]*lambda[1,1]*lambda[2,1]+34917600*n^5*lambda[2,2]^2*lambda[1,1]^2+387072*lambda[2,2]^2*n^7*l*lambda[1,1]+11190960*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+443520*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^3+4080780*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+155520*lambda[1,2]^2*n^6-698880*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*lambda[1,1]+3273930*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+8492220*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-622720*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-69835200*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-5580288*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+38521656*lambda[2,2]^2*n^2*lambda[1,1]*l-7896852*n*lambda[2,2]^2*lambda[1,1]^2*l^3-14716818*n*lambda[2,2]^2*lambda[1,1]^2*l^2+665280*lambda[2,2]*n^3*lambda[2,1]*l-1467648*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-34287300*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+2307690*lambda[1,2]*l*lambda[1,1]-2931390*lambda[2,1]^2*lambda[1,2]*l-1917440*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4-179200*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4+11714304*lambda[1,2]^2*n^7*lambda[2,1]^2-35840*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^5-5040000*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l+34917600*lambda[1,2]^2*n^5*lambda[2,1]^2+19750016*lambda[1,2]^2*n^4*lambda[2,1]^2+2790144*lambda[1,2]^2*n^8*lambda[2,1]^2+27500352*lambda[1,2]^2*n^6*lambda[2,1]^2-72630*lambda[1,2]^2*n*lambda[2,1]+349440*n^9*lambda[2,2]^2*lambda[1,1]^2-10183140*lambda[2,1]^2*n^2*lambda[1,2]+11714304*n^7*lambda[2,2]^2*lambda[1,1]^2+2790144*n^8*lambda[2,2]^2*lambda[1,1]^2-2304315*lambda[1,2]^2*n*lambda[2,1]^2-4828842*lambda[1,2]^2*n^2*lambda[2,1]^2-249744*lambda[1,2]^2*n^3*lambda[2,1]^2+5758830*lambda[1,2]*n*lambda[1,1]+1916640*lambda[2,1]*n^3*lambda[2,2]*l^2*lambda[1,1]+95040*lambda[2,1]*n^3*lambda[2,2]*l^3*lambda[1,1]-3328056*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+8387280*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+124740*lambda[2,1]*l^4*lambda[1,2]*lambda[2,2]-332640*n^2*lambda[2,2]*lambda[1,1]*l^2-12971916*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-2502720*n^4*lambda[2,2]*lambda[1,1]^2*l-3273930*n*lambda[2,2]*lambda[1,1]^2*l^2-580608*lambda[2,2]*n^6*lambda[2,1]*l^2*lambda[1,2]-2304315*n*lambda[2,2]^2*lambda[1,1]^2-11190960*n^2*lambda[2,2]*lambda[1,1]^2*l-7785360*n^3*lambda[2,2]*lambda[1,1]^2*l-285120*n^4*lambda[2,2]*lambda[1,1]^2*l^2-1916640*n^3*lambda[2,2]*lambda[1,1]^2*l^2-4080780*n^2*lambda[2,2]*lambda[1,1]^2*l^2-4080780*lambda[2,1]^2*n^2*l^2*lambda[1,2]-637056*lambda[2,2]*n^3*lambda[2,1]*l^4*lambda[1,2]+29433636*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-3378816*lambda[2,2]*n^4*lambda[2,1]*l^3*lambda[1,2]-59851584*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-387072*lambda[1,2]*n^7*lambda[2,2]*l*lambda[1,1]+95040*lambda[1,2]*n^6*lambda[2,1]*lambda[1,1]-146165504*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+5176710*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-11190960*lambda[2,1]^2*n^2*lambda[1,2]*l+2058210*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+387072*lambda[1,2]^2*n^7*lambda[2,1]*l+2311680*lambda[1,2]^2*n^6*lambda[2,1]^2*l^3+25059456*lambda[1,2]^2*n^5*lambda[2,1]*l+5040000*lambda[1,2]^2*n^6*lambda[2,1]*l-933120*lambda[2,2]*n^4*lambda[1,2]*l^2-11480896*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-93555*lambda[1,2]^2*l^5*lambda[2,1]^2+4080780*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+11190960*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-3273930*lambda[2,1]^2*n*l^2*lambda[1,2]+155520*lambda[2,2]^2*n^3*l^3-1060290*lambda[1,2]*l*lambda[2,2]+725760*lambda[2,2]^2*n^2*l^3+155925*lambda[1,1]^2*l+187110*lambda[2,1]^2*n^2+935550*lambda[1,2]*lambda[2,2]+2182950*lambda[2,2]*lambda[2,1]-1559250*lambda[1,1]*lambda[2,1]+10492470*lambda[1,2]^2*n^2+865080*lambda[2,2]^2*n*l^3-810810*lambda[2,2]*l^2*lambda[1,1]^2-124740*lambda[2,2]^2*l^4*lambda[1,1]+27500352*n^6*lambda[2,2]^2*lambda[1,1]^2+2931390*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-933120*lambda[2,2]*n^5*lambda[1,2]*l-16532100*lambda[2,2]*n*lambda[1,2]*l-40728672*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]+935550*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-311040*lambda[2,2]*n^3*lambda[1,2]*l^3-71036496*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-3305610*lambda[1,2]^2*l^3*lambda[2,1]^2+374220*lambda[2,2]*l^2*lambda[2,1]+2182950*lambda[2,1]*lambda[1,2]*lambda[1,1]-2588355*lambda[2,2]^2*l*lambda[1,1]^2+25162272*lambda[2,2]^2*n^4*lambda[1,1]*l^2+285120*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]*l+6611220*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]-2931390*lambda[2,2]*l*lambda[1,1]^2-13325040*lambda[2,2]*n^2*lambda[1,2]*l^2-31922640*lambda[2,2]*n^2*lambda[1,2]*l-8190720*lambda[2,2]*n^4*lambda[1,2]*l+637056*lambda[2,2]^2*n^3*lambda[1,1]*l^4-1451520*lambda[2,2]*n^2*lambda[1,2]*l^3-6272640*lambda[2,2]*n^3*lambda[1,2]*l^2+2058210*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+1933470*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-95040*n^6*lambda[2,2]*lambda[1,1]^2+17920*n^10*lambda[2,2]^2*lambda[1,1]^2+96768*lambda[2,2]^2*n^4*lambda[1,1]*l^4+2931390*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-4553010*lambda[2,2]^2*l^2*lambda[1,1]^2+935550*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+124740*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]+1684800*lambda[1,2]^2*n^5+124740*lambda[2,2]^2*l^3+748440*lambda[2,2]^2*l^2+155925*lambda[2,1]^2*l+12016080*lambda[1,2]^2*n^3+4241160*lambda[1,2]*n*lambda[1,1]*l+665280*lambda[1,2]*n^3*lambda[1,1]*l+779625*lambda[2,1]^2-467775*lambda[1,2]^2+779625*lambda[1,1]^2-467775*lambda[2,2]^2+155520*lambda[2,2]^2*n^6+6639840*lambda[2,2]^2*n^4+1684800*lambda[2,2]^2*n^5+2784645*lambda[2,2]^2*n-2182950*lambda[2,2]*lambda[1,1]^2-467775*lambda[2,2]^2*lambda[1,1]^2-5040000*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]*l-25059456*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-59851584*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l+2502720*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l-11431224*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+8492220*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+3273930*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-38521656*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+96768*lambda[2,2]^2*n^8*lambda[1,1]+8266050*lambda[2,2]^2*n*l+725760*lambda[1,2]^2*n^2*l^3+865080*lambda[1,2]^2*n*l^3-387072*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]*l+10492470*lambda[2,2]^2*n^2+22854624*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+6629240*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+6639840*lambda[1,2]^2*n^4-249480*lambda[1,2]*l^3*lambda[2,2]-1496880*lambda[1,2]*l^2*lambda[2,2]-810810*lambda[2,1]*n*lambda[1,1]-914760*lambda[2,1]*l^2*lambda[1,2]*n-10183140*n^2*lambda[2,2]*lambda[1,1]^2-332640*n^4*lambda[2,1]*lambda[1,2]-22657152*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+285120*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]*l+7818030*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+33648192*lambda[1,2]^2*n^3*lambda[2,1]+8720064*lambda[1,2]^2*n^6*lambda[2,1]+349440*lambda[1,2]^2*n^9*lambda[2,1]^2+12971916*lambda[1,2]^2*n^2*lambda[2,1]+8266050*lambda[1,2]^2*n*l-4623360*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+499488*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+1467648*lambda[1,2]^2*n^7*lambda[2,1]+25869600*lambda[1,2]^2*n^5*lambda[2,1]-3100160*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-150132096*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+96768*lambda[1,2]^2*n^8*lambda[2,1]+2784645*lambda[1,2]^2*n-4241160*n*lambda[2,2]*lambda[1,1]*l+72630*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+6894054*lambda[2,2]^2*n*l^2*lambda[1,1]-8492220*lambda[2,1]^2*n*lambda[1,2]*l-6894054*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+10183140*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-5592096*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l+6894054*lambda[1,2]^2*n*lambda[2,1]*l^2+5592096*lambda[2,2]^2*n*l*lambda[1,1]-4781700*n^2*lambda[2,1]*lambda[1,2]-2162160*n^3*lambda[2,2]*lambda[1,1]-332640*n^4*lambda[2,2]*lambda[1,1]+1933470*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-4781700*n^2*lambda[2,2]*lambda[1,1]-5758830*n*lambda[2,1]*lambda[1,2]-935550*lambda[2,2]^2*lambda[1,1]+40728672*lambda[1,2]^2*n^4*lambda[2,1]+17920*lambda[1,2]^2*n^10*lambda[2,1]^2+155520*lambda[1,2]^2*n^3*l^3+332640*lambda[1,2]*n^4*lambda[1,1]-25162272*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2+4608630*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]-2588355*lambda[1,2]^2*l*lambda[2,1]^2-72630*lambda[2,2]^2*n*lambda[1,1]+5758830*lambda[2,2]*n*lambda[2,1]+2182950*lambda[1,2]*lambda[1,1]-32195968*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+5592096*lambda[1,2]^2*n*lambda[2,1]*l+8387280*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-90090*n*lambda[2,2]^2*lambda[1,1]^2*l^5-1571283*n*lambda[2,2]^2*lambda[1,1]^2*l^4-443520*n^2*lambda[2,2]*lambda[1,1]^2*l^3+3076920*lambda[1,2]*n^2*lambda[1,1]*l-11427312*lambda[1,2]^2*n^2*lambda[2,1]^2*l-3314620*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-24874560*lambda[2,2]*n^3*lambda[1,2]*l-445500*n*lambda[2,2]*lambda[1,1]^2*l^3+25059456*lambda[2,2]^2*n^5*lambda[1,1]*l+38778880*n^6*lambda[2,2]^2*lambda[1,1]^2*l+10811136*n^7*lambda[2,2]^2*lambda[1,1]^2*l+23508208*n^3*lambda[2,2]^2*lambda[1,1]^2*l-3314620*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+73082752*n^4*lambda[2,2]^2*lambda[1,1]^2*l+75066048*n^5*lambda[2,2]^2*lambda[1,1]^2*l+914760*lambda[1,2]*n*lambda[1,1]*l^2+529704*lambda[1,2]^2*n*lambda[2,1]*l^4-52000672*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-6894054*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]-5592096*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-44883504*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+71036496*lambda[1,2]^2*n^3*lambda[2,1]*l+1203552*lambda[1,2]^2*n^2*lambda[2,1]*l^4-12971916*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+16097984*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+59851584*lambda[1,2]^2*n^4*lambda[2,1]*l+89600*lambda[1,2]^2*n^6*lambda[2,1]^2*l^4+5740448*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+59851584*lambda[2,2]^2*n^4*lambda[1,1]*l+332640*lambda[1,2]*n^2*lambda[1,1]*l^2+34287300*lambda[1,2]^2*n^2*lambda[2,1]*l^2+3328056*lambda[1,2]^2*n*lambda[2,1]*l^3+10183140*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+89600*lambda[1,2]^2*n^9*lambda[2,1]^2*l-96768*lambda[1,2]*n^8*lambda[2,2]*lambda[1,1]+11328576*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+70947136*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+26000336*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+2705920*lambda[1,2]^2*n^7*lambda[2,1]^2*l^2+17920*lambda[1,2]^2*n^5*lambda[2,1]^2*l^5+179200*lambda[1,2]^2*n^8*lambda[2,1]^2*l^2+4828140*lambda[1,2]^2*n*l^2+466560*lambda[1,2]^2*n^4*l^2+466560*lambda[1,2]^2*n^5*l-90090*lambda[1,2]^2*n*lambda[2,1]^2*l^5-1571283*lambda[1,2]^2*n*lambda[2,1]^2*l^4-7896852*lambda[1,2]^2*n*lambda[2,1]^2*l^3+958720*lambda[1,2]^2*n^5*lambda[2,1]^2*l^4+71036496*lambda[2,2]^2*n^3*lambda[1,1]*l+15961320*lambda[1,2]^2*n^2*l+6662520*lambda[1,2]^2*n^2*l^2+4095360*lambda[1,2]^2*n^4*l+3136320*lambda[1,2]^2*n^3*l^2+12437280*lambda[1,2]^2*n^3*l+332640*lambda[2,2]*n^2*lambda[2,1]*l^2+3378816*lambda[2,2]^2*n^4*lambda[1,1]*l^3+445500*lambda[1,2]*n*lambda[1,1]*l^3*lambda[2,1]-38521656*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+4757872*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-529704*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]-3328056*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+405405*lambda[1,1]^2*n+4781700*lambda[1,2]*n^2*lambda[1,1]+2162160*lambda[1,2]*n^3*lambda[1,1]-4150080*n^4*lambda[2,2]*lambda[1,1]^2-1029600*n^5*lambda[2,2]*lambda[1,1]^2-5569290*lambda[2,2]*n*lambda[1,2]-2162160*n^3*lambda[2,1]*lambda[1,2]-62370*lambda[2,2]*l^3*lambda[1,1]^2+38778880*lambda[1,2]^2*n^6*lambda[2,1]^2*l+75066048*lambda[1,2]^2*n^5*lambda[2,1]^2*l-14716818*lambda[1,2]^2*n*lambda[2,1]^2*l^2+2528806*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+311360*lambda[1,2]^2*n^2*lambda[2,1]^2*l^5+44883504*lambda[1,2]^2*n^3*lambda[2,1]*l^2+72630*lambda[1,2]*n*lambda[2,2]*lambda[1,1]-93555*lambda[2,2]^2*l^5*lambda[1,1]^2+2307690*lambda[2,1]*l*lambda[2,2]-4553010*lambda[1,2]^2*l^2*lambda[2,1]^2+466560*lambda[2,2]^2*n^4*l^2+332640*lambda[2,2]*n^4*lambda[2,1]-40728672*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-25869600*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-8720064*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+9657684*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]+580608*lambda[1,2]^2*n^6*lambda[2,1]*l^2+637056*lambda[1,2]^2*n^3*lambda[2,1]*l^4+3378816*lambda[1,2]^2*n^4*lambda[2,1]*l^3+1550080*lambda[1,2]^2*n^8*lambda[2,1]^2*l-1467648*lambda[1,2]*n^7*lambda[2,2]*lambda[1,1]-33648192*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+10811136*lambda[1,2]^2*n^7*lambda[2,1]^2*l-10026432*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+179200*lambda[1,2]^2*n^7*lambda[2,1]^2*l^3+405440*lambda[1,2]^2*n^3*lambda[2,1]^2*l^5-9941922*lambda[1,2]^2*n*lambda[2,1]^2*l+3657024*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+187110*lambda[1,1]^2*n^2+387072*lambda[1,2]^2*n^5*lambda[2,1]*l^3+96768*lambda[1,2]^2*n^4*lambda[2,1]*l^4+44400752*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2+23508208*lambda[1,2]^2*n^3*lambda[2,1]^2*l+25162272*lambda[1,2]^2*n^4*lambda[2,1]*l^2+914760*lambda[2,2]*n*lambda[2,1]*l^2+6314112*lambda[1,2]^2*n^5*lambda[2,1]*l^2+10026432*lambda[1,2]^2*n^3*lambda[2,1]*l^3+11431224*lambda[2,2]^2*n^2*l^3*lambda[1,1]+1933470*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+5040000*lambda[2,2]^2*n^6*lambda[1,1]*l+10026432*lambda[2,2]^2*n^3*lambda[1,1]*l^3+12971916*lambda[2,2]^2*n^2*lambda[1,1]+405405*lambda[2,1]^2*n+1203552*lambda[2,2]^2*n^2*l^4*lambda[1,1]-4828842*n^2*lambda[2,2]^2*lambda[1,1]^2-13279680*lambda[2,2]*n^4*lambda[1,2]-311040*lambda[2,2]*n^6*lambda[1,2]-637056*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^4-96768*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^4-914760*lambda[2,2]*l^2*lambda[1,1]*n-285120*lambda[2,1]^2*n^4*l^2*lambda[1,2]+7785360*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-358400*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-1933470*lambda[1,2]^2*l^2*lambda[2,1]+15961320*lambda[2,2]^2*n^2*l+12437280*lambda[2,2]^2*n^3*l-3369600*lambda[2,2]*n^5*lambda[1,2]-20984940*lambda[2,2]*n^2*lambda[1,2]+443520*lambda[2,1]*n^2*lambda[2,2]*l^3*lambda[1,1]-24032160*lambda[2,2]*n^3*lambda[1,2]+2162160*lambda[2,2]*n^3*lambda[2,1]+4828140*lambda[2,2]^2*n*l^2-467775*lambda[2,1]^2*lambda[1,2]^2+1916640*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^2-95040*lambda[2,1]^2*n^6*lambda[1,2]+95040*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^3+285120*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l^2+4781700*lambda[2,2]*n^2*lambda[2,1]-5758830*n*lambda[2,2]*lambda[1,1]-966735*lambda[2,2]^2*l^4*lambda[1,1]^2+7785360*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-4150080*lambda[2,1]^2*n^4*lambda[1,2]-8387280*lambda[2,1]^2*n^3*lambda[1,2]+374220*lambda[1,2]*l^2*lambda[1,1]-935550*lambda[2,1]*lambda[1,2]^2+62370*lambda[1,2]*l^3*lambda[1,1]*lambda[2,1]-443520*lambda[2,1]^2*n^2*l^3*lambda[1,2]-665280*n^3*lambda[2,2]*lambda[1,1]*l+810810*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-1916640*lambda[2,1]^2*n^3*l^2*lambda[1,2]-665280*n^3*lambda[2,1]*lambda[1,2]*l-3076920*n^2*lambda[2,1]*lambda[1,2]*l+44883504*lambda[2,2]^2*n^3*lambda[1,1]*l^2-8387280*n^3*lambda[2,2]*lambda[1,1]^2-249744*n^3*lambda[2,2]^2*lambda[1,1]^2-7818030*n*lambda[2,2]*lambda[1,1]^2-141894272*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+6314112*lambda[2,2]^2*n^5*lambda[1,1]*l^2-51794176*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-304640*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]+387072*lambda[2,2]^2*n^5*lambda[1,1]*l^3+810810*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+62370*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]-1029600*lambda[2,1]^2*n^5*lambda[1,2]+4095360*lambda[2,2]^2*n^4*l+6662520*lambda[2,2]^2*n^2*l^2+466560*lambda[2,2]^2*n^5*l-25162272*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-124740*lambda[1,2]^2*l^4*lambda[2,1]-387072*lambda[2,2]*n^5*lambda[2,1]*l^3*lambda[1,2]+580608*lambda[2,2]^2*n^6*lambda[1,1]*l^2-95040*lambda[2,1]^2*n^3*l^3*lambda[1,2]+1029600*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+95040*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+3136320*lambda[2,2]^2*n^3*l^2+2182950*lambda[2,2]*lambda[1,1]*lambda[2,1]-4241160*n*lambda[2,1]*lambda[1,2]*l-7785360*lambda[2,1]^2*n^3*lambda[1,2]*l-96768*lambda[2,2]*n^4*lambda[2,1]*l^4*lambda[1,2]-374220*lambda[2,1]*n*lambda[1,1]*l-77557760*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+187110*lambda[2,1]^2*n*l+19883844*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-179200*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-1203552*lambda[1,2]*n^2*lambda[2,2]*l^4*lambda[1,1]+9106020*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-11431224*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-5411840*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+285120*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l^2+3142566*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-358400*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-95065152*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-34287300*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-935550*lambda[1,2]^2*l^3*lambda[2,1]-71036496*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-3378816*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^3-25059456*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-9515744*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-5057612*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-374220*lambda[2,1]*n^2*lambda[1,1]-311850*lambda[1,1]*l*lambda[2,1]-966735*lambda[1,2]^2*l^4*lambda[2,1]^2+19750016*n^4*lambda[2,2]^2*lambda[1,1]^2-6314112*lambda[2,2]*n^5*lambda[2,1]*l^2*lambda[1,2]+33648192*lambda[2,2]^2*n^3*lambda[1,1]+47532576*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+11431224*lambda[1,2]^2*n^2*lambda[2,1]*l^3+530145*lambda[1,2]^2*l+748440*lambda[1,2]^2*l^2+530145*lambda[2,2]^2*l-2182950*lambda[2,1]^2*lambda[1,2]-10026432*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+4150080*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-62370*lambda[2,1]^2*l^3*lambda[1,2]+15793704*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+25897088*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+38521656*lambda[1,2]^2*n^2*lambda[2,1]*l+152320*lambda[1,2]^2*n^4*lambda[2,1]^2*l^5+73082752*lambda[1,2]^2*n^4*lambda[2,1]^2*l+1029600*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]-445500*lambda[2,1]^2*n*l^3*lambda[1,2]+7818030*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+4150080*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-55000704*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-23428608*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-332640*n^2*lambda[2,1]*l^2*lambda[1,2]+445500*lambda[2,1]*n*lambda[2,2]*l^3*lambda[1,1]-7314048*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-44883504*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-6314112*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^2-39500032*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-35840*lambda[1,2]*n^10*lambda[2,1]*lambda[2,2]*lambda[1,1]-47016416*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-935550*lambda[2,2]^2*l^3*lambda[1,1]+8720064*lambda[2,2]^2*n^6*lambda[1,1]+1467648*lambda[2,2]^2*n^7*lambda[1,1]-387072*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^3-580608*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l^2+180180*lambda[1,2]*n*lambda[2,2]*l^5*lambda[1,1]*lambda[2,1]-88801504*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+2502720*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l-810880*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-21622272*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-3305610*lambda[2,2]^2*l^3*lambda[1,1]^2+187110*lambda[1,1]^2*l*n+25869600*lambda[2,2]^2*n^5*lambda[1,1]+40728672*lambda[2,2]^2*n^4*lambda[1,1]-95040*n^3*lambda[2,2]*lambda[1,1]^2*l^3+152320*n^4*lambda[2,2]^2*lambda[1,1]^2*l^5+405440*n^3*lambda[2,2]^2*lambda[1,1]^2*l^5+17920*n^5*lambda[2,2]^2*lambda[1,1]^2*l^5+4757872*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+2528806*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+2705920*n^7*lambda[2,2]^2*lambda[1,1]^2*l^2+179200*n^7*lambda[2,2]^2*lambda[1,1]^2*l^3+179200*n^8*lambda[2,2]^2*lambda[1,1]^2*l^2-11427312*n^2*lambda[2,2]^2*lambda[1,1]^2*l+1550080*n^8*lambda[2,2]^2*lambda[1,1]^2*l+70947136*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2+311360*n^2*lambda[2,2]^2*lambda[1,1]^2*l^5-96768*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-3076920*n^2*lambda[2,2]*lambda[1,1]*l-1730160*lambda[2,2]*n*lambda[1,2]*l^3-9656280*lambda[2,2]*n*lambda[1,2]*l^2+4241160*lambda[2,2]*n*lambda[2,1]*l+3328056*lambda[2,2]^2*n*l^3*lambda[1,1]+529704*lambda[2,2]^2*n*l^4*lambda[1,1]-285120*lambda[2,1]^2*n^5*lambda[1,2]*l-2502720*lambda[2,1]^2*n^4*lambda[1,2]*l+935550*lambda[2,2]*lambda[1,1]*lambda[1,2]+935550*lambda[2,1]*lambda[1,2]*lambda[2,2]-810810*lambda[2,1]^2*l^2*lambda[1,2]+124740*lambda[1,2]^2*l^3+12016080*lambda[2,2]^2*n^3-1933470*lambda[2,2]^2*l^2*lambda[1,1]-2058210*lambda[2,2]^2*l*lambda[1,1]+34287300*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[4]:=-(2*n+7)*(2*n+5)*(6+l+2*n)*(5+l+2*n)*(2*l-1+2*n)*(-374220*lambda[2,1]*lambda[1,2]*l-374220*lambda[2,2]*l*lambda[1,1]-561330*lambda[2,1]*lambda[1,2]-561330*lambda[2,2]*lambda[1,1]+3367980*lambda[1,2]^2*l*lambda[2,1]-1782000*lambda[2,1]^2*n*lambda[1,2]-48384*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+421120*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+779520*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2+14079168*n*lambda[2,2]^2*lambda[1,1]^2*l+12046272*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-374220*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+8960*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+53760*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+80640*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4-1425600*n*lambda[2,2]*lambda[1,1]^2*l-725760*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+1822912*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+35840*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3-11102400*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+6388480*n^5*lambda[2,2]^2*lambda[1,1]^2+689040*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+47520*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+213840*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+1425600*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-12776960*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-17920*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+15415056*lambda[2,2]^2*n^2*lambda[1,1]*l+2931264*n*lambda[2,2]^2*lambda[1,1]^2*l^3+10293408*n*lambda[2,2]^2*lambda[1,1]^2*l^2-4427568*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+374220*lambda[1,2]*l*lambda[1,1]-748440*lambda[2,1]^2*lambda[1,2]*l+179200*lambda[1,2]^2*n^7*lambda[2,1]^2+6388480*lambda[1,2]^2*n^5*lambda[2,1]^2+15769760*lambda[1,2]^2*n^4*lambda[2,1]^2+8960*lambda[1,2]^2*n^8*lambda[2,1]^2+1471232*lambda[1,2]^2*n^6*lambda[2,1]^2+8203680*lambda[1,2]^2*n*lambda[2,1]-1544400*lambda[2,1]^2*n^2*lambda[1,2]+179200*n^7*lambda[2,2]^2*lambda[1,1]^2+8960*n^8*lambda[2,2]^2*lambda[1,1]^2+6218640*lambda[1,2]^2*n*lambda[2,1]^2+16927728*lambda[1,2]^2*n^2*lambda[2,1]^2+22177600*lambda[1,2]^2*n^3*lambda[2,1]^2+831600*lambda[1,2]*n*lambda[1,1]-656208*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+475200*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-14276736*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-213840*n*lambda[2,2]*lambda[1,1]^2*l^2+6218640*n*lambda[2,2]^2*lambda[1,1]^2-689040*n^2*lambda[2,2]*lambda[1,1]^2*l-95040*n^3*lambda[2,2]*lambda[1,1]^2*l-47520*n^2*lambda[2,2]*lambda[1,1]^2*l^2-47520*lambda[2,1]^2*n^2*l^2*lambda[1,2]-20586816*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-1778112*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-30349312*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-4490640*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-689040*lambda[2,1]^2*n^2*lambda[1,2]*l-3367980*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+145152*lambda[1,2]^2*n^5*lambda[2,1]*l-161280*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+47520*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+689040*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-213840*lambda[2,1]^2*n*l^2*lambda[1,2]-2245320*lambda[1,2]*l*lambda[2,2]-1683990*lambda[1,2]*lambda[2,2]+561330*lambda[2,2]*lambda[2,1]-187110*lambda[1,1]*lambda[2,1]+2451600*lambda[1,2]^2*n^2-187110*lambda[2,2]*l^2*lambda[1,1]^2+1471232*n^6*lambda[2,2]^2*lambda[1,1]^2+748440*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-4514400*lambda[2,2]*n*lambda[1,2]*l-4134240*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-1683990*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-7905600*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l+748440*lambda[1,2]^2*l^3*lambda[2,1]^2+561330*lambda[2,1]*lambda[1,2]*lambda[1,1]+2245320*lambda[2,2]^2*l*lambda[1,1]^2+145152*lambda[2,2]^2*n^4*lambda[1,1]*l^2-1496880*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]-748440*lambda[2,2]*l*lambda[1,1]^2-155520*lambda[2,2]*n^2*lambda[1,2]*l^2-2255040*lambda[2,2]*n^2*lambda[1,2]*l-3367980*lambda[2,1]*lambda[1,2]*lambda[2,2]*l-2058210*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]+748440*lambda[1,2]*l*lambda[1,1]*lambda[2,1]+2058210*lambda[2,2]^2*l^2*lambda[1,1]^2-374220*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+374220*lambda[2,2]^2*l^2+777600*lambda[1,2]^2*n^3+166320*lambda[1,2]*n*lambda[1,1]*l+93555*lambda[2,1]^2+841995*lambda[1,2]^2+93555*lambda[1,1]^2+841995*lambda[2,2]^2+77760*lambda[2,2]^2*n^4+2538000*lambda[2,2]^2*n-561330*lambda[2,2]*lambda[1,1]^2+841995*lambda[2,2]^2*lambda[1,1]^2-145152*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-1778112*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l-326592*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+1425600*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+213840*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-15415056*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+2257200*lambda[2,2]^2*n*l+2451600*lambda[2,2]^2*n^2-59166176*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-33091168*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+77760*lambda[1,2]^2*n^4-748440*lambda[1,2]*l^2*lambda[2,2]-1544400*n^2*lambda[2,2]*lambda[1,1]^2-71680*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+1782000*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+11102400*lambda[1,2]^2*n^3*lambda[2,1]+48384*lambda[1,2]^2*n^6*lambda[2,1]+14276736*lambda[1,2]^2*n^2*lambda[2,1]+2257200*lambda[1,2]^2*n*l-44355200*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+725760*lambda[1,2]^2*n^5*lambda[2,1]-8558592*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+2538000*lambda[1,2]^2*n-166320*n*lambda[2,2]*lambda[1,1]*l-8203680*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+5476896*lambda[2,2]^2*n*l^2*lambda[1,1]-1425600*lambda[2,1]^2*n*lambda[1,2]*l-5476896*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+1544400*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-12620016*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l+5476896*lambda[1,2]^2*n*lambda[2,1]*l^2+12620016*lambda[2,2]^2*n*l*lambda[1,1]-166320*n^2*lambda[2,1]*lambda[1,2]-187110*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-166320*n^2*lambda[2,2]*lambda[1,1]-831600*n*lambda[2,1]*lambda[1,2]+1683990*lambda[2,2]^2*lambda[1,1]+4134240*lambda[1,2]^2*n^4*lambda[2,1]-145152*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-12437280*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+2245320*lambda[1,2]^2*l*lambda[2,1]^2+8203680*lambda[2,2]^2*n*lambda[1,1]+831600*lambda[2,2]*n*lambda[2,1]+561330*lambda[1,2]*lambda[1,1]-107520*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+12620016*lambda[1,2]^2*n*lambda[2,1]*l+475200*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]+277200*n*lambda[2,2]^2*lambda[1,1]^2*l^4+29583088*lambda[1,2]^2*n^2*lambda[2,1]^2*l+16545584*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-311040*lambda[2,2]*n^3*lambda[1,2]*l+145152*lambda[2,2]^2*n^5*lambda[1,1]*l+618240*n^6*lambda[2,2]^2*lambda[1,1]^2*l+35840*n^7*lambda[2,2]^2*lambda[1,1]^2*l+29174080*n^3*lambda[2,2]^2*lambda[1,1]^2*l+16545584*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+15174656*n^4*lambda[2,2]^2*lambda[1,1]^2*l+4279296*n^5*lambda[2,2]^2*lambda[1,1]^2*l-3645824*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-5476896*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]-12620016*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-1378944*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+7905600*lambda[1,2]^2*n^3*lambda[2,1]*l-14276736*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+53760*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+1778112*lambda[1,2]^2*n^4*lambda[2,1]*l+80640*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+1778112*lambda[2,2]^2*n^4*lambda[1,1]*l+4427568*lambda[1,2]^2*n^2*lambda[2,1]*l^2+656208*lambda[1,2]^2*n*lambda[2,1]*l^3+1544400*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+35840*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+4387936*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+1822912*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+349920*lambda[1,2]^2*n*l^2+277200*lambda[1,2]^2*n*lambda[2,1]^2*l^4+2931264*lambda[1,2]^2*n*lambda[2,1]^2*l^3+7905600*lambda[2,2]^2*n^3*lambda[1,1]*l+1127520*lambda[1,2]^2*n^2*l+77760*lambda[1,2]^2*n^2*l^2+155520*lambda[1,2]^2*n^3*l-15415056*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+3537296*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-656208*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+166320*lambda[1,2]*n^2*lambda[1,1]-47520*n^4*lambda[2,2]*lambda[1,1]^2-5076000*lambda[2,2]*n*lambda[1,2]+618240*lambda[1,2]^2*n^6*lambda[2,1]^2*l+4279296*lambda[1,2]^2*n^5*lambda[2,1]^2*l+10293408*lambda[1,2]^2*n*lambda[2,1]^2*l^2+243040*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+1378944*lambda[1,2]^2*n^3*lambda[2,1]*l^2-8203680*lambda[1,2]*n*lambda[2,2]*lambda[1,1]+374220*lambda[2,1]*l*lambda[2,2]+2058210*lambda[1,2]^2*l^2*lambda[2,1]^2-4134240*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-725760*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-48384*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]-33855456*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]-11102400*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+35840*lambda[1,2]^2*n^7*lambda[2,1]^2*l-48384*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+14079168*lambda[1,2]^2*n*lambda[2,1]^2*l+8960*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+12046272*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2+29174080*lambda[1,2]^2*n^3*lambda[2,1]^2*l+145152*lambda[1,2]^2*n^4*lambda[2,1]*l^2+48384*lambda[1,2]^2*n^3*lambda[2,1]*l^3+326592*lambda[2,2]^2*n^2*l^3*lambda[1,1]-2058210*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+48384*lambda[2,2]^2*n^3*lambda[1,1]*l^3+14276736*lambda[2,2]^2*n^2*lambda[1,1]+16927728*n^2*lambda[2,2]^2*lambda[1,1]^2-155520*lambda[2,2]*n^4*lambda[1,2]+95040*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l+2058210*lambda[1,2]^2*l^2*lambda[2,1]+1127520*lambda[2,2]^2*n^2*l+155520*lambda[2,2]^2*n^3*l-4903200*lambda[2,2]*n^2*lambda[1,2]-1555200*lambda[2,2]*n^3*lambda[1,2]+349920*lambda[2,2]^2*n*l^2+841995*lambda[2,1]^2*lambda[1,2]^2+166320*lambda[2,2]*n^2*lambda[2,1]-831600*n*lambda[2,2]*lambda[1,1]+93555*lambda[2,2]^2*l^4*lambda[1,1]^2+95040*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-47520*lambda[2,1]^2*n^4*lambda[1,2]-475200*lambda[2,1]^2*n^3*lambda[1,2]+1683990*lambda[2,1]*lambda[1,2]^2+187110*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]+1378944*lambda[2,2]^2*n^3*lambda[1,1]*l^2-475200*n^3*lambda[2,2]*lambda[1,1]^2+22177600*n^3*lambda[2,2]^2*lambda[1,1]^2-1782000*n*lambda[2,2]*lambda[1,1]^2-8775872*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-842240*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+187110*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+77760*lambda[2,2]^2*n^2*l^2-145152*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]+561330*lambda[2,2]*lambda[1,1]*lambda[2,1]-166320*n*lambda[2,1]*lambda[1,2]*l-95040*lambda[2,1]^2*n^3*lambda[1,2]*l-1236480*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-28158336*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-4116420*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-326592*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-554400*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-1559040*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-4427568*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]+374220*lambda[1,2]^2*l^3*lambda[2,1]-7905600*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-145152*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-7074592*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-486080*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+93555*lambda[1,2]^2*l^4*lambda[2,1]^2+15769760*n^4*lambda[2,2]^2*lambda[1,1]^2+11102400*lambda[2,2]^2*n^3*lambda[1,1]+779520*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+326592*lambda[1,2]^2*n^2*lambda[2,1]*l^3+1122660*lambda[1,2]^2*l+374220*lambda[1,2]^2*l^2+1122660*lambda[2,2]^2*l-561330*lambda[2,1]^2*lambda[1,2]-48384*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+47520*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-5862528*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+421120*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+15415056*lambda[1,2]^2*n^2*lambda[2,1]*l+15174656*lambda[1,2]^2*n^4*lambda[2,1]^2*l+1782000*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+47520*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-2942464*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-358400*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-17920*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-1378944*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-31539520*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-58348160*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+374220*lambda[2,2]^2*l^3*lambda[1,1]+48384*lambda[2,2]^2*n^6*lambda[1,1]-24092544*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-71680*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+748440*lambda[2,2]^2*l^3*lambda[1,1]^2+725760*lambda[2,2]^2*n^5*lambda[1,1]+4134240*lambda[2,2]^2*n^4*lambda[1,1]+3537296*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+243040*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+29583088*n^2*lambda[2,2]^2*lambda[1,1]^2*l+4387936*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-699840*lambda[2,2]*n*lambda[1,2]*l^2+166320*lambda[2,2]*n*lambda[2,1]*l+656208*lambda[2,2]^2*n*l^3*lambda[1,1]-1683990*lambda[2,2]*lambda[1,1]*lambda[1,2]-1683990*lambda[2,1]*lambda[1,2]*lambda[2,2]-187110*lambda[2,1]^2*l^2*lambda[1,2]+777600*lambda[2,2]^2*n^3+2058210*lambda[2,2]^2*l^2*lambda[1,1]+3367980*lambda[2,2]^2*l*lambda[1,1]+4427568*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  

Case(iii) α = 0

The ‘starting’ functions are given by

      l+1       3           3            2                                                               2                                           2                 2                                      2         2          2          2         4         4         4         4         4       2 4        2 4       3 4         4         2 4       34         4       2 4      2       2          4        3     2      4    2         3    2         2    2       4
Ψ1 = r   (80λ2,2l λ1,1- 80λ2,1l λ1,2- 587λ2,1l λ1,2- 1864λ2,1λ1,2l+1864 λ2,2lλ1,1- 143λ1,1- 1001 λ1,2- 48λ1,1l- 124λ1,2l- 622λ1,2l+143 λ2,1+1001 λ2,2+48 λ2,1l+124 λ2,2l

c[1] = n(n + 1)(4n + 3 + 2l)(2l + 4n + 5)(2n + 9 + 2l)(-480λ2,1λ1,2l - 480λ2,21,1 + 240λ2,1λ1,2 + 240λ2,2λ1,1 - 240λ1,22 2,1 + 200λ2,12 1,2 - 192λ2,2n6λ 2,1λ1,2 + 1056n4λ 2,22λ 1,12l3 + 2016n5λ 2,22λ 1,12l2 - 744nλ 2,22λ 1,12l + 2736n3λ 2,22λ 1,12l2 + 96λ 1,2l3λ 2,2λ1,1 + 48n4λ 2,22λ 1,12l4 + 288n6λ 2,22λ 1,12l2 + 192n3λ 2,22λ 1,12l4 - 720 2,2λ1,12l - 1440λ 2,2n5λ 2,1λ1,2 + 1632n3λ 2,22λ 1,12l3 + 192n5λ 2,22λ 1,12l3 - 1560λ 2,2n3λ 2,1λ1,2 + 2280n5λ 2,22λ 1,12 + 1120λ 1,2n2λ 2,1λ1,1l + 160λ1,2n2λ 2,1λ1,1l2 + 320λ 1,21,1l2λ 2,1 + 720λ1,21,12,1 - 4560λ1,2n5λ 2,1λ2,2λ1,1 - 96λ1,2n8λ 2,1λ2,2λ1,1 + 1296λ2,22n2λ 1,1l - 912nλ2,22λ 1,12l3 - 2040nλ 2,22λ 1,12l2 - 2880λ 2,2n2λ 2,1l2λ 1,2
+ 480λ1,21,1 + 240λ2,12λ 1,2l + 480λ1,22n7λ 2,12 + 2280λ 1,22n5λ 2,12 - 57λ 1,22n4λ 2,12 + 48λ 1,22n8λ 2,12 + 1704λ 1,22n6λ 2,12 - 480λ 1,22 2,1 - 920λ2,12n2λ 1,2 + 480n7λ 2,22λ 1,12 + 48n8λ 2,22λ 1,12 + 390λ 1,22nλ 2,12 - 669λ 1,22n2λ 2,12 - 2160λ 1,22n3λ 2,12 + 1200λ 1,21,1 - 288λ2,22,1l3λ 1,2 + 800λ2,1n3λ 2,2λ1,1 + 1992λ2,2n2λ 2,1λ1,2 - 3202,2λ1,12l2 + 390nλ 2,22λ 1,12 - 1120n2λ 2,2λ1,12l - 320n3λ 2,2λ1,12l - 160n2λ 2,2λ1,12l2 - 160λ 2,12n2l2λ 1,2 + 4080λ1,22,2l2λ 1,1λ2,1 - 3456λ1,2n4λ 2,2λ1,1l - 9456λ1,2n4λ 2,1λ2,2λ1,1l - 288λ1,22,2λ1,1λ2,1 - 1120λ2,12n2λ 1,2l + 240λ1,22,2λ1,1 + 576λ1,22n5λ 2,1l - 384λ1,2n3λ 2,1λ2,2l4λ 1,1 + 160λ2,1n2λ 2,2l2λ 1,1 + 1120λ2,1n2λ 2,21,1 - 320λ2,12nl2λ 1,2 + 768λ1,22,2 - 288λ1,2λ2,2 - 240λ2,2λ2,1 - 480λ1,1λ2,1 + 1280λ1,22n2 + 1704n6λ 2,22λ 1,12 - 240λ 2,21,1λ2,1 - 1920λ2,21,2l - 3312λ2,2n4λ 2,1λ1,2 - 288λ2,1λ1,2λ2,2λ1,1 - 5904λ2,2n3λ 2,1λ1,2l - 240λ1,22l3λ 2,12 - 240λ 2,1λ1,2λ1,1 + 144λ2,22lλ 1,12 + 576λ 2,22n4λ 1,1l2 + 480λ 1,2l3λ 2,2λ1,1λ2,1 + 240λ2,2lλ1,12
- 512λ2,2n2λ 1,2l2 - 3584λ 2,2n2λ 1,2l + 240λ2,1λ1,2λ2,2l + 624λ1,2l2λ 2,2λ1,1 - 240λ1,21,1λ2,1 - 192λ2,22l2λ 1,12 + 96λ 2,1l3λ 1,2λ2,2 + 192λ2,22l2 + 1280λ 1,22n3 + 480λ 1,21,1l + 240λ2,12 + 144λ 1,22 + 240λ 1,12 + 144λ 2,22 + 256λ 2,22n4 - 800λ 2,22n + 240λ 2,2λ1,12 + 144λ 2,22λ 1,12 - 576λ 2,2n5λ 2,1λ1,2l - 3456λ2,2n4λ 2,1λ1,2l - 576λ2,2n2λ 2,1l3λ 1,2 + 720λ2,12,21,1 + 320λ2,12,2l2λ 1,1 - 1296λ2,2n2λ 2,1λ1,2l + 960λ2,22nl + 1280λ 2,22n2 + 7440λ 1,2n2λ 2,1λ2,21,1 + 4128λ1,2n2λ 2,1λ2,2l2λ 1,1 + 256λ1,22n4 - 384λ 1,2l2λ 2,2 - 920n2λ 2,2λ1,12 - 384λ 1,2n5λ 2,1λ2,2λ1,1l3 - 200λ 2,12,2λ1,1 + 1560λ1,22n3λ 2,1 + 192λ1,22n6λ 2,1 - 1992λ1,22n2λ 2,1 + 960λ1,22nl + 4320λ 1,2n3λ 2,1λ2,2λ1,1 + 1440λ1,22n5λ 2,1 - 9504λ1,2n5λ 2,1λ2,2λ1,1l - 800λ1,22n - 480 2,2λ1,1l + 480λ2,22,1λ1,2 - 144λ2,22nl2λ 1,1 - 720λ2,12 1,2l + 144λ2,22,1l2λ 1,2 + 920λ2,1n2λ 2,2λ1,1
+ 2352λ2,22,1λ1,2l - 144λ1,22 2,1l2 - 2352λ 2,22nlλ 1,1 - 480n2λ 2,1λ1,2 + 96λ1,2l4λ 2,2λ1,1λ2,1 - 480n2λ 2,2λ1,1 - 12002,1λ1,2 + 288λ2,22λ 1,1 + 3312λ1,22n4λ 2,1 - 576λ1,2n4λ 2,2λ1,1l2 - 780λ 1,22,2λ1,1λ2,1 + 144λ1,22lλ 2,12 - 480λ 2,22 1,1 + 1200λ2,22,1 - 240λ1,2λ1,1 - 576λ1,2n6λ 2,1λ2,2λ1,1l2 - 2352λ 1,22 2,1l + 800λ1,2n3λ 2,1λ1,1 - 96nλ2,22λ 1,12l4 - 3720λ 1,22n2λ 2,12l - 2064λ 1,22n2λ 2,12l2 - 1024λ 2,2n3λ 1,2l + 576λ2,22n5λ 1,1l + 1632n6λ 2,22λ 1,12l + 192n7λ 2,22λ 1,12l - 1224n3λ 2,22λ 1,12l - 2064n2λ 2,22λ 1,12l2 + 4728n4λ 2,22λ 1,12l + 4752n5λ 2,22λ 1,12l - 3264λ 1,2n3λ 2,1λ2,2l3λ 1,1 + 144λ1,22,2l2λ 1,1 + 2352λ1,22,21,1 - 2592λ2,2n3λ 2,1l2λ 1,2 + 5904λ1,22n3λ 2,1l + 1992λ1,2n2λ 2,2λ1,1 + 288λ1,22n6λ 2,12l2 + 3456λ 1,22n4λ 2,1l + 192λ1,22n3λ 2,12l4 + 3456λ 2,22n4λ 1,1l + 2880λ1,22n2λ 2,1l2 + 288λ 1,22 2,1l3 + 920λ 1,2n2λ 2,1λ1,1 + 192λ1,22n5λ 2,12l3 + 4536λ 1,22n4λ 2,12l2 + 1632λ 1,22n3λ 2,12l3 + 512λ 1,22nl2 - 96λ 1,22nλ 2,12l4 - 912λ 1,22nλ 2,12l3 + 5904λ 2,22n3λ 1,1l + 1792λ1,22n2l + 256λ 1,22n2l2 + 512λ 1,22n3l
- 1296λ1,2n2λ 2,2λ1,1l + 192λ1,22n2λ 2,12l3 - 288λ 1,22,2l3λ 1,1 + 480λ1,2n2λ 1,1 - 160n4λ 2,2λ1,12 + 1600λ 2,21,2 + 1632λ1,22n6λ 2,12l + 4752λ 1,22n5λ 2,12l - 2040λ 1,22nλ 2,12l2 + 144λ 1,22n2λ 2,12l4 + 2592λ 1,22n3λ 2,1l2 + 480λ 1,22,2λ1,1 + 480λ2,12,2 - 192λ1,22l2λ 2,12 - 3312λ 1,2n4λ 2,2λ1,1 - 1440λ1,2n5λ 2,2λ1,1 - 192λ1,2n6λ 2,2λ1,1 + 1338λ1,2n2λ 2,1λ2,2λ1,1 - 1560λ1,2n3λ 2,2λ1,1 + 192λ1,22n7λ 2,12l - 192λ 1,2n3λ 2,2λ1,1l3 - 744λ 1,22nλ 2,12l + 48λ 1,22n4λ 2,12l4 + 2736λ 1,22n3λ 2,12l2 - 1224λ 1,22n3λ 2,12l + 576λ 1,22n4λ 2,1l2 + 192λ 1,22n3λ 2,1l3 + 576λ 2,22n2l3λ 1,1 + 624λ2,1λ1,2λ2,2l2 + 192λ 2,22n3λ 1,1l3 - 1992λ 2,22n2λ 1,1 - 669n2λ 2,22λ 1,12 - 512λ 2,2n4λ 1,2 + 320λ1,2n3λ 2,1λ1,1l - 624λ1,22l2λ 2,1 + 1792λ2,22n2l + 512λ 2,22n3l - 2560λ 2,2n2λ 1,2
- 2560λ2,2n3λ 1,2 + 512λ2,22nl2 + 144λ 2,12λ 1,22 + 480λ 2,2n2λ 2,1 - 12002,2λ1,1 - 48λ2,22l4λ 1,12 + 320λ 2,1n3λ 2,2λ1,1l - 160λ2,12n4λ 1,2 - 800λ2,12n3λ 1,2 + 288λ2,1λ1,22 + 2592λ 2,22n3λ 1,1l2 - 800n3λ 2,2λ1,12 - 2160n3λ 2,22λ 1,12 + 200 2,2λ1,12 - 9072λ 1,2n4λ 2,1λ2,2l2λ 1,1 - 2112λ1,2n4λ 2,1λ2,2l3λ 1,1 + 256λ2,22n2l2 - 576λ 2,2n4λ 2,1l2λ 1,2 - 240λ2,2λ1,1λ2,1 - 4802,1λ1,2l - 320λ2,12n3λ 1,2l - 3264λ1,2n6λ 2,1λ2,2λ1,1l + 1488λ1,22,21,1λ2,1 + 384λ1,2l2λ 2,2λ1,1λ2,1 - 576λ1,2n2λ 2,2l3λ 1,1 + 192λ1,22,2l4λ 1,1λ2,1 - 4032λ1,2n5λ 2,1λ2,2λ1,1l2 - 2880λ 1,2n2λ 2,2l2λ 1,1 - 96λ1,22l3λ 2,1 - 5904λ1,2n3λ 2,2λ1,1l - 576λ1,2n5λ 2,2λ1,1l - 384λ1,2n2λ 2,1λ2,2l3λ 1,1 - 288λ1,2n2λ 2,1λ2,2l4λ 1,1 - 48λ1,22l4λ 2,12 - 57n4λ 2,22λ 1,12
+ 1560λ2,22n3λ 1,1 + 2016λ1,22n5λ 2,12l2 + 576λ 1,22n2λ 2,1l3 - 384λ 1,22l + 192λ 1,22l2 - 384λ 2,22l + 240λ 2,12λ 1,2 - 192λ2,2n3λ 2,1l3λ 1,2 + 160λ2,1n4λ 2,2λ1,1 + 1824λ1,22,2l3λ 1,1λ2,1 + 1056λ1,22n4λ 2,12l3 + 1296λ 1,22n2λ 2,1l + 4728λ1,22n4λ 2,12l - 200λ 1,21,1λ2,1 + 160λ1,2n4λ 2,1λ1,1 - 3408λ1,2n6λ 2,1λ2,2λ1,1 - 960λ1,2n7λ 2,1λ2,2λ1,1 - 96λ1,2n4λ 2,1λ2,2l4λ 1,1 - 2592λ1,2n3λ 2,2λ1,1l2 + 114λ 1,2n4λ 2,1λ2,2λ1,1 + 2448λ1,2n3λ 2,1λ2,21,1 - 96λ2,22l3λ 1,1 + 192λ2,22n6λ 1,1 - 5472λ1,2n3λ 2,1λ2,2l2λ 1,1 - 384λ1,2n7λ 2,1λ2,2λ1,1l - 240λ2,22l3λ 1,12 + 1440λ 2,22n5λ 1,1 + 3312λ2,22n4λ 1,1 + 192n2λ 2,22λ 1,12l3 + 144n2λ 2,22λ 1,12l4 - 3720n2λ 2,22λ 1,12l + 4536n4λ 2,22λ 1,12l2 - 1024λ 2,21,2l2 + 480λ 2,22,1l + 288λ2,22nl3λ 1,1 - 288λ2,2λ1,1λ1,2 - 288λ2,1λ1,2λ2,2 + 1280λ2,22n3 - 624λ 2,22l2λ 1,1 - 240λ2,22 1,1 + 2880λ2,22n2l2λ 1,1)
c[2] = -3(9 + 2l + 4n)(-2560λ2,1l2λ 1,2 - 10880λ2,1λ1,2l - 10880λ2,21,1 - 2560λ2,2l2λ 1,1 - 5440λ2,1λ1,2 - 5440λ2,2λ1,1 - 4416λ2,2n2λ 2,1l4λ 1,2 - 17536λ1,22 2,1 + 2960λ2,12 1,2 - 960n5λ 2,2λ1,12l - 32768λ 2,2n6λ 2,1λ1,2 + 99792n4λ 2,22λ 1,12l3 + 187752n5λ 2,22λ 1,12l2 - 35828nλ 2,22λ 1,12l + 60912n3λ 2,22λ 1,12l2 - 1728λ 2,22,1l4λ 1,2 + 11520λ2,2n2λ 2,1l + 6528λ1,2l3λ 2,2λ1,1 + 15856n4λ 2,22λ 1,12l4 + 71440n6λ 2,22λ 1,12l2 + 20816n3λ 2,22λ 1,12l4 + 480n6λ 2,22λ 1,12l4 + 480n9λ 2,22λ 1,12l - 18000 2,2λ1,12l - 94176λ 2,2n5λ 2,1λ1,2 + 74688n3λ 2,22λ 1,12l3 + 49872n5λ 2,22λ 1,12l3 + 4656n5λ 2,22λ 1,12l4 + 11264n6λ 2,22λ 1,12l3 - 58408λ 2,2n3λ 2,1λ1,2 + 704λ1,2l5λ 2,2λ1,1λ2,1 + 82731n5λ 2,22λ 1,12 + 1536λ 2,22n7 1,1 + 43440λ1,2n2λ 2,1λ1,1l + 1600λ1,2n2λ 2,1λ1,1l3 + 16320λ 1,2n2λ 2,1λ1,1l2 + 512λ 1,22n6 - 3424λ 1,2n9λ 2,1λ2,2λ1,1 + 12320λ1,21,1l2λ 2,1 + 18000λ1,21,12,1
- 1728λ1,2n2λ 2,1λ2,2l5λ 1,1 - 165462λ1,2n5λ 2,1λ2,2λ1,1 - 24960λ1,2n8λ 2,1λ2,2λ1,1 + 47472λ2,22n2λ 1,1l - 47664nλ2,22λ 1,12l3 - 81008nλ 2,22λ 1,12l2 + 1920λ 2,2n3λ 2,1l - 5632λ2,2n7λ 2,1λ1,2 - 102192λ2,2n2λ 2,1l2λ 1,2 + 10880λ1,21,1 + 5520λ2,12λ 1,2l - 9312λ1,2n5λ 2,1λ2,2λ1,1l4 - 960λ 1,2n6λ 2,1λ2,2λ1,1l4 + 47160λ 1,22n7λ 2,12 - 192λ 1,2n5λ 2,1λ2,2λ1,1l5 - 19328λ 1,2n6λ 2,2λ1,1l + 82731λ1,22n5λ 2,12 - 18165λ 1,22n4λ 2,12 + 12480λ 1,22n8λ 2,12 + 94638λ 1,22n6λ 2,12 - 30296λ 1,22 2,1 + 1712n9λ 2,22λ 1,12 - 24960λ 2,12n2λ 1,2 + 47160n7λ 2,22λ 1,12 + 12480n8λ 2,22λ 1,12 + 14382λ 1,22nλ 2,12 - 31809λ 1,22n2λ 2,12 - 81185λ 1,22n3λ 2,12 + 26640λ 1,21,1 + 6880λ2,1n3λ 2,2l2λ 1,1 + 320λ2,1n3λ 2,2l3λ 1,1 - 6976λ2,22,1l3λ 1,2 + 32520λ2,1n3λ 2,2λ1,1 + 640λ2,1l4λ 1,2λ2,2 - 960n2λ 2,2λ1,1l2 + 38928λ 2,2n2λ 2,1λ1,2 - 8960n4λ 2,2λ1,12l - 12320 2,2λ1,12l2 - 2304λ 2,2n6λ 2,1l2λ 1,2 + 14382nλ2,22λ 1,12 - 43440n2λ 2,2λ1,12l - 30640n3λ 2,2λ1,12l - 960n4λ 2,2λ1,12l2 - 6880n3λ 2,2λ1,12l2 - 16320n2λ 2,2λ1,12l2 - 16320λ 2,12n2l2λ 1,2 - 2432λ2,2n3λ 2,1l4λ 1,2 + 162016λ1,22,2l2λ 1,1λ2,1 - 12928λ2,2n4λ 2,1l3λ 1,2 - 217248λ1,2n4λ 2,2λ1,1l - 1536λ1,2n7λ 2,21,1 + 320λ1,2n6λ 2,1λ1,1 - 309692λ1,2n4λ 2,1λ2,2λ1,1l - 12480λ1,22,2λ1,1λ2,1 - 43440λ2,12n2λ 1,2l + 17536λ1,22,2λ1,1 + 1536λ1,22n7λ 2,1l + 11264λ1,22n6λ 2,12l3 + 94080λ 1,22n5λ 2,1l + 19328λ1,22n6λ 2,1l
- 3072λ2,2n4λ 1,2l2 - 41632λ 1,2n3λ 2,1λ2,2l4λ 1,1 - 352λ1,22l5λ 2,12 + 16320λ 2,1n2λ 2,2l2λ 1,1 + 43440λ2,1n2λ 2,21,1 - 12320λ2,12nl2λ 1,2 + 512λ2,22n3l3 - 1728λ 1,22,2 + 2560λ2,22n2l3 + 1120λ 1,12l + 480λ 2,12n2 + 3360λ 1,2λ2,2 + 5440λ2,2λ2,1 - 8480λ1,1λ2,1 + 42048λ1,22n2 + 3456λ 2,22nl3 + 960λ 2,2l2λ 1,12 - 640λ 2,22l4λ 1,1 + 94638n6λ 2,22λ 1,12 - 5520λ 2,21,1λ2,1 - 3072λ2,2n5λ 1,2l - 67392λ2,21,2l - 131176λ2,2n4λ 2,1λ1,2 - 15120λ2,1λ1,2λ2,2λ1,1 - 1024λ2,2n3λ 1,2l3 - 224096λ 2,2n3λ 2,1λ1,2l - 10320λ1,22l3λ 2,12 + 2560λ 2,2l2λ 2,1 - 9960λ2,1λ1,2λ1,1 + 6240λ2,22lλ 1,12 + 94272λ 2,22n4λ 1,1l2 + 960λ 2,1n5λ 2,2λ1,1l + 20640λ1,2l3λ 2,2λ1,1λ2,1 + 5520λ2,2lλ1,12 - 52224λ 2,2n2λ 1,2l2 - 136704λ 2,2n2λ 1,2l - 28672λ2,2n4λ 1,2l + 2432λ2,22n3λ 1,1l4 - 5120λ 2,2n2λ 1,2l3 - 22016λ 2,2n3λ 1,2l2 + 17536λ 2,1λ1,2λ2,2l + 19584λ1,2l2λ 2,2λ1,1 - 320n6λ 2,2λ1,12 + 96n10λ 2,22λ 1,12 + 384λ 2,22n4λ 1,1l4 - 5520λ 1,21,1λ2,1 - 8584λ2,22l2λ 1,12 + 6528λ 2,1l3λ 1,2λ2,2 + 640λ1,2l4λ 2,2λ1,1 + 5888λ1,22n5
+ 1152λ2,22l3 + 4416λ 2,22l2 + 1120λ 2,12l + 50880λ 1,22n3 + 21760λ 1,21,1l + 1920λ1,2n3λ 1,1l + 4240λ2,12 - 1680λ 1,22 + 4240λ 1,12 - 1680λ 2,22 + 512λ 2,22n6 + 25600λ 2,22n4 + 5888λ 2,22n5 + 6352λ 2,22n + 9960λ 2,2λ1,12 + 7560λ 2,22λ 1,12 - 19328λ 2,2n6λ 2,1λ1,2l - 94080λ2,2n5λ 2,1λ1,2l - 217248λ2,2n4λ 2,1λ1,2l + 8960λ2,1n4λ 2,2λ1,1l - 40512λ2,2n2λ 2,1l3λ 1,2 + 18000λ2,12,21,1 + 12320λ2,12,2l2λ 1,1 - 47472λ2,2n2λ 2,1λ1,2l + 384λ2,22n8λ 1,1 + 33696λ2,22nl + 2560λ 1,22n2l3 + 3456λ 1,22nl3 - 1536λ 2,2n7λ 2,1λ1,2l + 42048λ2,22n2 + 287724λ 1,2n2λ 2,1λ2,21,1 + 227280λ1,2n2λ 2,1λ2,2l2λ 1,1 + 25600λ1,22n4 - 2304λ 1,2l3λ 2,2 - 8832λ1,2l2λ 2,2 - 4960λ2,11,1 - 3520λ2,1l2λ 1,2n - 24960n2λ 2,2λ1,12 - 960n4λ 2,1λ1,2 - 99744λ1,2n5λ 2,1λ2,2λ1,1l3 + 960λ 1,2n5λ 2,1λ1,1l - 2960λ2,12,2λ1,1 + 58408λ1,22n3λ 2,1 + 32768λ1,22n6λ 2,1 + 1712λ1,22n9λ 2,12 - 38928λ 1,22n2λ 2,1 + 33696λ1,22nl - 22528λ 1,2n6λ 2,1λ2,2λ1,1l3 + 162370λ 1,2n3λ 2,1λ2,2λ1,1 + 5632λ1,22n7λ 2,1 + 94176λ1,22n5λ 2,1 - 15168λ1,2n8λ 2,1λ2,2λ1,1l - 506796λ1,2n5λ 2,1λ2,2λ1,1l + 384λ1,22n8λ 2,1 + 6352λ1,22n - 21760 2,2λ1,1l + 30296λ2,22,1λ1,2 - 11472λ2,22nl2λ 1,1 - 18000λ2,12 1,2l + 11472λ2,22,1l2λ 1,2 + 24960λ2,1n2λ 2,2λ1,1 + 57744λ2,22,1λ1,2l
- 11472λ1,22 2,1l2 - 57744λ 2,22nlλ 1,1 - 23760n2λ 2,1λ1,2 - 8000n3λ 2,2λ1,1 - 960n4λ 2,2λ1,1 + 6816λ1,2l4λ 2,2λ1,1λ2,1 - 23760n2λ 2,2λ1,1 - 266402,1λ1,2 + 5880λ2,22λ 1,1 + 131176λ1,22n4λ 2,1 + 96λ1,22n10λ 2,12 + 512λ 1,22n3l3 + 960λ 1,2n4λ 1,1 - 94272λ1,2n4λ 2,2λ1,1l2 - 28764λ 1,22,2λ1,1λ2,1 + 6240λ1,22lλ 2,12 - 30296λ 2,22 1,1 + 26640λ2,22,1 + 5440λ1,2λ1,1 - 142880λ1,2n6λ 2,1λ2,2λ1,1l2 - 57744λ 1,22 2,1l + 32520λ1,2n3λ 2,1λ1,1 - 800nλ2,22λ 1,12l5 - 10736nλ 2,22λ 1,12l4 - 1600n2λ 2,2λ1,12l3 + 11520λ 1,2n2λ 1,1l - 143862λ1,22n2λ 2,12l - 113640λ 1,22n2λ 2,12l2 - 96512λ 2,2n3λ 1,2l - 19202,2λ1,12l3 + 94080λ 2,22n5λ 1,1l + 155072n6λ 2,22λ 1,12l + 48208n7λ 2,22λ 1,12l - 84698n3λ 2,22λ 1,12l
- 113640n2λ 2,22λ 1,12l2 + 154846n4λ 2,22λ 1,12l + 253398n5λ 2,22λ 1,12l + 3520λ 1,21,1l2 + 1728λ 1,22 2,1l4 - 149376λ 1,2n3λ 2,1λ2,2l3λ 1,1 + 11472λ1,22,2l2λ 1,1 + 57744λ1,22,21,1 - 161856λ2,2n3λ 2,1l2λ 1,2 + 224096λ1,22n3λ 2,1l + 4416λ1,22n2λ 2,1l4 + 38928λ 1,2n2λ 2,2λ1,1 + 71440λ1,22n6λ 2,12l2 + 217248λ 1,22n4λ 2,1l + 480λ1,22n6λ 2,12l4 + 20816λ 1,22n3λ 2,12l4 + 217248λ 2,22n4λ 1,1l + 960λ1,2n2λ 1,1l2 + 102192λ 1,22n2λ 2,1l2 + 6976λ 1,22 2,1l3 + 24960λ 1,2n2λ 2,1λ1,1 + 480λ1,22n9λ 2,12l - 384λ 1,2n8λ 2,2λ1,1 + 49872λ1,22n5λ 2,12l3 + 229432λ 1,22n4λ 2,12l2 + 74688λ 1,22n3λ 2,12l3 + 13216λ 1,22n7λ 2,12l2 + 96λ 1,22n5λ 2,12l5 + 960λ 1,22n8λ 2,12l2 + 22208λ 1,22nl2 + 1536λ 1,22n4l2 + 1536λ 1,22n5l - 800λ 1,22nλ 2,12l5 - 10736λ 1,22nλ 2,12l4 - 47664λ 1,22nλ 2,12l3 + 4656λ 1,22n5λ 2,12l4 + 224096λ 2,22n3λ 1,1l + 68352λ1,22n2l + 26112λ 1,22n2l2 + 14336λ 1,22n4l + 11008λ 1,22n3l2 + 48256λ 1,22n3l + 960λ 2,2n2λ 2,1l2 + 12928λ 2,22n4λ 1,1l3 + 1920λ 1,21,1l3λ 2,1 - 47472λ1,2n2λ 2,2λ1,1l - 21312λ1,22n2λ 2,12l3 - 1728λ 1,22,2l4λ 1,1 - 6976λ1,22,2l3λ 1,1 + 2480λ1,12n + 23760λ 1,2n2λ 1,1 + 8000λ1,2n3λ 1,1 - 16240n4λ 2,2λ1,12 - 3680n5λ 2,2λ1,12 - 12704λ 2,21,2 - 8000n3λ 2,1λ1,2 + 155072λ1,22n6λ 2,12l + 253398λ 1,22n5λ 2,12l - 81008λ 1,22nλ 2,12l2 + 3216λ 1,22n2λ 2,12l4 + 864λ 1,22n2λ 2,12l5
+ 161856λ1,22n3λ 2,1l2 + 30296λ 1,22,2λ1,1 - 352λ2,22l5λ 1,12 + 10880λ 2,12,2 - 8584λ1,22l2λ 2,12 + 1536λ 2,22n4l2 + 960λ 2,2n4λ 2,1 - 131176λ1,2n4λ 2,2λ1,1 - 94176λ1,2n5λ 2,2λ1,1 - 32768λ1,2n6λ 2,2λ1,1 + 63618λ1,2n2λ 2,1λ2,2λ1,1 + 2304λ1,22n6λ 2,1l2 + 2432λ 1,22n3λ 2,1l4 + 12928λ 1,22n4λ 2,1l3 + 7584λ 1,22n8λ 2,12l - 5632λ 1,2n7λ 2,2λ1,1 - 58408λ1,2n3λ 2,2λ1,1 + 48208λ1,22n7λ 2,12l - 37376λ 1,2n3λ 2,2λ1,1l3 + 960λ 1,22n7λ 2,12l3 + 1696λ 1,22n3λ 2,12l5 - 35828λ 1,22nλ 2,12l + 15856λ 1,22n4λ 2,12l4 + 480λ 1,12n2 + 1536λ 1,22n5λ 2,1l3 + 384λ 1,22n4λ 2,1l4 + 60912λ 1,22n3λ 2,12l2 - 84698λ 1,22n3λ 2,12l + 94272λ 1,22n4λ 2,1l2 + 3520λ 2,22,1l2 + 24192λ 1,22n5λ 2,1l2 + 37376λ 1,22n3λ 2,1l3
+ 40512λ2,22n2l3λ 1,1 + 19584λ2,1λ1,2λ2,2l2 + 19328λ 2,22n6λ 1,1l + 37376λ2,22n3λ 1,1l3 - 38928λ 2,22n2λ 1,1 + 2480λ2,12n + 4416λ 2,22n2l4λ 1,1 - 31809n2λ 2,22λ 1,12 - 51200λ 2,2n4λ 1,2 - 1024λ2,2n6λ 1,2 - 2432λ1,2n3λ 2,2λ1,1l4 - 384λ 1,2n4λ 2,2λ1,1l4 - 3520λ 2,2l2λ 1,1n - 960λ2,12n4l2λ 1,2 + 30640λ1,2n3λ 2,1λ1,1l - 1920λ1,2n7λ 2,1λ2,2λ1,1l3 - 19584λ 1,22l2λ 2,1 + 68352λ2,22n2l + 48256λ 2,22n3l - 11776λ 2,2n5λ 1,2 - 84096λ2,2n2λ 1,2 + 1600λ2,1n2λ 2,2l3λ 1,1 - 101760λ2,2n3λ 1,2 + 8000λ2,2n3λ 2,1 + 22208λ2,22nl2 + 7560λ 2,12λ 1,22 + 6880λ 1,2n3λ 2,1λ1,1l2 - 320λ 2,12n6λ 1,2 + 320λ1,2n3λ 2,1λ1,1l3 + 960λ 2,1n4λ 2,2λ1,1l2 + 23760λ 2,2n2λ 2,1 - 266402,2λ1,1 - 3408λ2,22l4λ 1,12 + 30640λ 2,1n3λ 2,2λ1,1l - 16240λ2,12n4λ 1,2 - 32520λ2,12n3λ 1,2 + 2560λ1,2l2λ 1,1 + 5880λ2,1λ1,22 - 1600λ 2,12n2l3λ 1,2 - 1920n3λ 2,2λ1,1l - 960λ2,2l2λ 1,1λ2,1 - 6880λ2,12n3l2λ 1,2 - 1920n3λ 2,1λ1,2l - 11520n2λ 2,1λ1,2l
+ 161856λ2,22n3λ 1,1l2 - 32520n3λ 2,2λ1,12 - 81185n3λ 2,22λ 1,12 + 2960 2,2λ1,12 - 458864λ 1,2n4λ 2,1λ2,2l2λ 1,1 + 24192λ2,22n5λ 1,1l2 - 199584λ 1,2n4λ 2,1λ2,2l3λ 1,1 - 1472λ1,2n4λ 2,1λ2,2l5λ 1,1 + 1536λ2,22n5λ 1,1l3 - 960λ 1,2l2λ 1,1λ2,1 - 3680λ2,12n5λ 1,2 + 14336λ2,22n4l + 26112λ 2,22n2l2 + 1536λ 2,22n5l - 94272λ 2,2n4λ 2,1l2λ 1,2 - 640λ1,22l4λ 2,1 - 1536λ2,2n5λ 2,1l3λ 1,2 + 2304λ2,22n6λ 1,1l2 - 320λ 2,12n3l3λ 1,2 + 3680λ2,1n5λ 2,2λ1,1 + 320λ2,1n6λ 2,2λ1,1 + 11008λ2,22n3l2 - 9960λ 2,2λ1,1λ2,1 - 217602,1λ1,2l - 30640λ2,12n3λ 1,2l - 384λ2,2n4λ 2,1l4λ 1,2 - 960λ2,11,1l - 310144λ1,2n6λ 2,1λ2,2λ1,1l + 480λ2,12nl + 71656λ 1,22,21,1λ2,1 - 960λ1,2n9λ 2,1λ2,21,1 - 4416λ1,2n2λ 2,2l4λ 1,1 + 17168λ1,2l2λ 2,2λ1,1λ2,1 - 40512λ1,2n2λ 2,2l3λ 1,1 - 26432λ1,2n7λ 2,1λ2,2λ1,1l2
+ 960λ1,2n4λ 2,1λ1,1l2 + 21472λ 1,22,2l4λ 1,1λ2,1 - 1920λ1,2n8λ 2,1λ2,2λ1,1l2 - 375504λ 1,2n5λ 2,1λ2,2λ1,1l2 - 102192λ 1,2n2λ 2,2l2λ 1,1 - 6528λ1,22l3λ 2,1 - 224096λ1,2n3λ 2,2λ1,1l - 12928λ1,2n4λ 2,2λ1,1l3 - 94080λ 1,2n5λ 2,2λ1,1l + 42624λ1,2n2λ 2,1λ2,2l3λ 1,1 - 6432λ1,2n2λ 2,1λ2,2l4λ 1,1 - 960λ2,1n2λ 1,1 - 2240λ1,12,1 - 3408λ1,22l4λ 2,12 - 18165n4λ 2,22λ 1,12 - 24192λ 2,2n5λ 2,1l2λ 1,2 + 58408λ2,22n3λ 1,1 + 187752λ1,22n5λ 2,12l2 + 40512λ 1,22n2λ 2,1l3 + 864λ 1,22l + 4416λ 1,22l2 + 864λ 2,22l + 9960λ 2,12λ 1,2 - 37376λ2,2n3λ 2,1l3λ 1,2 + 16240λ2,1n4λ 2,2λ1,1 + 95328λ1,22,2l3λ 1,1λ2,1 + 99792λ1,22n4λ 2,12l3 + 47472λ 1,22n2λ 2,1l + 736λ1,22n4λ 2,12l5 + 154846λ 1,22n4λ 2,12l
+ 3680λ1,2n5λ 2,1λ1,1 - 1920λ2,12nl3λ 1,2 - 2960λ1,21,1λ2,1 + 16240λ1,2n4λ 2,1λ1,1 - 189276λ1,2n6λ 2,1λ2,2λ1,1 - 94320λ1,2n7λ 2,1λ2,2λ1,1 - 960n2λ 2,1l2λ 1,2 + 1920λ2,12,2l3λ 1,1 - 31712λ1,2n4λ 2,1λ2,2l4λ 1,1 - 161856λ1,2n3λ 2,2λ1,1l2 - 24192λ 1,2n5λ 2,2λ1,1l2 + 36330λ 1,2n4λ 2,1λ2,2λ1,1 - 192λ1,2n10λ 2,1λ2,2λ1,1 + 169396λ1,2n3λ 2,1λ2,21,1 - 6528λ2,22l3λ 1,1 + 32768λ2,22n6λ 1,1 + 5632λ2,22n7λ 1,1 - 1536λ1,2n5λ 2,2λ1,1l3 - 2304λ 1,2n6λ 2,2λ1,1l2 + 1600λ 1,22,2l5λ 1,1λ2,1 - 121824λ1,2n3λ 2,1λ2,2l2λ 1,1 + 8960λ1,2n4λ 2,1λ1,1l - 3392λ1,2n3λ 2,1λ2,2l5λ 1,1
- 96416λ1,2n7λ 2,1λ2,2λ1,1l - 10320λ2,22l3λ 1,12 + 480λ 1,12ln + 94176λ 2,22n5λ 1,1 + 131176λ2,22n4λ 1,1 - 320n3λ 2,2λ1,12l3 + 736n4λ 2,22λ 1,12l5 + 1696n3λ 2,22λ 1,12l5 + 96n5λ 2,22λ 1,12l5 - 21312n2λ 2,22λ 1,12l3 + 3216n2λ 2,22λ 1,12l4 + 13216n7λ 2,22λ 1,12l2 + 960n7λ 2,22λ 1,12l3 + 960n8λ 2,22λ 1,12l2 - 143862n2λ 2,22λ 1,12l + 7584n8λ 2,22λ 1,12l + 229432n4λ 2,22λ 1,12l2 + 864n2λ 2,22λ 1,12l5 - 384λ 2,2n8λ 2,1λ1,2 - 11520n2λ 2,2λ1,1l - 6912λ2,21,2l3 - 44416λ 2,21,2l2 + 21760λ 2,22,1l + 6976λ2,22nl3λ 1,1 + 1728λ2,22nl4λ 1,1 - 960λ2,12n5λ 1,2l - 8960λ2,12n4λ 1,2l - 5880λ2,2λ1,1λ1,2 - 5880λ2,1λ1,2λ2,2 + 960λ2,12l2λ 1,2 + 1152λ1,22l3 + 50880λ 2,22n3 - 19584λ 2,22l2λ 1,1 - 17536λ2,22 1,1 + 102192λ2,22n2l2λ 1,1)n(4n + 3 + 2l)
c[3] = 3(2l + 4n + 5)(n + 3)(11 + 2l + 4n)(-640λ2,1l2λ 1,2 - 3840λ2,1λ1,2l - 3840λ2,21,1 - 640λ2,2l2λ 1,1 - 4320λ2,1λ1,2 - 4320λ2,2λ1,1 - 3264λ2,2n2λ 2,1l4λ 1,2 - 4320λ1,22 2,1 - 15000λ2,12 1,2 - 960n5λ 2,2λ1,12l - 26496λ 2,2n6λ 2,1λ1,2 + 85152n4λ 2,22λ 1,12l3 + 162408n5λ 2,22λ 1,12l2 - 21672nλ 2,22λ 1,12l + 55360n3λ 2,22λ 1,12l2 - 576λ 2,22,1l4λ 1,2 + 7680λ2,2n2λ 2,1l + 4480λ1,2l3λ 2,2λ1,1 + 14336n4λ 2,22λ 1,12l4 + 65392n6λ 2,22λ 1,12l2 + 17136n3λ 2,22λ 1,12l4 + 480n6λ 2,22λ 1,12l4 + 480n9λ 2,22λ 1,12l - 15680 2,2λ1,12l - 67104λ 2,2n5λ 2,1λ1,2 + 58208n3λ 2,22λ 1,12l3 + 45456n5λ 2,22λ 1,12l3 + 4464n5λ 2,22λ 1,12l4 + 10816n6λ 2,22λ 1,12l3 - 54040λ 2,2n3λ 2,1λ1,2 + 640λ1,2l5λ 2,2λ1,1λ2,1 + 73047n5λ 2,22λ 1,12 + 1536λ 2,22n7 1,1 + 24000λ1,2n2λ 2,1λ1,1l + 1280λ1,2n2λ 2,1λ1,1l3 + 10080λ 1,2n2λ 2,1λ1,1l2
+ 512λ1,22n6 - 3296λ 1,2n9λ 2,1λ2,2λ1,1 + 6400λ1,21,1l2λ 2,1 + 15680λ1,21,12,1 - 1152λ1,2n2λ 2,1λ2,2l5λ 1,1 - 146094λ1,2n5λ 2,1λ2,2λ1,1 - 22944λ1,2n8λ 2,1λ2,2λ1,1 + 52176λ2,22n2λ 1,1l - 36192nλ2,22λ 1,12l3 - 52152nλ 2,22λ 1,12l2 + 1920λ 2,2n3λ 2,1l - 5120λ2,2n7λ 2,1λ1,2 - 60720λ2,2n2λ 2,1l2λ 1,2 + 3840λ1,21,1 - 5280λ2,12λ 1,2l - 8928λ1,2n5λ 2,1λ2,2λ1,1l4 - 960λ 1,2n6λ 2,1λ2,2λ1,1l4 + 41208λ 1,22n7λ 2,12 - 192λ 1,2n5λ 2,1λ2,2λ1,1l5 - 17536λ 1,2n6λ 2,2λ1,1l + 73047λ1,22n5λ 2,12 + 12348λ 1,22n4λ 2,12 + 11472λ 1,22n8λ 2,12 + 79350λ 1,22n6λ 2,12 + 2016λ 1,22 2,1 + 1648n9λ 2,22λ 1,12 - 19640λ 2,12n2λ 1,2 + 41208n7λ 2,22λ 1,12 + 11472n8λ 2,22λ 1,12 + 360λ 1,22nλ 2,12 - 8226λ 1,22n2λ 2,12 - 22303λ 1,22n3λ 2,12 + 10320λ 1,21,1 + 5600λ2,1n3λ 2,2l2λ 1,1 + 320λ2,1n3λ 2,2l3λ 1,1 - 1216λ2,22,1l3λ 1,2 + 18440λ2,1n3λ 2,2λ1,1 + 640λ2,1l4λ 1,2λ2,2 - 960n2λ 2,2λ1,1l2 - 16344λ 2,2n2λ 2,1λ1,2 - 7360n4λ 2,2λ1,12l - 6400 2,2λ1,12l2 - 2304λ 2,2n6λ 2,1l2λ 1,2 + 360nλ2,22λ 1,12 - 24000n2λ 2,2λ1,12l - 19760n3λ 2,2λ1,12l - 960n4λ 2,2λ1,12l2 - 5600n3λ 2,2λ1,12l2 - 10080n2λ 2,2λ1,12l2 - 10080λ 2,12n2l2λ 1,2 - 2176λ2,2n3λ 2,1l4λ 1,2 + 104304λ1,22,2l2λ 1,1λ2,1 - 11648λ2,2n4λ 2,1l3λ 1,2 - 152928λ1,2n4λ 2,2λ1,1l - 1536λ1,2n7λ 2,21,1 + 320λ1,2n6λ 2,1λ1,1 - 275832λ1,2n4λ 2,1λ2,2λ1,1l + 8640λ1,22,2λ1,1λ2,1 - 24000λ2,12n2λ 1,2l + 4320λ1,22,2λ1,1 + 1536λ1,22n7λ 2,1l + 10816λ1,22n6λ 2,12l3 + 75648λ 1,22n5λ 2,1l + 17536λ1,22n6λ 2,1l
- 3072λ2,2n4λ 1,2l2 - 34272λ 1,2n3λ 2,1λ2,2l4λ 1,1 - 320λ1,22l5λ 2,12 + 10080λ 2,1n2λ 2,2l2λ 1,1 + 24000λ2,1n2λ 2,21,1 - 6400λ2,12nl2λ 1,2 + 512λ2,22n3l3 + 2048λ 2,22n2l3 + 320λ 1,12l + 480λ 2,12n2 + 4320λ 2,2λ2,1 - 2880λ1,1λ2,1 + 17408λ1,22n2 + 1920λ 2,22nl3 - 960λ 2,2l2λ 1,12 - 640λ 2,22l4λ 1,1 + 79350n6λ 2,22λ 1,12 + 5280λ 2,21,1λ2,1 - 3072λ2,2n5λ 1,2l - 24640λ2,21,2l - 86376λ2,2n4λ 2,1λ1,2 - 1024λ2,2n3λ 1,2l3 - 144480λ 2,2n3λ 2,1λ1,2l - 9440λ1,22l3λ 2,12 + 640λ 2,2l2λ 2,1 + 4320λ2,1λ1,2λ1,1 - 4320λ2,22lλ 1,12 + 75072λ 2,22n4λ 1,1l2 + 960λ 2,1n5λ 2,2λ1,1l + 18880λ1,2l3λ 2,2λ1,1λ2,1 - 5280λ2,2lλ1,12 - 32256λ 2,2n2λ 1,2l2 - 65280λ 2,2n2λ 1,2l - 23552λ2,2n4λ 1,2l + 2176λ2,22n3λ 1,1l4 - 4096λ 2,2n2λ 1,2l3 - 17920λ 2,2n3λ 1,2l2 + 4320λ 2,1λ1,2λ2,2l + 8160λ1,2l2λ 2,2λ1,1 - 320n6λ 2,2λ1,12 + 96n10λ 2,22λ 1,12 + 384λ 2,22n4λ 1,1l4 + 5280λ 1,21,1λ2,1 - 11040λ2,22l2λ 1,12
+ 4480λ2,1l3λ 1,2λ2,2 + 640λ1,2l4λ 2,2λ1,1 + 4864λ1,22n5 + 320λ 2,12l + 25280λ 1,22n3 + 8960λ 1,21,1l + 1920λ1,2n3λ 1,1l + 1440λ2,12 + 1440λ 1,12 + 512λ 2,22n6 + 16640λ 2,22n4 + 4864λ 2,22n5 + 4176λ 2,22n - 4320λ 2,2λ1,12 - 17536λ 2,2n6λ 2,1λ1,2l - 75648λ2,2n5λ 2,1λ1,2l - 152928λ2,2n4λ 2,1λ1,2l + 7360λ2,1n4λ 2,2λ1,1l - 25536λ2,2n2λ 2,1l3λ 1,2 + 15680λ2,12,21,1 + 6400λ2,12,2l2λ 1,1 - 52176λ2,2n2λ 2,1λ1,2l + 384λ2,22n8λ 1,1 + 12320λ2,22nl + 2048λ 1,22n2l3 + 1920λ 1,22nl3 - 1536λ 2,2n7λ 2,1λ1,2l + 17408λ2,22n2 + 121704λ 1,2n2λ 2,1λ2,21,1 + 133968λ1,2n2λ 2,1λ2,2l2λ 1,1 + 16640λ1,22n4 - 1760λ 2,11,1
- 2240λ2,1l2λ 1,2n - 19640n2λ 2,2λ1,12 - 960n4λ 2,1λ1,2 - 90912λ1,2n5λ 2,1λ2,2λ1,1l3 + 960λ 1,2n5λ 2,1λ1,1l + 15000λ2,12,2λ1,1 + 54040λ1,22n3λ 2,1 + 26496λ1,22n6λ 2,1 + 1648λ1,22n9λ 2,12 + 16344λ 1,22n2λ 2,1 + 12320λ1,22nl - 21632λ 1,2n6λ 2,1λ2,2λ1,1l3 + 44606λ 1,2n3λ 2,1λ2,2λ1,1 + 5120λ1,22n7λ 2,1 + 67104λ1,22n5λ 2,1 - 14592λ1,2n8λ 2,1λ2,2λ1,1l - 422220λ1,2n5λ 2,1λ2,2λ1,1l + 384λ1,22n8λ 2,1 + 4176λ1,22n - 8960 2,2λ1,1l - 2016λ2,22,1λ1,2 - 2448λ2,22nl2λ 1,1 - 15680λ2,12 1,2l + 2448λ2,22,1l2λ 1,2 + 19640λ2,1n2λ 2,2λ1,1 + 624λ2,22,1λ1,2l - 2448λ1,22 2,1l2 - 624λ 2,22nlλ 1,1 - 10320n2λ 2,1λ1,2 - 5440n3λ 2,2λ1,1 - 960n4λ 2,2λ1,1 + 6080λ1,2l4λ 2,2λ1,1λ2,1 - 10320n2λ 2,2λ1,1
- 103202,1λ1,2 + 86376λ1,22n4λ 2,1 + 96λ1,22n10λ 2,12 + 512λ 1,22n3l3 + 960λ 1,2n4λ 1,1 - 75072λ1,2n4λ 2,2λ1,1l2 - 720λ 1,22,2λ1,1λ2,1 - 4320λ1,22lλ 2,12 + 2016λ 2,22 1,1 + 10320λ2,22,1 + 4320λ1,2λ1,1 - 130784λ1,2n6λ 2,1λ2,2λ1,1l2 - 624λ 1,22 2,1l + 18440λ1,2n3λ 2,1λ1,1 - 800nλ2,22λ 1,12l5 - 9392nλ 2,22λ 1,12l4 - 1280n2λ 2,2λ1,12l3 + 7680λ 1,2n2λ 1,1l - 60852λ1,22n2λ 2,12l - 66984λ 1,22n2λ 2,12l2 - 61696λ 2,2n3λ 1,2l - 9602,2λ1,12l3 + 75648λ 2,22n5λ 1,1l + 135024n6λ 2,22λ 1,12l + 44240n7λ 2,22λ 1,12l - 18902n3λ 2,22λ 1,12l - 66984n2λ 2,22λ 1,12l2 + 137916n4λ 2,22λ 1,12l + 211110n5λ 2,22λ 1,12l + 2240λ 1,21,1l2 + 576λ 1,22 2,1l4 - 116416λ 1,2n3λ 2,1λ2,2l3λ 1,1 + 2448λ1,22,2l2λ 1,1 + 624λ1,22,21,1 - 110784λ2,2n3λ 2,1l2λ 1,2 + 144480λ1,22n3λ 2,1l + 3264λ1,22n2λ 2,1l4 - 16344λ 1,2n2λ 2,2λ1,1 + 65392λ1,22n6λ 2,12l2 + 152928λ 1,22n4λ 2,1l + 480λ1,22n6λ 2,12l4 + 17136λ 1,22n3λ 2,12l4 + 152928λ 2,22n4λ 1,1l + 960λ1,2n2λ 1,1l2 + 60720λ 1,22n2λ 2,1l2 + 1216λ 1,22 2,1l3 + 19640λ 1,2n2λ 2,1λ1,1 + 480λ1,22n9λ 2,12l - 384λ 1,2n8λ 2,2λ1,1 + 45456λ1,22n5λ 2,12l3 + 188112λ 1,22n4λ 2,12l2 + 58208λ 1,22n3λ 2,12l3 + 12704λ 1,22n7λ 2,12l2 + 96λ 1,22n5λ 2,12l5 + 960λ 1,22n8λ 2,12l2 + 8896λ 1,22nl2 + 1536λ 1,22n4l2 + 1536λ 1,22n5l - 800λ 1,22nλ 2,12l5 - 9392λ 1,22nλ 2,12l4
- 36192λ1,22nλ 2,12l3 + 4464λ 1,22n5λ 2,12l4 + 144480λ 2,22n3λ 1,1l + 32640λ1,22n2l + 16128λ 1,22n2l2 + 11776λ 1,22n4l + 8960λ 1,22n3l2 + 30848λ 1,22n3l + 960λ 2,2n2λ 2,1l2 + 11648λ 2,22n4λ 1,1l3 + 960λ 1,21,1l3λ 2,1 - 52176λ1,2n2λ 2,2λ1,1l - 18240λ1,22n2λ 2,12l3 - 576λ 1,22,2l4λ 1,1 - 1216λ1,22,2l3λ 1,1 + 880λ1,12n + 10320λ 1,2n2λ 1,1 + 5440λ1,2n3λ 1,1 - 10640n4λ 2,2λ1,12 - 3040n5λ 2,2λ1,12 - 8352λ 2,21,2 - 5440n3λ 2,1λ1,2 + 135024λ1,22n6λ 2,12l + 211110λ 1,22n5λ 2,12l - 52152λ 1,22nλ 2,12l2 + 1056λ 1,22n2λ 2,12l4 + 576λ 1,22n2λ 2,12l5 + 110784λ 1,22n3λ 2,1l2 - 2016λ 1,22,2λ1,1 - 320λ2,22l5λ 1,12 + 3840λ 2,12,2 - 11040λ1,22l2λ 2,12 + 1536λ 2,22n4l2 + 960λ 2,2n4λ 2,1 - 86376λ1,2n4λ 2,2λ1,1 - 67104λ1,2n5λ 2,2λ1,1 - 26496λ1,2n6λ 2,2λ1,1 + 16452λ1,2n2λ 2,1λ2,2λ1,1 + 2304λ1,22n6λ 2,1l2 + 2176λ 1,22n3λ 2,1l4 + 11648λ 1,22n4λ 2,1l3 + 7296λ 1,22n8λ 2,12l - 5120λ 1,2n7λ 2,2λ1,1 - 54040λ1,2n3λ 2,2λ1,1 + 44240λ1,22n7λ 2,12l - 29184λ 1,2n3λ 2,2λ1,1l3 + 960λ 1,22n7λ 2,12l3 + 1504λ 1,22n3λ 2,12l5
- 21672λ1,22nλ 2,12l + 14336λ 1,22n4λ 2,12l4 + 480λ 1,12n2 + 1536λ 1,22n5λ 2,1l3 + 384λ 1,22n4λ 2,1l4 + 55360λ 1,22n3λ 2,12l2 - 18902λ 1,22n3λ 2,12l + 75072λ 1,22n4λ 2,1l2 + 2240λ 2,22,1l2 + 21888λ 1,22n5λ 2,1l2 + 29184λ 1,22n3λ 2,1l3 + 25536λ 2,22n2l3λ 1,1 + 8160λ2,1λ1,2λ2,2l2 + 17536λ 2,22n6λ 1,1l + 29184λ2,22n3λ 1,1l3 + 16344λ 2,22n2λ 1,1 + 880λ2,12n + 3264λ 2,22n2l4λ 1,1 - 8226n2λ 2,22λ 1,12 - 33280λ 2,2n4λ 1,2 - 1024λ2,2n6λ 1,2 - 2176λ1,2n3λ 2,2λ1,1l4 - 384λ 1,2n4λ 2,2λ1,1l4 - 2240λ 2,2l2λ 1,1n - 960λ2,12n4l2λ 1,2 + 19760λ1,2n3λ 2,1λ1,1l - 1920λ1,2n7λ 2,1λ2,2λ1,1l3 - 8160λ 1,22l2λ 2,1 + 32640λ2,22n2l + 30848λ 2,22n3l - 9728λ 2,2n5λ 1,2 - 34816λ2,2n2λ 1,2 + 1280λ2,1n2λ 2,2l3λ 1,1 - 50560λ2,2n3λ 1,2 + 5440λ2,2n3λ 2,1 + 8896λ2,22nl2 + 5600λ 1,2n3λ 2,1λ1,1l2 - 320λ 2,12n6λ 1,2 + 320λ1,2n3λ 2,1λ1,1l3 + 960λ 2,1n4λ 2,2λ1,1l2 + 10320λ 2,2n2λ 2,1 - 103202,2λ1,1 - 3040λ2,22l4λ 1,12 + 19760λ 2,1n3λ 2,2λ1,1l - 10640λ2,12n4λ 1,2 - 18440λ2,12n3λ 1,2 + 640λ1,2l2λ 1,1 - 1280λ2,12n2l3λ 1,2 - 1920n3λ 2,2λ1,1l + 960λ2,2l2λ 1,1λ2,1 - 5600λ2,12n3l2λ 1,2 - 1920n3λ 2,1λ1,2l - 7680n2λ 2,1λ1,2l + 110784λ2,22n3λ 1,1l2 - 18440n3λ 2,2λ1,12 - 22303n3λ 2,22λ 1,12 - 15000 2,2λ1,12
- 376224λ1,2n4λ 2,1λ2,2l2λ 1,1 + 21888λ2,22n5λ 1,1l2 - 170304λ 1,2n4λ 2,1λ2,2l3λ 1,1 - 1408λ1,2n4λ 2,1λ2,2l5λ 1,1 + 1536λ2,22n5λ 1,1l3 + 960λ 1,2l2λ 1,1λ2,1 - 3040λ2,12n5λ 1,2 + 11776λ2,22n4l + 16128λ 2,22n2l2 + 1536λ 2,22n5l - 75072λ 2,2n4λ 2,1l2λ 1,2 - 640λ1,22l4λ 2,1 - 1536λ2,2n5λ 2,1l3λ 1,2 + 2304λ2,22n6λ 1,1l2 - 320λ 2,12n3l3λ 1,2 + 3040λ2,1n5λ 2,2λ1,1 + 320λ2,1n6λ 2,2λ1,1 + 8960λ2,22n3l2 + 4320λ 2,2λ1,1λ2,1 - 89602,1λ1,2l - 19760λ2,12n3λ 1,2l - 384λ2,2n4λ 2,1l4λ 1,2 - 960λ2,11,1l - 270048λ1,2n6λ 2,1λ2,2λ1,1l + 480λ2,12nl + 43344λ 1,22,21,1λ2,1 - 960λ1,2n9λ 2,1λ2,21,1 - 3264λ1,2n2λ 2,2l4λ 1,1 + 22080λ1,2l2λ 2,2λ1,1λ2,1 - 25536λ1,2n2λ 2,2l3λ 1,1 - 25408λ1,2n7λ 2,1λ2,2λ1,1l2 + 960λ 1,2n4λ 2,1λ1,1l2 + 18784λ 1,22,2l4λ 1,1λ2,1 - 1920λ1,2n8λ 2,1λ2,2λ1,1l2 - 324816λ 1,2n5λ 2,1λ2,2λ1,1l2 - 60720λ 1,2n2λ 2,2l2λ 1,1 - 4480λ1,22l3λ 2,1 - 144480λ1,2n3λ 2,2λ1,1l - 11648λ1,2n4λ 2,2λ1,1l3 - 75648λ 1,2n5λ 2,2λ1,1l + 36480λ1,2n2λ 2,1λ2,2l3λ 1,1
- 2112λ1,2n2λ 2,1λ2,2l4λ 1,1 - 960λ2,1n2λ 1,1 - 640λ1,12,1 - 3040λ1,22l4λ 2,12 + 12348n4λ 2,22λ 1,12 - 21888λ 2,2n5λ 2,1l2λ 1,2 + 54040λ2,22n3λ 1,1 + 162408λ1,22n5λ 2,12l2 + 25536λ 1,22n2λ 2,1l3 - 4320λ 2,12λ 1,2 - 29184λ2,2n3λ 2,1l3λ 1,2 + 10640λ2,1n4λ 2,2λ1,1 + 72384λ1,22,2l3λ 1,1λ2,1 + 85152λ1,22n4λ 2,12l3 + 52176λ 1,22n2λ 2,1l + 704λ1,22n4λ 2,12l5 + 137916λ 1,22n4λ 2,12l + 3040λ 1,2n5λ 2,1λ1,1 - 960λ2,12nl3λ 1,2 + 15000λ1,21,1λ2,1 + 10640λ1,2n4λ 2,1λ1,1 - 158700λ1,2n6λ 2,1λ2,2λ1,1 - 82416λ1,2n7λ 2,1λ2,2λ1,1 - 960n2λ 2,1l2λ 1,2 + 960λ2,12,2l3λ 1,1 - 28672λ1,2n4λ 2,1λ2,2l4λ 1,1 - 110784λ1,2n3λ 2,2λ1,1l2 - 21888λ 1,2n5λ 2,2λ1,1l2 - 24696λ 1,2n4λ 2,1λ2,2λ1,1 - 192λ1,2n10λ 2,1λ2,2λ1,1 + 37804λ1,2n3λ 2,1λ2,21,1 - 4480λ2,22l3λ 1,1 + 26496λ2,22n6λ 1,1
+ 5120λ2,22n7λ 1,1 - 1536λ1,2n5λ 2,2λ1,1l3 - 2304λ 1,2n6λ 2,2λ1,1l2 + 1600λ 1,22,2l5λ 1,1λ2,1 - 110720λ1,2n3λ 2,1λ2,2l2λ 1,1 + 7360λ1,2n4λ 2,1λ1,1l - 3008λ1,2n3λ 2,1λ2,2l5λ 1,1 - 88480λ1,2n7λ 2,1λ2,2λ1,1l - 9440λ2,22l3λ 1,12 + 480λ 1,12ln + 67104λ 2,22n5λ 1,1 + 86376λ2,22n4λ 1,1 - 320n3λ 2,2λ1,12l3 + 704n4λ 2,22λ 1,12l5 + 1504n3λ 2,22λ 1,12l5 + 96n5λ 2,22λ 1,12l5 - 18240n2λ 2,22λ 1,12l3 + 1056n2λ 2,22λ 1,12l4 + 12704n7λ 2,22λ 1,12l2 + 960n7λ 2,22λ 1,12l3 + 960n8λ 2,22λ 1,12l2 - 60852n2λ 2,22λ 1,12l + 7296n8λ 2,22λ 1,12l + 188112n4λ 2,22λ 1,12l2 + 576n2λ 2,22λ 1,12l5 - 384λ 2,2n8λ 2,1λ1,2 - 7680n2λ 2,2λ1,1l - 3840λ2,21,2l3 - 17792λ 2,21,2l2 + 8960λ 2,22,1l + 1216λ2,22nl3λ 1,1 + 576λ2,22nl4λ 1,1 - 960λ2,12n5λ 1,2l - 7360λ2,12n4λ 1,2l - 960λ2,12l2λ 1,2 + 25280λ2,22n3 - 8160λ 2,22l2λ 1,1 - 4320λ2,22 1,1 + 60720λ2,22n2l2λ 1,1)
c[4] = -(n + 3)(n + 2)(2l - 1 + 2n)(11 + 2l + 4n)(9 + 2l + 4n)(-960λ2,1λ1,2l - 960λ2,21,1 - 1440λ2,1λ1,2 - 1440λ2,2λ1,1 + 8640λ1,22 2,1 - 4680λ2,12 1,2 - 192λ2,2n6λ 2,1λ1,2 + 2016n4λ 2,22λ 1,12l3 + 3744n5λ 2,22λ 1,12l2 + 41952nλ 2,22λ 1,12l + 46800n3λ 2,22λ 1,12l2 - 960λ 1,2l3λ 2,2λ1,1 + 48n4λ 2,22λ 1,12l4 + 288n6λ 2,22λ 1,12l2 + 384n3λ 2,22λ 1,12l4 - 3920 2,2λ1,12l - 2592λ 2,2n5λ 2,1λ1,2 + 7776n3λ 2,22λ 1,12l3 + 192n5λ 2,22λ 1,12l3 - 33048λ 2,2n3λ 2,1λ1,2 + 25272n5λ 2,22λ 1,12 + 2080λ 1,2n2λ 2,1λ1,1l + 160λ1,2n2λ 2,1λ1,1l2 + 640λ 1,21,1l2λ 2,1 + 3920λ1,21,12,1 - 50544λ1,2n5λ 2,1λ2,2λ1,1 - 96λ1,2n8λ 2,1λ2,2λ1,1 + 45504λ2,22n2λ 1,1l + 9552nλ2,22λ 1,12l3 + 31992nλ 2,22λ 1,12l2
- 14112λ2,2n2λ 2,1l2λ 1,2 + 960λ1,21,1 - 1920λ2,12λ 1,2l + 864λ1,22n7λ 2,12 + 25272λ 1,22n5λ 2,12 + 57063λ 1,22n4λ 2,12 + 48λ 1,22n8λ 2,12 + 6408λ 1,22n6λ 2,12 + 21816λ 1,22 2,1 - 4280λ2,12n2λ 1,2 + 864n7λ 2,22λ 1,12 + 48n8λ 2,22λ 1,12 + 17712λ 1,22nλ 2,12 + 52293λ 1,22n2λ 2,12 + 73980λ 1,22n3λ 2,12 + 2160λ 1,21,1 - 2016λ2,22,1l3λ 1,2 + 1440λ2,1n3λ 2,2λ1,1 - 39840λ2,2n2λ 2,1λ1,2 - 6402,2λ1,12l2 + 17712nλ 2,22λ 1,12 - 2080n2λ 2,2λ1,12l - 320n3λ 2,2λ1,12l - 160n2λ 2,2λ1,12l2 - 160λ 2,12n2l2λ 1,2 - 63984λ1,22,2l2λ 1,1λ2,1 - 6336λ1,2n4λ 2,2λ1,1l - 119376λ1,2n4λ 2,1λ2,2λ1,1l - 11520λ1,22,2λ1,1λ2,1 - 2080λ2,12n2λ 1,2l - 8640λ1,22,2λ1,1 + 576λ1,22n5λ 2,1l - 768λ1,2n3λ 2,1λ2,2l4λ 1,1 + 160λ2,1n2λ 2,2l2λ 1,1 + 2080λ2,1n2λ 2,21,1 - 640λ2,12nl2λ 1,2 - 5760λ1,22,2 - 4320λ1,2λ2,2 + 1440λ2,2λ2,1 - 480λ1,1λ2,1 + 6656λ1,22n2 - 480λ 2,2l2λ 1,12 + 6408n6λ 2,22λ 1,12 + 1920λ 2,21,1λ2,1 - 12160λ2,21,2l - 13392λ2,2n4λ 2,1λ1,2 - 4320λ2,1λ1,2λ2,2λ1,1 - 25488λ2,2n3λ 2,1λ1,2l + 1920λ1,22l3λ 2,12 + 1440λ 2,1λ1,2λ1,1 + 5760λ2,22lλ 1,12 + 576λ 2,22n4λ 1,1l2
- 3840λ1,2l3λ 2,2λ1,1λ2,1 - 1920λ2,2lλ1,12 - 512λ 2,2n2λ 1,2l2 - 6656λ 2,2n2λ 1,2l - 8640λ2,1λ1,2λ2,2l - 5280λ1,2l2λ 2,2λ1,1 + 1920λ1,21,1λ2,1 + 5280λ2,22l2λ 1,12 - 960λ 2,1l3λ 1,2λ2,2 + 960λ2,22l2 + 2304λ 1,22n3 + 480λ 1,21,1l + 240λ2,12 + 2160λ 1,22 + 240λ 1,12 + 2160λ 2,22 + 256λ 2,22n4 + 6624λ 2,22n - 1440λ 2,2λ1,12 + 2160λ 2,22λ 1,12 - 576λ 2,2n5λ 2,1λ1,2l - 6336λ2,2n4λ 2,1λ1,2l - 1152λ2,2n2λ 2,1l3λ 1,2 + 3920λ2,12,21,1 + 640λ2,12,2l2λ 1,1 - 45504λ2,2n2λ 2,1λ1,2l + 6080λ2,22nl + 6656λ 2,22n2 - 194016λ 1,2n2λ 2,1λ2,21,1 - 115680λ1,2n2λ 2,1λ2,2l2λ 1,1 + 256λ1,22n4 - 1920λ 1,2l2λ 2,2 - 4280n2λ 2,2λ1,12 - 384λ 1,2n5λ 2,1λ2,2λ1,1l3 + 4680λ 2,12,2λ1,1 + 33048λ1,22n3λ 2,1 + 192λ1,22n6λ 2,1 + 39840λ1,22n2λ 2,1 + 6080λ1,22nl - 147960λ 1,2n3λ 2,1λ2,2λ1,1 + 2592λ1,22n5λ 2,1 - 37152λ1,2n5λ 2,1λ2,2λ1,1l + 6624λ1,22n - 480 2,2λ1,1l - 21816λ2,22,1λ1,2 + 15696λ2,22nl2λ 1,1
- 3920λ2,12 1,2l - 15696λ2,22,1l2λ 1,2 + 4280λ2,1n2λ 2,2λ1,1 - 34656λ2,22,1λ1,2l + 15696λ1,22 2,1l2 + 34656λ 2,22nlλ 1,1 - 480n2λ 2,1λ1,2 - 480λ1,2l4λ 2,2λ1,1λ2,1 - 480n2λ 2,2λ1,1 - 21602,1λ1,2 + 4320λ2,22λ 1,1 + 13392λ1,22n4λ 2,1 - 576λ1,2n4λ 2,2λ1,1l2 - 35424λ 1,22,2λ1,1λ2,1 + 5760λ1,22lλ 2,12 + 21816λ 2,22 1,1 + 2160λ2,22,1 + 1440λ1,2λ1,1 - 576λ1,2n6λ 2,1λ2,2λ1,1l2 + 34656λ 1,22 2,1l + 1440λ1,2n3λ 2,1λ1,1 + 960nλ2,22λ 1,12l4 + 97008λ 1,22n2λ 2,12l + 57840λ 1,22n2λ 2,12l2 - 1024λ 2,2n3λ 1,2l + 576λ2,22n5λ 1,1l + 2976n6λ 2,22λ 1,12l + 192n7λ 2,22λ 1,12l + 104568n3λ 2,22λ 1,12l + 57840n2λ 2,22λ 1,12l2 + 59688n4λ 2,22λ 1,12l + 18576n5λ 2,22λ 1,12l - 15552λ 1,2n3λ 2,1λ2,2l3λ 1,1 - 15696λ1,22,2l2λ 1,1 - 34656λ1,22,21,1 - 4896λ2,2n3λ 2,1l2λ 1,2 + 25488λ1,22n3λ 2,1l - 39840λ1,2n2λ 2,2λ1,1 + 288λ1,22n6λ 2,12l2 + 6336λ 1,22n4λ 2,1l + 384λ1,22n3λ 2,12l4 + 6336λ 2,22n4λ 1,1l + 14112λ1,22n2λ 2,1l2 + 2016λ 1,22 2,1l3 + 4280λ 1,2n2λ 2,1λ1,1
+ 192λ1,22n5λ 2,12l3 + 18936λ 1,22n4λ 2,12l2 + 7776λ 1,22n3λ 2,12l3 + 1024λ 1,22nl2 + 960λ 1,22nλ 2,12l4 + 9552λ 1,22nλ 2,12l3 + 25488λ 2,22n3λ 1,1l + 3328λ1,22n2l + 256λ 1,22n2l2 + 512λ 1,22n3l - 45504λ 1,2n2λ 2,2λ1,1l + 13344λ1,22n2λ 2,12l3 - 2016λ 1,22,2l3λ 1,1 + 480λ1,2n2λ 1,1 - 160n4λ 2,2λ1,12 - 13248λ 2,21,2 + 2976λ1,22n6λ 2,12l + 18576λ 1,22n5λ 2,12l + 31992λ 1,22nλ 2,12l2 + 1008λ 1,22n2λ 2,12l4 + 4896λ 1,22n3λ 2,1l2 - 21816λ 1,22,2λ1,1 + 960λ2,12,2 + 5280λ1,22l2λ 2,12 - 13392λ 1,2n4λ 2,2λ1,1 - 2592λ1,2n5λ 2,2λ1,1 - 192λ1,2n6λ 2,2λ1,1 - 104586λ1,2n2λ 2,1λ2,2λ1,1 - 33048λ1,2n3λ 2,2λ1,1 + 192λ1,22n7λ 2,12l - 192λ 1,2n3λ 2,2λ1,1l3 + 41952λ 1,22nλ 2,12l + 48λ 1,22n4λ 2,12l4 + 46800λ 1,22n3λ 2,12l2 + 104568λ 1,22n3λ 2,12l + 576λ 1,22n4λ 2,1l2 + 192λ 1,22n3λ 2,1l3 + 1152λ 2,22n2l3λ 1,1 - 5280λ2,1λ1,2λ2,2l2 + 192λ 2,22n3λ 1,1l3 + 39840λ 2,22n2λ 1,1 + 52293n2λ 2,22λ 1,12
- 512λ2,2n4λ 1,2 + 320λ1,2n3λ 2,1λ1,1l + 5280λ1,22l2λ 2,1 + 3328λ2,22n2l + 512λ 2,22n3l - 13312λ 2,2n2λ 1,2 - 4608λ2,2n3λ 1,2 + 1024λ2,22nl2 + 2160λ 2,12λ 1,22 + 480λ 2,2n2λ 2,1 - 21602,2λ1,1 + 240λ2,22l4λ 1,12 + 320λ 2,1n3λ 2,2λ1,1l - 160λ2,12n4λ 1,2 - 1440λ2,12n3λ 1,2 + 4320λ2,1λ1,22 + 480λ 2,2l2λ 1,1λ2,1 + 4896λ2,22n3λ 1,1l2 - 1440n3λ 2,2λ1,12 + 73980n3λ 2,22λ 1,12 - 4680 2,2λ1,12 - 37872λ 1,2n4λ 2,1λ2,2l2λ 1,1 - 4032λ1,2n4λ 2,1λ2,2l3λ 1,1 + 480λ1,2l2λ 1,1λ2,1 + 256λ2,22n2l2 - 576λ 2,2n4λ 2,1l2λ 1,2 + 1440λ2,2λ1,1λ2,1 - 4802,1λ1,2l - 320λ2,12n3λ 1,2l - 5952λ1,2n6λ 2,1λ2,2λ1,1l - 83904λ1,22,21,1λ2,1 - 10560λ1,2l2λ 2,2λ1,1λ2,1 - 1152λ1,2n2λ 2,2l3λ 1,1
- 1920λ1,22,2l4λ 1,1λ2,1 - 7488λ1,2n5λ 2,1λ2,2λ1,1l2 - 14112λ 1,2n2λ 2,2l2λ 1,1 + 960λ1,22l3λ 2,1 - 25488λ1,2n3λ 2,2λ1,1l - 576λ1,2n5λ 2,2λ1,1l - 26688λ1,2n2λ 2,1λ2,2l3λ 1,1 - 2016λ1,2n2λ 2,1λ2,2l4λ 1,1 + 240λ1,22l4λ 2,12 + 57063n4λ 2,22λ 1,12 + 33048λ 2,22n3λ 1,1 + 3744λ1,22n5λ 2,12l2 + 1152λ 1,22n2λ 2,1l3 + 2880λ 1,22l + 960λ 1,22l2 + 2880λ 2,22l - 1440λ 2,12λ 1,2 - 192λ2,2n3λ 2,1l3λ 1,2 + 160λ2,1n4λ 2,2λ1,1 - 19104λ1,22,2l3λ 1,1λ2,1 + 2016λ1,22n4λ 2,12l3 + 45504λ 1,22n2λ 2,1l + 59688λ1,22n4λ 2,12l + 4680λ 1,21,1λ2,1 + 160λ1,2n4λ 2,1λ1,1 - 12816λ1,2n6λ 2,1λ2,2λ1,1 - 1728λ1,2n7λ 2,1λ2,2λ1,1 - 96λ1,2n4λ 2,1λ2,2l4λ 1,1 - 4896λ1,2n3λ 2,2λ1,1l2
- 114126λ1,2n4λ 2,1λ2,2λ1,1 - 209136λ1,2n3λ 2,1λ2,21,1 + 960λ2,22l3λ 1,1 + 192λ2,22n6λ 1,1 - 93600λ1,2n3λ 2,1λ2,2l2λ 1,1 - 384λ1,2n7λ 2,1λ2,2λ1,1l + 1920λ2,22l3λ 1,12 + 2592λ 2,22n5λ 1,1 + 13392λ2,22n4λ 1,1 + 13344n2λ 2,22λ 1,12l3 + 1008n2λ 2,22λ 1,12l4 + 97008n2λ 2,22λ 1,12l + 18936n4λ 2,22λ 1,12l2 - 2048λ 2,21,2l2 + 480λ 2,22,1l + 2016λ2,22nl3λ 1,1 - 4320λ2,2λ1,1λ1,2 - 4320λ2,1λ1,2λ2,2 - 480λ2,12l2λ 1,2 + 2304λ2,22n3 + 5280λ 2,22l2λ 1,1 + 8640λ2,22 1,1 + 14112λ2,22n2l2λ 1,1)

Expressions for all quantities involved are provided below.

 
Psi_1:=r^(l+1)*(80*lambda[2,2]*l^3*lambda[1,1]-80*lambda[2,1]*l^3*lambda[1,2]-587*lambda[2,1]*l^2*lambda[1,2]-1864*lambda[2,1]*lambda[1,2]*l+1864*lambda[2,2]*l*lambda[1,1]-143*lambda[1,1]-1001*lambda[1,2]-48*lambda[1,1]*l-124*lambda[1,2]*l^2-622*lambda[1,2]*l+143*lambda[2,1]+1001*lambda[2,2]+48*lambda[2,1]*l+124*lambda[2,2]*l^2+622*lambda[2,2]*l+587*lambda[2,2]*l^2*lambda[1,1]-2145*lambda[2,1]*lambda[1,2]+2145*lambda[2,2]*lambda[1,1]-2196*lambda[2,2]*l*lambda[1,1]*r^2+108*lambda[2,2]*l^2*r^4+8*lambda[2,2]*l^3*r^4-430*lambda[1,2]*l*r^4-108*lambda[1,2]*l^2*r^4-8*lambda[1,2]*l^3*r^4-48*lambda[1,1]*l*r^4-4*lambda[1,1]*l^2*r^4+430*lambda[2,2]*l*r^4+429*lambda[2,2]*r^4+143*lambda[2,1]*r^4-429*lambda[1,2]*r^4-143*lambda[1,1]*r^4-429*lambda[2,1]*lambda[1,2]*r^4+429*lambda[2,2]*lambda[1,1]*r^4-4*lambda[2,1]*l^4*lambda[1,2]+1430*lambda[1,2]*r^2-8*lambda[1,2]*l^3+8*lambda[2,2]*l^3-4*lambda[1,1]*l^2+4*lambda[2,1]*l^2+232*lambda[1,2]*l^2*r^2+16*lambda[1,2]*l^3*r^2-232*lambda[2,2]*l^2*r^2-16*lambda[2,2]*l^3*r^2+1052*lambda[1,2]*l*r^2+96*lambda[1,1]*l*r^2+8*lambda[1,1]*l^2*r^2-96*lambda[2,1]*l*r^2-8*lambda[2,1]*l^2*r^2-1052*lambda[2,2]*l*r^2+2196*lambda[2,1]*lambda[1,2]*l*r^2+144*lambda[2,1]*l^3*lambda[1,2]*r^2+8*lambda[2,1]*l^4*lambda[1,2]*r^2-144*lambda[2,2]*l^3*lambda[1,1]*r^2-8*lambda[2,2]*l^4*lambda[1,1]*r^2+902*lambda[2,1]*l^2*lambda[1,2]*r^2-902*lambda[2,2]*l^2*lambda[1,1]*r^2+4*lambda[2,1]*l^2*r^4-286*lambda[2,1]*r^2-1430*lambda[2,2]*r^2+286*lambda[1,1]*r^2+4*lambda[2,2]*l^4*lambda[1,1]+64*lambda[2,2]*l^3*lambda[1,1]*r^4+4*lambda[2,2]*l^4*lambda[1,1]*r^4-347*lambda[2,1]*l^2*lambda[1,2]*r^4-64*lambda[2,1]*l^3*lambda[1,2]*r^4-4*lambda[2,1]*l^4*lambda[1,2]*r^4-716*lambda[2,1]*lambda[1,2]*l*r^4+716*lambda[2,2]*l*lambda[1,1]*r^4+347*lambda[2,2]*l^2*lambda[1,1]*r^4+1430*lambda[2,1]*lambda[1,2]*r^2-1430*lambda[2,2]*lambda[1,1]*r^2+48*lambda[2,1]*l*r^4);  
 
c[1]:=n*(n+1)*(4*n+3+2*l)*(2*l+4*n+5)*(2*n+9+2*l)*(-480*lambda[2,1]*lambda[1,2]*l-480*lambda[2,2]*l*lambda[1,1]+240*lambda[2,1]*lambda[1,2]+240*lambda[2,2]*lambda[1,1]-240*lambda[1,2]^2*l*lambda[2,1]+200*lambda[2,1]^2*n*lambda[1,2]-192*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+1056*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+2016*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-744*n*lambda[2,2]^2*lambda[1,1]^2*l+2736*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2+96*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+48*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+288*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+192*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4-720*n*lambda[2,2]*lambda[1,1]^2*l-1440*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+1632*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+192*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3-1560*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+2280*n^5*lambda[2,2]^2*lambda[1,1]^2+1120*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+160*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+320*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+720*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-4560*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-96*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+1296*lambda[2,2]^2*n^2*lambda[1,1]*l-912*n*lambda[2,2]^2*lambda[1,1]^2*l^3-2040*n*lambda[2,2]^2*lambda[1,1]^2*l^2-2880*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+480*lambda[1,2]*l*lambda[1,1]+240*lambda[2,1]^2*lambda[1,2]*l+480*lambda[1,2]^2*n^7*lambda[2,1]^2+2280*lambda[1,2]^2*n^5*lambda[2,1]^2-57*lambda[1,2]^2*n^4*lambda[2,1]^2+48*lambda[1,2]^2*n^8*lambda[2,1]^2+1704*lambda[1,2]^2*n^6*lambda[2,1]^2-480*lambda[1,2]^2*n*lambda[2,1]-920*lambda[2,1]^2*n^2*lambda[1,2]+480*n^7*lambda[2,2]^2*lambda[1,1]^2+48*n^8*lambda[2,2]^2*lambda[1,1]^2+390*lambda[1,2]^2*n*lambda[2,1]^2-669*lambda[1,2]^2*n^2*lambda[2,1]^2-2160*lambda[1,2]^2*n^3*lambda[2,1]^2+1200*lambda[1,2]*n*lambda[1,1]-288*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+800*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+1992*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-320*n*lambda[2,2]*lambda[1,1]^2*l^2+390*n*lambda[2,2]^2*lambda[1,1]^2-1120*n^2*lambda[2,2]*lambda[1,1]^2*l-320*n^3*lambda[2,2]*lambda[1,1]^2*l-160*n^2*lambda[2,2]*lambda[1,1]^2*l^2-160*lambda[2,1]^2*n^2*l^2*lambda[1,2]+4080*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-3456*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-9456*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-288*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-1120*lambda[2,1]^2*n^2*lambda[1,2]*l+240*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+576*lambda[1,2]^2*n^5*lambda[2,1]*l-384*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+160*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+1120*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-320*lambda[2,1]^2*n*l^2*lambda[1,2]+768*lambda[1,2]*l*lambda[2,2]-288*lambda[1,2]*lambda[2,2]-240*lambda[2,2]*lambda[2,1]-480*lambda[1,1]*lambda[2,1]+1280*lambda[1,2]^2*n^2+1704*n^6*lambda[2,2]^2*lambda[1,1]^2-240*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-1920*lambda[2,2]*n*lambda[1,2]*l-3312*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-288*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-5904*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-240*lambda[1,2]^2*l^3*lambda[2,1]^2-240*lambda[2,1]*lambda[1,2]*lambda[1,1]+144*lambda[2,2]^2*l*lambda[1,1]^2+576*lambda[2,2]^2*n^4*lambda[1,1]*l^2+480*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]+240*lambda[2,2]*l*lambda[1,1]^2-512*lambda[2,2]*n^2*lambda[1,2]*l^2-3584*lambda[2,2]*n^2*lambda[1,2]*l+240*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+624*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-240*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-192*lambda[2,2]^2*l^2*lambda[1,1]^2+96*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+192*lambda[2,2]^2*l^2+1280*lambda[1,2]^2*n^3+480*lambda[1,2]*n*lambda[1,1]*l+240*lambda[2,1]^2+144*lambda[1,2]^2+240*lambda[1,1]^2+144*lambda[2,2]^2+256*lambda[2,2]^2*n^4-800*lambda[2,2]^2*n+240*lambda[2,2]*lambda[1,1]^2+144*lambda[2,2]^2*lambda[1,1]^2-576*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-3456*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l-576*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+720*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+320*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-1296*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+960*lambda[2,2]^2*n*l+1280*lambda[2,2]^2*n^2+7440*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+4128*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+256*lambda[1,2]^2*n^4-384*lambda[1,2]*l^2*lambda[2,2]-920*n^2*lambda[2,2]*lambda[1,1]^2-384*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-200*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+1560*lambda[1,2]^2*n^3*lambda[2,1]+192*lambda[1,2]^2*n^6*lambda[2,1]-1992*lambda[1,2]^2*n^2*lambda[2,1]+960*lambda[1,2]^2*n*l+4320*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+1440*lambda[1,2]^2*n^5*lambda[2,1]-9504*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-800*lambda[1,2]^2*n-480*n*lambda[2,2]*lambda[1,1]*l+480*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-144*lambda[2,2]^2*n*l^2*lambda[1,1]-720*lambda[2,1]^2*n*lambda[1,2]*l+144*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+920*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+2352*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l-144*lambda[1,2]^2*n*lambda[2,1]*l^2-2352*lambda[2,2]^2*n*l*lambda[1,1]-480*n^2*lambda[2,1]*lambda[1,2]+96*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-480*n^2*lambda[2,2]*lambda[1,1]-1200*n*lambda[2,1]*lambda[1,2]+288*lambda[2,2]^2*lambda[1,1]+3312*lambda[1,2]^2*n^4*lambda[2,1]-576*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-780*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+144*lambda[1,2]^2*l*lambda[2,1]^2-480*lambda[2,2]^2*n*lambda[1,1]+1200*lambda[2,2]*n*lambda[2,1]-240*lambda[1,2]*lambda[1,1]-576*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-2352*lambda[1,2]^2*n*lambda[2,1]*l+800*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-96*n*lambda[2,2]^2*lambda[1,1]^2*l^4-3720*lambda[1,2]^2*n^2*lambda[2,1]^2*l-2064*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-1024*lambda[2,2]*n^3*lambda[1,2]*l+576*lambda[2,2]^2*n^5*lambda[1,1]*l+1632*n^6*lambda[2,2]^2*lambda[1,1]^2*l+192*n^7*lambda[2,2]^2*lambda[1,1]^2*l-1224*n^3*lambda[2,2]^2*lambda[1,1]^2*l-2064*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+4728*n^4*lambda[2,2]^2*lambda[1,1]^2*l+4752*n^5*lambda[2,2]^2*lambda[1,1]^2*l-3264*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+144*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+2352*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-2592*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+5904*lambda[1,2]^2*n^3*lambda[2,1]*l+1992*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+288*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+3456*lambda[1,2]^2*n^4*lambda[2,1]*l+192*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+3456*lambda[2,2]^2*n^4*lambda[1,1]*l+2880*lambda[1,2]^2*n^2*lambda[2,1]*l^2+288*lambda[1,2]^2*n*lambda[2,1]*l^3+920*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+192*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+4536*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+1632*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+512*lambda[1,2]^2*n*l^2-96*lambda[1,2]^2*n*lambda[2,1]^2*l^4-912*lambda[1,2]^2*n*lambda[2,1]^2*l^3+5904*lambda[2,2]^2*n^3*lambda[1,1]*l+1792*lambda[1,2]^2*n^2*l+256*lambda[1,2]^2*n^2*l^2+512*lambda[1,2]^2*n^3*l-1296*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+192*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-288*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+480*lambda[1,2]*n^2*lambda[1,1]-160*n^4*lambda[2,2]*lambda[1,1]^2+1600*lambda[2,2]*n*lambda[1,2]+1632*lambda[1,2]^2*n^6*lambda[2,1]^2*l+4752*lambda[1,2]^2*n^5*lambda[2,1]^2*l-2040*lambda[1,2]^2*n*lambda[2,1]^2*l^2+144*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+2592*lambda[1,2]^2*n^3*lambda[2,1]*l^2+480*lambda[1,2]*n*lambda[2,2]*lambda[1,1]+480*lambda[2,1]*l*lambda[2,2]-192*lambda[1,2]^2*l^2*lambda[2,1]^2-3312*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-1440*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-192*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+1338*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]-1560*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+192*lambda[1,2]^2*n^7*lambda[2,1]^2*l-192*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3-744*lambda[1,2]^2*n*lambda[2,1]^2*l+48*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+2736*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-1224*lambda[1,2]^2*n^3*lambda[2,1]^2*l+576*lambda[1,2]^2*n^4*lambda[2,1]*l^2+192*lambda[1,2]^2*n^3*lambda[2,1]*l^3+576*lambda[2,2]^2*n^2*l^3*lambda[1,1]+624*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+192*lambda[2,2]^2*n^3*lambda[1,1]*l^3-1992*lambda[2,2]^2*n^2*lambda[1,1]-669*n^2*lambda[2,2]^2*lambda[1,1]^2-512*lambda[2,2]*n^4*lambda[1,2]+320*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-624*lambda[1,2]^2*l^2*lambda[2,1]+1792*lambda[2,2]^2*n^2*l+512*lambda[2,2]^2*n^3*l-2560*lambda[2,2]*n^2*lambda[1,2]-2560*lambda[2,2]*n^3*lambda[1,2]+512*lambda[2,2]^2*n*l^2+144*lambda[2,1]^2*lambda[1,2]^2+480*lambda[2,2]*n^2*lambda[2,1]-1200*n*lambda[2,2]*lambda[1,1]-48*lambda[2,2]^2*l^4*lambda[1,1]^2+320*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-160*lambda[2,1]^2*n^4*lambda[1,2]-800*lambda[2,1]^2*n^3*lambda[1,2]+288*lambda[2,1]*lambda[1,2]^2+2592*lambda[2,2]^2*n^3*lambda[1,1]*l^2-800*n^3*lambda[2,2]*lambda[1,1]^2-2160*n^3*lambda[2,2]^2*lambda[1,1]^2+200*n*lambda[2,2]*lambda[1,1]^2-9072*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-2112*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+256*lambda[2,2]^2*n^2*l^2-576*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-240*lambda[2,2]*lambda[1,1]*lambda[2,1]-480*n*lambda[2,1]*lambda[1,2]*l-320*lambda[2,1]^2*n^3*lambda[1,2]*l-3264*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+1488*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]+384*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-576*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]+192*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-4032*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-2880*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-96*lambda[1,2]^2*l^3*lambda[2,1]-5904*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-576*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-384*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-288*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-48*lambda[1,2]^2*l^4*lambda[2,1]^2-57*n^4*lambda[2,2]^2*lambda[1,1]^2+1560*lambda[2,2]^2*n^3*lambda[1,1]+2016*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+576*lambda[1,2]^2*n^2*lambda[2,1]*l^3-384*lambda[1,2]^2*l+192*lambda[1,2]^2*l^2-384*lambda[2,2]^2*l+240*lambda[2,1]^2*lambda[1,2]-192*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+160*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+1824*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+1056*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+1296*lambda[1,2]^2*n^2*lambda[2,1]*l+4728*lambda[1,2]^2*n^4*lambda[2,1]^2*l-200*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+160*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-3408*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-960*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-96*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-2592*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2+114*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]+2448*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-96*lambda[2,2]^2*l^3*lambda[1,1]+192*lambda[2,2]^2*n^6*lambda[1,1]-5472*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-384*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-240*lambda[2,2]^2*l^3*lambda[1,1]^2+1440*lambda[2,2]^2*n^5*lambda[1,1]+3312*lambda[2,2]^2*n^4*lambda[1,1]+192*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+144*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4-3720*n^2*lambda[2,2]^2*lambda[1,1]^2*l+4536*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-1024*lambda[2,2]*n*lambda[1,2]*l^2+480*lambda[2,2]*n*lambda[2,1]*l+288*lambda[2,2]^2*n*l^3*lambda[1,1]-288*lambda[2,2]*lambda[1,1]*lambda[1,2]-288*lambda[2,1]*lambda[1,2]*lambda[2,2]+1280*lambda[2,2]^2*n^3-624*lambda[2,2]^2*l^2*lambda[1,1]-240*lambda[2,2]^2*l*lambda[1,1]+2880*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[2]:=-3*(9+2*l+4*n)*(-2560*lambda[2,1]*l^2*lambda[1,2]-10880*lambda[2,1]*lambda[1,2]*l-10880*lambda[2,2]*l*lambda[1,1]-2560*lambda[2,2]*l^2*lambda[1,1]-5440*lambda[2,1]*lambda[1,2]-5440*lambda[2,2]*lambda[1,1]-4416*lambda[2,2]*n^2*lambda[2,1]*l^4*lambda[1,2]-17536*lambda[1,2]^2*l*lambda[2,1]+2960*lambda[2,1]^2*n*lambda[1,2]-960*n^5*lambda[2,2]*lambda[1,1]^2*l-32768*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+99792*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+187752*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-35828*n*lambda[2,2]^2*lambda[1,1]^2*l+60912*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-1728*lambda[2,2]*n*lambda[2,1]*l^4*lambda[1,2]+11520*lambda[2,2]*n^2*lambda[2,1]*l+6528*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+15856*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+71440*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+20816*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4+480*n^6*lambda[2,2]^2*lambda[1,1]^2*l^4+480*n^9*lambda[2,2]^2*lambda[1,1]^2*l-18000*n*lambda[2,2]*lambda[1,1]^2*l-94176*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+74688*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+49872*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3+4656*n^5*lambda[2,2]^2*lambda[1,1]^2*l^4+11264*n^6*lambda[2,2]^2*lambda[1,1]^2*l^3-58408*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+704*lambda[1,2]*l^5*lambda[2,2]*lambda[1,1]*lambda[2,1]+82731*n^5*lambda[2,2]^2*lambda[1,1]^2+1536*lambda[2,2]^2*n^7*l*lambda[1,1]+43440*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+1600*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^3+16320*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+512*lambda[1,2]^2*n^6-3424*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*lambda[1,1]+12320*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+18000*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-1728*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-165462*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-24960*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+47472*lambda[2,2]^2*n^2*lambda[1,1]*l-47664*n*lambda[2,2]^2*lambda[1,1]^2*l^3-81008*n*lambda[2,2]^2*lambda[1,1]^2*l^2+1920*lambda[2,2]*n^3*lambda[2,1]*l-5632*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-102192*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+10880*lambda[1,2]*l*lambda[1,1]+5520*lambda[2,1]^2*lambda[1,2]*l-9312*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4-960*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4+47160*lambda[1,2]^2*n^7*lambda[2,1]^2-192*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^5-19328*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l+82731*lambda[1,2]^2*n^5*lambda[2,1]^2-18165*lambda[1,2]^2*n^4*lambda[2,1]^2+12480*lambda[1,2]^2*n^8*lambda[2,1]^2+94638*lambda[1,2]^2*n^6*lambda[2,1]^2-30296*lambda[1,2]^2*n*lambda[2,1]+1712*n^9*lambda[2,2]^2*lambda[1,1]^2-24960*lambda[2,1]^2*n^2*lambda[1,2]+47160*n^7*lambda[2,2]^2*lambda[1,1]^2+12480*n^8*lambda[2,2]^2*lambda[1,1]^2+14382*lambda[1,2]^2*n*lambda[2,1]^2-31809*lambda[1,2]^2*n^2*lambda[2,1]^2-81185*lambda[1,2]^2*n^3*lambda[2,1]^2+26640*lambda[1,2]*n*lambda[1,1]+6880*lambda[2,1]*n^3*lambda[2,2]*l^2*lambda[1,1]+320*lambda[2,1]*n^3*lambda[2,2]*l^3*lambda[1,1]-6976*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+32520*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+640*lambda[2,1]*l^4*lambda[1,2]*lambda[2,2]-960*n^2*lambda[2,2]*lambda[1,1]*l^2+38928*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-8960*n^4*lambda[2,2]*lambda[1,1]^2*l-12320*n*lambda[2,2]*lambda[1,1]^2*l^2-2304*lambda[2,2]*n^6*lambda[2,1]*l^2*lambda[1,2]+14382*n*lambda[2,2]^2*lambda[1,1]^2-43440*n^2*lambda[2,2]*lambda[1,1]^2*l-30640*n^3*lambda[2,2]*lambda[1,1]^2*l-960*n^4*lambda[2,2]*lambda[1,1]^2*l^2-6880*n^3*lambda[2,2]*lambda[1,1]^2*l^2-16320*n^2*lambda[2,2]*lambda[1,1]^2*l^2-16320*lambda[2,1]^2*n^2*l^2*lambda[1,2]-2432*lambda[2,2]*n^3*lambda[2,1]*l^4*lambda[1,2]+162016*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-12928*lambda[2,2]*n^4*lambda[2,1]*l^3*lambda[1,2]-217248*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-1536*lambda[1,2]*n^7*lambda[2,2]*l*lambda[1,1]+320*lambda[1,2]*n^6*lambda[2,1]*lambda[1,1]-309692*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-12480*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-43440*lambda[2,1]^2*n^2*lambda[1,2]*l+17536*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+1536*lambda[1,2]^2*n^7*lambda[2,1]*l+11264*lambda[1,2]^2*n^6*lambda[2,1]^2*l^3+94080*lambda[1,2]^2*n^5*lambda[2,1]*l+19328*lambda[1,2]^2*n^6*lambda[2,1]*l-3072*lambda[2,2]*n^4*lambda[1,2]*l^2-41632*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-352*lambda[1,2]^2*l^5*lambda[2,1]^2+16320*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+43440*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-12320*lambda[2,1]^2*n*l^2*lambda[1,2]+512*lambda[2,2]^2*n^3*l^3-1728*lambda[1,2]*l*lambda[2,2]+2560*lambda[2,2]^2*n^2*l^3+1120*lambda[1,1]^2*l+480*lambda[2,1]^2*n^2+3360*lambda[1,2]*lambda[2,2]+5440*lambda[2,2]*lambda[2,1]-8480*lambda[1,1]*lambda[2,1]+42048*lambda[1,2]^2*n^2+3456*lambda[2,2]^2*n*l^3+960*lambda[2,2]*l^2*lambda[1,1]^2-640*lambda[2,2]^2*l^4*lambda[1,1]+94638*n^6*lambda[2,2]^2*lambda[1,1]^2-5520*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-3072*lambda[2,2]*n^5*lambda[1,2]*l-67392*lambda[2,2]*n*lambda[1,2]*l-131176*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-15120*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-1024*lambda[2,2]*n^3*lambda[1,2]*l^3-224096*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-10320*lambda[1,2]^2*l^3*lambda[2,1]^2+2560*lambda[2,2]*l^2*lambda[2,1]-9960*lambda[2,1]*lambda[1,2]*lambda[1,1]+6240*lambda[2,2]^2*l*lambda[1,1]^2+94272*lambda[2,2]^2*n^4*lambda[1,1]*l^2+960*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]*l+20640*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]+5520*lambda[2,2]*l*lambda[1,1]^2-52224*lambda[2,2]*n^2*lambda[1,2]*l^2-136704*lambda[2,2]*n^2*lambda[1,2]*l-28672*lambda[2,2]*n^4*lambda[1,2]*l+2432*lambda[2,2]^2*n^3*lambda[1,1]*l^4-5120*lambda[2,2]*n^2*lambda[1,2]*l^3-22016*lambda[2,2]*n^3*lambda[1,2]*l^2+17536*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+19584*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-320*n^6*lambda[2,2]*lambda[1,1]^2+96*n^10*lambda[2,2]^2*lambda[1,1]^2+384*lambda[2,2]^2*n^4*lambda[1,1]*l^4-5520*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-8584*lambda[2,2]^2*l^2*lambda[1,1]^2+6528*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+640*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]+5888*lambda[1,2]^2*n^5+1152*lambda[2,2]^2*l^3+4416*lambda[2,2]^2*l^2+1120*lambda[2,1]^2*l+50880*lambda[1,2]^2*n^3+21760*lambda[1,2]*n*lambda[1,1]*l+1920*lambda[1,2]*n^3*lambda[1,1]*l+4240*lambda[2,1]^2-1680*lambda[1,2]^2+4240*lambda[1,1]^2-1680*lambda[2,2]^2+512*lambda[2,2]^2*n^6+25600*lambda[2,2]^2*n^4+5888*lambda[2,2]^2*n^5+6352*lambda[2,2]^2*n+9960*lambda[2,2]*lambda[1,1]^2+7560*lambda[2,2]^2*lambda[1,1]^2-19328*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]*l-94080*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-217248*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l+8960*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l-40512*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+18000*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+12320*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-47472*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+384*lambda[2,2]^2*n^8*lambda[1,1]+33696*lambda[2,2]^2*n*l+2560*lambda[1,2]^2*n^2*l^3+3456*lambda[1,2]^2*n*l^3-1536*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]*l+42048*lambda[2,2]^2*n^2+287724*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+227280*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+25600*lambda[1,2]^2*n^4-2304*lambda[1,2]*l^3*lambda[2,2]-8832*lambda[1,2]*l^2*lambda[2,2]-4960*lambda[2,1]*n*lambda[1,1]-3520*lambda[2,1]*l^2*lambda[1,2]*n-24960*n^2*lambda[2,2]*lambda[1,1]^2-960*n^4*lambda[2,1]*lambda[1,2]-99744*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+960*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]*l-2960*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+58408*lambda[1,2]^2*n^3*lambda[2,1]+32768*lambda[1,2]^2*n^6*lambda[2,1]+1712*lambda[1,2]^2*n^9*lambda[2,1]^2-38928*lambda[1,2]^2*n^2*lambda[2,1]+33696*lambda[1,2]^2*n*l-22528*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+162370*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+5632*lambda[1,2]^2*n^7*lambda[2,1]+94176*lambda[1,2]^2*n^5*lambda[2,1]-15168*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-506796*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+384*lambda[1,2]^2*n^8*lambda[2,1]+6352*lambda[1,2]^2*n-21760*n*lambda[2,2]*lambda[1,1]*l+30296*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-11472*lambda[2,2]^2*n*l^2*lambda[1,1]-18000*lambda[2,1]^2*n*lambda[1,2]*l+11472*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+24960*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+57744*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l-11472*lambda[1,2]^2*n*lambda[2,1]*l^2-57744*lambda[2,2]^2*n*l*lambda[1,1]-23760*n^2*lambda[2,1]*lambda[1,2]-8000*n^3*lambda[2,2]*lambda[1,1]-960*n^4*lambda[2,2]*lambda[1,1]+6816*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-23760*n^2*lambda[2,2]*lambda[1,1]-26640*n*lambda[2,1]*lambda[1,2]+5880*lambda[2,2]^2*lambda[1,1]+131176*lambda[1,2]^2*n^4*lambda[2,1]+96*lambda[1,2]^2*n^10*lambda[2,1]^2+512*lambda[1,2]^2*n^3*l^3+960*lambda[1,2]*n^4*lambda[1,1]-94272*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-28764*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+6240*lambda[1,2]^2*l*lambda[2,1]^2-30296*lambda[2,2]^2*n*lambda[1,1]+26640*lambda[2,2]*n*lambda[2,1]+5440*lambda[1,2]*lambda[1,1]-142880*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-57744*lambda[1,2]^2*n*lambda[2,1]*l+32520*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-800*n*lambda[2,2]^2*lambda[1,1]^2*l^5-10736*n*lambda[2,2]^2*lambda[1,1]^2*l^4-1600*n^2*lambda[2,2]*lambda[1,1]^2*l^3+11520*lambda[1,2]*n^2*lambda[1,1]*l-143862*lambda[1,2]^2*n^2*lambda[2,1]^2*l-113640*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-96512*lambda[2,2]*n^3*lambda[1,2]*l-1920*n*lambda[2,2]*lambda[1,1]^2*l^3+94080*lambda[2,2]^2*n^5*lambda[1,1]*l+155072*n^6*lambda[2,2]^2*lambda[1,1]^2*l+48208*n^7*lambda[2,2]^2*lambda[1,1]^2*l-84698*n^3*lambda[2,2]^2*lambda[1,1]^2*l-113640*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+154846*n^4*lambda[2,2]^2*lambda[1,1]^2*l+253398*n^5*lambda[2,2]^2*lambda[1,1]^2*l+3520*lambda[1,2]*n*lambda[1,1]*l^2+1728*lambda[1,2]^2*n*lambda[2,1]*l^4-149376*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+11472*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+57744*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-161856*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+224096*lambda[1,2]^2*n^3*lambda[2,1]*l+4416*lambda[1,2]^2*n^2*lambda[2,1]*l^4+38928*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+71440*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+217248*lambda[1,2]^2*n^4*lambda[2,1]*l+480*lambda[1,2]^2*n^6*lambda[2,1]^2*l^4+20816*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+217248*lambda[2,2]^2*n^4*lambda[1,1]*l+960*lambda[1,2]*n^2*lambda[1,1]*l^2+102192*lambda[1,2]^2*n^2*lambda[2,1]*l^2+6976*lambda[1,2]^2*n*lambda[2,1]*l^3+24960*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+480*lambda[1,2]^2*n^9*lambda[2,1]^2*l-384*lambda[1,2]*n^8*lambda[2,2]*lambda[1,1]+49872*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+229432*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+74688*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+13216*lambda[1,2]^2*n^7*lambda[2,1]^2*l^2+96*lambda[1,2]^2*n^5*lambda[2,1]^2*l^5+960*lambda[1,2]^2*n^8*lambda[2,1]^2*l^2+22208*lambda[1,2]^2*n*l^2+1536*lambda[1,2]^2*n^4*l^2+1536*lambda[1,2]^2*n^5*l-800*lambda[1,2]^2*n*lambda[2,1]^2*l^5-10736*lambda[1,2]^2*n*lambda[2,1]^2*l^4-47664*lambda[1,2]^2*n*lambda[2,1]^2*l^3+4656*lambda[1,2]^2*n^5*lambda[2,1]^2*l^4+224096*lambda[2,2]^2*n^3*lambda[1,1]*l+68352*lambda[1,2]^2*n^2*l+26112*lambda[1,2]^2*n^2*l^2+14336*lambda[1,2]^2*n^4*l+11008*lambda[1,2]^2*n^3*l^2+48256*lambda[1,2]^2*n^3*l+960*lambda[2,2]*n^2*lambda[2,1]*l^2+12928*lambda[2,2]^2*n^4*lambda[1,1]*l^3+1920*lambda[1,2]*n*lambda[1,1]*l^3*lambda[2,1]-47472*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l-21312*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-1728*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]-6976*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+2480*lambda[1,1]^2*n+23760*lambda[1,2]*n^2*lambda[1,1]+8000*lambda[1,2]*n^3*lambda[1,1]-16240*n^4*lambda[2,2]*lambda[1,1]^2-3680*n^5*lambda[2,2]*lambda[1,1]^2-12704*lambda[2,2]*n*lambda[1,2]-8000*n^3*lambda[2,1]*lambda[1,2]+155072*lambda[1,2]^2*n^6*lambda[2,1]^2*l+253398*lambda[1,2]^2*n^5*lambda[2,1]^2*l-81008*lambda[1,2]^2*n*lambda[2,1]^2*l^2+3216*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+864*lambda[1,2]^2*n^2*lambda[2,1]^2*l^5+161856*lambda[1,2]^2*n^3*lambda[2,1]*l^2+30296*lambda[1,2]*n*lambda[2,2]*lambda[1,1]-352*lambda[2,2]^2*l^5*lambda[1,1]^2+10880*lambda[2,1]*l*lambda[2,2]-8584*lambda[1,2]^2*l^2*lambda[2,1]^2+1536*lambda[2,2]^2*n^4*l^2+960*lambda[2,2]*n^4*lambda[2,1]-131176*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-94176*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-32768*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+63618*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]+2304*lambda[1,2]^2*n^6*lambda[2,1]*l^2+2432*lambda[1,2]^2*n^3*lambda[2,1]*l^4+12928*lambda[1,2]^2*n^4*lambda[2,1]*l^3+7584*lambda[1,2]^2*n^8*lambda[2,1]^2*l-5632*lambda[1,2]*n^7*lambda[2,2]*lambda[1,1]-58408*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+48208*lambda[1,2]^2*n^7*lambda[2,1]^2*l-37376*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+960*lambda[1,2]^2*n^7*lambda[2,1]^2*l^3+1696*lambda[1,2]^2*n^3*lambda[2,1]^2*l^5-35828*lambda[1,2]^2*n*lambda[2,1]^2*l+15856*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+480*lambda[1,1]^2*n^2+1536*lambda[1,2]^2*n^5*lambda[2,1]*l^3+384*lambda[1,2]^2*n^4*lambda[2,1]*l^4+60912*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-84698*lambda[1,2]^2*n^3*lambda[2,1]^2*l+94272*lambda[1,2]^2*n^4*lambda[2,1]*l^2+3520*lambda[2,2]*n*lambda[2,1]*l^2+24192*lambda[1,2]^2*n^5*lambda[2,1]*l^2+37376*lambda[1,2]^2*n^3*lambda[2,1]*l^3+40512*lambda[2,2]^2*n^2*l^3*lambda[1,1]+19584*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+19328*lambda[2,2]^2*n^6*lambda[1,1]*l+37376*lambda[2,2]^2*n^3*lambda[1,1]*l^3-38928*lambda[2,2]^2*n^2*lambda[1,1]+2480*lambda[2,1]^2*n+4416*lambda[2,2]^2*n^2*l^4*lambda[1,1]-31809*n^2*lambda[2,2]^2*lambda[1,1]^2-51200*lambda[2,2]*n^4*lambda[1,2]-1024*lambda[2,2]*n^6*lambda[1,2]-2432*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^4-384*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^4-3520*lambda[2,2]*l^2*lambda[1,1]*n-960*lambda[2,1]^2*n^4*l^2*lambda[1,2]+30640*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-1920*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-19584*lambda[1,2]^2*l^2*lambda[2,1]+68352*lambda[2,2]^2*n^2*l+48256*lambda[2,2]^2*n^3*l-11776*lambda[2,2]*n^5*lambda[1,2]-84096*lambda[2,2]*n^2*lambda[1,2]+1600*lambda[2,1]*n^2*lambda[2,2]*l^3*lambda[1,1]-101760*lambda[2,2]*n^3*lambda[1,2]+8000*lambda[2,2]*n^3*lambda[2,1]+22208*lambda[2,2]^2*n*l^2+7560*lambda[2,1]^2*lambda[1,2]^2+6880*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^2-320*lambda[2,1]^2*n^6*lambda[1,2]+320*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^3+960*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l^2+23760*lambda[2,2]*n^2*lambda[2,1]-26640*n*lambda[2,2]*lambda[1,1]-3408*lambda[2,2]^2*l^4*lambda[1,1]^2+30640*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-16240*lambda[2,1]^2*n^4*lambda[1,2]-32520*lambda[2,1]^2*n^3*lambda[1,2]+2560*lambda[1,2]*l^2*lambda[1,1]+5880*lambda[2,1]*lambda[1,2]^2-1600*lambda[2,1]^2*n^2*l^3*lambda[1,2]-1920*n^3*lambda[2,2]*lambda[1,1]*l-960*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-6880*lambda[2,1]^2*n^3*l^2*lambda[1,2]-1920*n^3*lambda[2,1]*lambda[1,2]*l-11520*n^2*lambda[2,1]*lambda[1,2]*l+161856*lambda[2,2]^2*n^3*lambda[1,1]*l^2-32520*n^3*lambda[2,2]*lambda[1,1]^2-81185*n^3*lambda[2,2]^2*lambda[1,1]^2+2960*n*lambda[2,2]*lambda[1,1]^2-458864*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+24192*lambda[2,2]^2*n^5*lambda[1,1]*l^2-199584*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-1472*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]+1536*lambda[2,2]^2*n^5*lambda[1,1]*l^3-960*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]-3680*lambda[2,1]^2*n^5*lambda[1,2]+14336*lambda[2,2]^2*n^4*l+26112*lambda[2,2]^2*n^2*l^2+1536*lambda[2,2]^2*n^5*l-94272*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-640*lambda[1,2]^2*l^4*lambda[2,1]-1536*lambda[2,2]*n^5*lambda[2,1]*l^3*lambda[1,2]+2304*lambda[2,2]^2*n^6*lambda[1,1]*l^2-320*lambda[2,1]^2*n^3*l^3*lambda[1,2]+3680*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+320*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+11008*lambda[2,2]^2*n^3*l^2-9960*lambda[2,2]*lambda[1,1]*lambda[2,1]-21760*n*lambda[2,1]*lambda[1,2]*l-30640*lambda[2,1]^2*n^3*lambda[1,2]*l-384*lambda[2,2]*n^4*lambda[2,1]*l^4*lambda[1,2]-960*lambda[2,1]*n*lambda[1,1]*l-310144*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+480*lambda[2,1]^2*n*l+71656*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-960*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-4416*lambda[1,2]*n^2*lambda[2,2]*l^4*lambda[1,1]+17168*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-40512*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-26432*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+960*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l^2+21472*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-1920*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-375504*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-102192*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-6528*lambda[1,2]^2*l^3*lambda[2,1]-224096*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-12928*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^3-94080*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l+42624*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-6432*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-960*lambda[2,1]*n^2*lambda[1,1]-2240*lambda[1,1]*l*lambda[2,1]-3408*lambda[1,2]^2*l^4*lambda[2,1]^2-18165*n^4*lambda[2,2]^2*lambda[1,1]^2-24192*lambda[2,2]*n^5*lambda[2,1]*l^2*lambda[1,2]+58408*lambda[2,2]^2*n^3*lambda[1,1]+187752*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+40512*lambda[1,2]^2*n^2*lambda[2,1]*l^3+864*lambda[1,2]^2*l+4416*lambda[1,2]^2*l^2+864*lambda[2,2]^2*l+9960*lambda[2,1]^2*lambda[1,2]-37376*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+16240*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+95328*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+99792*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+47472*lambda[1,2]^2*n^2*lambda[2,1]*l+736*lambda[1,2]^2*n^4*lambda[2,1]^2*l^5+154846*lambda[1,2]^2*n^4*lambda[2,1]^2*l+3680*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]-1920*lambda[2,1]^2*n*l^3*lambda[1,2]-2960*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+16240*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-189276*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-94320*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-960*n^2*lambda[2,1]*l^2*lambda[1,2]+1920*lambda[2,1]*n*lambda[2,2]*l^3*lambda[1,1]-31712*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-161856*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-24192*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^2+36330*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-192*lambda[1,2]*n^10*lambda[2,1]*lambda[2,2]*lambda[1,1]+169396*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-6528*lambda[2,2]^2*l^3*lambda[1,1]+32768*lambda[2,2]^2*n^6*lambda[1,1]+5632*lambda[2,2]^2*n^7*lambda[1,1]-1536*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^3-2304*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l^2+1600*lambda[1,2]*n*lambda[2,2]*l^5*lambda[1,1]*lambda[2,1]-121824*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+8960*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l-3392*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-96416*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-10320*lambda[2,2]^2*l^3*lambda[1,1]^2+480*lambda[1,1]^2*l*n+94176*lambda[2,2]^2*n^5*lambda[1,1]+131176*lambda[2,2]^2*n^4*lambda[1,1]-320*n^3*lambda[2,2]*lambda[1,1]^2*l^3+736*n^4*lambda[2,2]^2*lambda[1,1]^2*l^5+1696*n^3*lambda[2,2]^2*lambda[1,1]^2*l^5+96*n^5*lambda[2,2]^2*lambda[1,1]^2*l^5-21312*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+3216*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+13216*n^7*lambda[2,2]^2*lambda[1,1]^2*l^2+960*n^7*lambda[2,2]^2*lambda[1,1]^2*l^3+960*n^8*lambda[2,2]^2*lambda[1,1]^2*l^2-143862*n^2*lambda[2,2]^2*lambda[1,1]^2*l+7584*n^8*lambda[2,2]^2*lambda[1,1]^2*l+229432*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2+864*n^2*lambda[2,2]^2*lambda[1,1]^2*l^5-384*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-11520*n^2*lambda[2,2]*lambda[1,1]*l-6912*lambda[2,2]*n*lambda[1,2]*l^3-44416*lambda[2,2]*n*lambda[1,2]*l^2+21760*lambda[2,2]*n*lambda[2,1]*l+6976*lambda[2,2]^2*n*l^3*lambda[1,1]+1728*lambda[2,2]^2*n*l^4*lambda[1,1]-960*lambda[2,1]^2*n^5*lambda[1,2]*l-8960*lambda[2,1]^2*n^4*lambda[1,2]*l-5880*lambda[2,2]*lambda[1,1]*lambda[1,2]-5880*lambda[2,1]*lambda[1,2]*lambda[2,2]+960*lambda[2,1]^2*l^2*lambda[1,2]+1152*lambda[1,2]^2*l^3+50880*lambda[2,2]^2*n^3-19584*lambda[2,2]^2*l^2*lambda[1,1]-17536*lambda[2,2]^2*l*lambda[1,1]+102192*lambda[2,2]^2*n^2*l^2*lambda[1,1])*n*(4*n+3+2*l);  
 
c[3]:=3*(2*l+4*n+5)*(n+3)*(11+2*l+4*n)*(-640*lambda[2,1]*l^2*lambda[1,2]-3840*lambda[2,1]*lambda[1,2]*l-3840*lambda[2,2]*l*lambda[1,1]-640*lambda[2,2]*l^2*lambda[1,1]-4320*lambda[2,1]*lambda[1,2]-4320*lambda[2,2]*lambda[1,1]-3264*lambda[2,2]*n^2*lambda[2,1]*l^4*lambda[1,2]-4320*lambda[1,2]^2*l*lambda[2,1]-15000*lambda[2,1]^2*n*lambda[1,2]-960*n^5*lambda[2,2]*lambda[1,1]^2*l-26496*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+85152*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+162408*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2-21672*n*lambda[2,2]^2*lambda[1,1]^2*l+55360*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-576*lambda[2,2]*n*lambda[2,1]*l^4*lambda[1,2]+7680*lambda[2,2]*n^2*lambda[2,1]*l+4480*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+14336*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+65392*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+17136*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4+480*n^6*lambda[2,2]^2*lambda[1,1]^2*l^4+480*n^9*lambda[2,2]^2*lambda[1,1]^2*l-15680*n*lambda[2,2]*lambda[1,1]^2*l-67104*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+58208*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+45456*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3+4464*n^5*lambda[2,2]^2*lambda[1,1]^2*l^4+10816*n^6*lambda[2,2]^2*lambda[1,1]^2*l^3-54040*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+640*lambda[1,2]*l^5*lambda[2,2]*lambda[1,1]*lambda[2,1]+73047*n^5*lambda[2,2]^2*lambda[1,1]^2+1536*lambda[2,2]^2*n^7*l*lambda[1,1]+24000*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+1280*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^3+10080*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+512*lambda[1,2]^2*n^6-3296*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*lambda[1,1]+6400*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+15680*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-1152*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-146094*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-22944*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+52176*lambda[2,2]^2*n^2*lambda[1,1]*l-36192*n*lambda[2,2]^2*lambda[1,1]^2*l^3-52152*n*lambda[2,2]^2*lambda[1,1]^2*l^2+1920*lambda[2,2]*n^3*lambda[2,1]*l-5120*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-60720*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+3840*lambda[1,2]*l*lambda[1,1]-5280*lambda[2,1]^2*lambda[1,2]*l-8928*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4-960*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^4+41208*lambda[1,2]^2*n^7*lambda[2,1]^2-192*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^5-17536*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l+73047*lambda[1,2]^2*n^5*lambda[2,1]^2+12348*lambda[1,2]^2*n^4*lambda[2,1]^2+11472*lambda[1,2]^2*n^8*lambda[2,1]^2+79350*lambda[1,2]^2*n^6*lambda[2,1]^2+2016*lambda[1,2]^2*n*lambda[2,1]+1648*n^9*lambda[2,2]^2*lambda[1,1]^2-19640*lambda[2,1]^2*n^2*lambda[1,2]+41208*n^7*lambda[2,2]^2*lambda[1,1]^2+11472*n^8*lambda[2,2]^2*lambda[1,1]^2+360*lambda[1,2]^2*n*lambda[2,1]^2-8226*lambda[1,2]^2*n^2*lambda[2,1]^2-22303*lambda[1,2]^2*n^3*lambda[2,1]^2+10320*lambda[1,2]*n*lambda[1,1]+5600*lambda[2,1]*n^3*lambda[2,2]*l^2*lambda[1,1]+320*lambda[2,1]*n^3*lambda[2,2]*l^3*lambda[1,1]-1216*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+18440*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+640*lambda[2,1]*l^4*lambda[1,2]*lambda[2,2]-960*n^2*lambda[2,2]*lambda[1,1]*l^2-16344*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-7360*n^4*lambda[2,2]*lambda[1,1]^2*l-6400*n*lambda[2,2]*lambda[1,1]^2*l^2-2304*lambda[2,2]*n^6*lambda[2,1]*l^2*lambda[1,2]+360*n*lambda[2,2]^2*lambda[1,1]^2-24000*n^2*lambda[2,2]*lambda[1,1]^2*l-19760*n^3*lambda[2,2]*lambda[1,1]^2*l-960*n^4*lambda[2,2]*lambda[1,1]^2*l^2-5600*n^3*lambda[2,2]*lambda[1,1]^2*l^2-10080*n^2*lambda[2,2]*lambda[1,1]^2*l^2-10080*lambda[2,1]^2*n^2*l^2*lambda[1,2]-2176*lambda[2,2]*n^3*lambda[2,1]*l^4*lambda[1,2]+104304*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-11648*lambda[2,2]*n^4*lambda[2,1]*l^3*lambda[1,2]-152928*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-1536*lambda[1,2]*n^7*lambda[2,2]*l*lambda[1,1]+320*lambda[1,2]*n^6*lambda[2,1]*lambda[1,1]-275832*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+8640*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-24000*lambda[2,1]^2*n^2*lambda[1,2]*l+4320*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+1536*lambda[1,2]^2*n^7*lambda[2,1]*l+10816*lambda[1,2]^2*n^6*lambda[2,1]^2*l^3+75648*lambda[1,2]^2*n^5*lambda[2,1]*l+17536*lambda[1,2]^2*n^6*lambda[2,1]*l-3072*lambda[2,2]*n^4*lambda[1,2]*l^2-34272*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-320*lambda[1,2]^2*l^5*lambda[2,1]^2+10080*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+24000*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-6400*lambda[2,1]^2*n*l^2*lambda[1,2]+512*lambda[2,2]^2*n^3*l^3+2048*lambda[2,2]^2*n^2*l^3+320*lambda[1,1]^2*l+480*lambda[2,1]^2*n^2+4320*lambda[2,2]*lambda[2,1]-2880*lambda[1,1]*lambda[2,1]+17408*lambda[1,2]^2*n^2+1920*lambda[2,2]^2*n*l^3-960*lambda[2,2]*l^2*lambda[1,1]^2-640*lambda[2,2]^2*l^4*lambda[1,1]+79350*n^6*lambda[2,2]^2*lambda[1,1]^2+5280*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-3072*lambda[2,2]*n^5*lambda[1,2]*l-24640*lambda[2,2]*n*lambda[1,2]*l-86376*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-1024*lambda[2,2]*n^3*lambda[1,2]*l^3-144480*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l-9440*lambda[1,2]^2*l^3*lambda[2,1]^2+640*lambda[2,2]*l^2*lambda[2,1]+4320*lambda[2,1]*lambda[1,2]*lambda[1,1]-4320*lambda[2,2]^2*l*lambda[1,1]^2+75072*lambda[2,2]^2*n^4*lambda[1,1]*l^2+960*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]*l+18880*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]-5280*lambda[2,2]*l*lambda[1,1]^2-32256*lambda[2,2]*n^2*lambda[1,2]*l^2-65280*lambda[2,2]*n^2*lambda[1,2]*l-23552*lambda[2,2]*n^4*lambda[1,2]*l+2176*lambda[2,2]^2*n^3*lambda[1,1]*l^4-4096*lambda[2,2]*n^2*lambda[1,2]*l^3-17920*lambda[2,2]*n^3*lambda[1,2]*l^2+4320*lambda[2,1]*lambda[1,2]*lambda[2,2]*l+8160*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]-320*n^6*lambda[2,2]*lambda[1,1]^2+96*n^10*lambda[2,2]^2*lambda[1,1]^2+384*lambda[2,2]^2*n^4*lambda[1,1]*l^4+5280*lambda[1,2]*l*lambda[1,1]*lambda[2,1]-11040*lambda[2,2]^2*l^2*lambda[1,1]^2+4480*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+640*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]+4864*lambda[1,2]^2*n^5+320*lambda[2,1]^2*l+25280*lambda[1,2]^2*n^3+8960*lambda[1,2]*n*lambda[1,1]*l+1920*lambda[1,2]*n^3*lambda[1,1]*l+1440*lambda[2,1]^2+1440*lambda[1,1]^2+512*lambda[2,2]^2*n^6+16640*lambda[2,2]^2*n^4+4864*lambda[2,2]^2*n^5+4176*lambda[2,2]^2*n-4320*lambda[2,2]*lambda[1,1]^2-17536*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]*l-75648*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-152928*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l+7360*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l-25536*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+15680*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+6400*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-52176*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+384*lambda[2,2]^2*n^8*lambda[1,1]+12320*lambda[2,2]^2*n*l+2048*lambda[1,2]^2*n^2*l^3+1920*lambda[1,2]^2*n*l^3-1536*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]*l+17408*lambda[2,2]^2*n^2+121704*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+133968*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+16640*lambda[1,2]^2*n^4-1760*lambda[2,1]*n*lambda[1,1]-2240*lambda[2,1]*l^2*lambda[1,2]*n-19640*n^2*lambda[2,2]*lambda[1,1]^2-960*n^4*lambda[2,1]*lambda[1,2]-90912*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+960*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]*l+15000*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+54040*lambda[1,2]^2*n^3*lambda[2,1]+26496*lambda[1,2]^2*n^6*lambda[2,1]+1648*lambda[1,2]^2*n^9*lambda[2,1]^2+16344*lambda[1,2]^2*n^2*lambda[2,1]+12320*lambda[1,2]^2*n*l-21632*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+44606*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+5120*lambda[1,2]^2*n^7*lambda[2,1]+67104*lambda[1,2]^2*n^5*lambda[2,1]-14592*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-422220*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+384*lambda[1,2]^2*n^8*lambda[2,1]+4176*lambda[1,2]^2*n-8960*n*lambda[2,2]*lambda[1,1]*l-2016*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-2448*lambda[2,2]^2*n*l^2*lambda[1,1]-15680*lambda[2,1]^2*n*lambda[1,2]*l+2448*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+19640*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+624*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l-2448*lambda[1,2]^2*n*lambda[2,1]*l^2-624*lambda[2,2]^2*n*l*lambda[1,1]-10320*n^2*lambda[2,1]*lambda[1,2]-5440*n^3*lambda[2,2]*lambda[1,1]-960*n^4*lambda[2,2]*lambda[1,1]+6080*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-10320*n^2*lambda[2,2]*lambda[1,1]-10320*n*lambda[2,1]*lambda[1,2]+86376*lambda[1,2]^2*n^4*lambda[2,1]+96*lambda[1,2]^2*n^10*lambda[2,1]^2+512*lambda[1,2]^2*n^3*l^3+960*lambda[1,2]*n^4*lambda[1,1]-75072*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-720*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]-4320*lambda[1,2]^2*l*lambda[2,1]^2+2016*lambda[2,2]^2*n*lambda[1,1]+10320*lambda[2,2]*n*lambda[2,1]+4320*lambda[1,2]*lambda[1,1]-130784*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-624*lambda[1,2]^2*n*lambda[2,1]*l+18440*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]-800*n*lambda[2,2]^2*lambda[1,1]^2*l^5-9392*n*lambda[2,2]^2*lambda[1,1]^2*l^4-1280*n^2*lambda[2,2]*lambda[1,1]^2*l^3+7680*lambda[1,2]*n^2*lambda[1,1]*l-60852*lambda[1,2]^2*n^2*lambda[2,1]^2*l-66984*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-61696*lambda[2,2]*n^3*lambda[1,2]*l-960*n*lambda[2,2]*lambda[1,1]^2*l^3+75648*lambda[2,2]^2*n^5*lambda[1,1]*l+135024*n^6*lambda[2,2]^2*lambda[1,1]^2*l+44240*n^7*lambda[2,2]^2*lambda[1,1]^2*l-18902*n^3*lambda[2,2]^2*lambda[1,1]^2*l-66984*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+137916*n^4*lambda[2,2]^2*lambda[1,1]^2*l+211110*n^5*lambda[2,2]^2*lambda[1,1]^2*l+2240*lambda[1,2]*n*lambda[1,1]*l^2+576*lambda[1,2]^2*n*lambda[2,1]*l^4-116416*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+2448*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]+624*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-110784*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+144480*lambda[1,2]^2*n^3*lambda[2,1]*l+3264*lambda[1,2]^2*n^2*lambda[2,1]*l^4-16344*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+65392*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+152928*lambda[1,2]^2*n^4*lambda[2,1]*l+480*lambda[1,2]^2*n^6*lambda[2,1]^2*l^4+17136*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+152928*lambda[2,2]^2*n^4*lambda[1,1]*l+960*lambda[1,2]*n^2*lambda[1,1]*l^2+60720*lambda[1,2]^2*n^2*lambda[2,1]*l^2+1216*lambda[1,2]^2*n*lambda[2,1]*l^3+19640*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+480*lambda[1,2]^2*n^9*lambda[2,1]^2*l-384*lambda[1,2]*n^8*lambda[2,2]*lambda[1,1]+45456*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+188112*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+58208*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+12704*lambda[1,2]^2*n^7*lambda[2,1]^2*l^2+96*lambda[1,2]^2*n^5*lambda[2,1]^2*l^5+960*lambda[1,2]^2*n^8*lambda[2,1]^2*l^2+8896*lambda[1,2]^2*n*l^2+1536*lambda[1,2]^2*n^4*l^2+1536*lambda[1,2]^2*n^5*l-800*lambda[1,2]^2*n*lambda[2,1]^2*l^5-9392*lambda[1,2]^2*n*lambda[2,1]^2*l^4-36192*lambda[1,2]^2*n*lambda[2,1]^2*l^3+4464*lambda[1,2]^2*n^5*lambda[2,1]^2*l^4+144480*lambda[2,2]^2*n^3*lambda[1,1]*l+32640*lambda[1,2]^2*n^2*l+16128*lambda[1,2]^2*n^2*l^2+11776*lambda[1,2]^2*n^4*l+8960*lambda[1,2]^2*n^3*l^2+30848*lambda[1,2]^2*n^3*l+960*lambda[2,2]*n^2*lambda[2,1]*l^2+11648*lambda[2,2]^2*n^4*lambda[1,1]*l^3+960*lambda[1,2]*n*lambda[1,1]*l^3*lambda[2,1]-52176*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l-18240*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-576*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]-1216*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+880*lambda[1,1]^2*n+10320*lambda[1,2]*n^2*lambda[1,1]+5440*lambda[1,2]*n^3*lambda[1,1]-10640*n^4*lambda[2,2]*lambda[1,1]^2-3040*n^5*lambda[2,2]*lambda[1,1]^2-8352*lambda[2,2]*n*lambda[1,2]-5440*n^3*lambda[2,1]*lambda[1,2]+135024*lambda[1,2]^2*n^6*lambda[2,1]^2*l+211110*lambda[1,2]^2*n^5*lambda[2,1]^2*l-52152*lambda[1,2]^2*n*lambda[2,1]^2*l^2+1056*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+576*lambda[1,2]^2*n^2*lambda[2,1]^2*l^5+110784*lambda[1,2]^2*n^3*lambda[2,1]*l^2-2016*lambda[1,2]*n*lambda[2,2]*lambda[1,1]-320*lambda[2,2]^2*l^5*lambda[1,1]^2+3840*lambda[2,1]*l*lambda[2,2]-11040*lambda[1,2]^2*l^2*lambda[2,1]^2+1536*lambda[2,2]^2*n^4*l^2+960*lambda[2,2]*n^4*lambda[2,1]-86376*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-67104*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-26496*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]+16452*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]+2304*lambda[1,2]^2*n^6*lambda[2,1]*l^2+2176*lambda[1,2]^2*n^3*lambda[2,1]*l^4+11648*lambda[1,2]^2*n^4*lambda[2,1]*l^3+7296*lambda[1,2]^2*n^8*lambda[2,1]^2*l-5120*lambda[1,2]*n^7*lambda[2,2]*lambda[1,1]-54040*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+44240*lambda[1,2]^2*n^7*lambda[2,1]^2*l-29184*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+960*lambda[1,2]^2*n^7*lambda[2,1]^2*l^3+1504*lambda[1,2]^2*n^3*lambda[2,1]^2*l^5-21672*lambda[1,2]^2*n*lambda[2,1]^2*l+14336*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+480*lambda[1,1]^2*n^2+1536*lambda[1,2]^2*n^5*lambda[2,1]*l^3+384*lambda[1,2]^2*n^4*lambda[2,1]*l^4+55360*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2-18902*lambda[1,2]^2*n^3*lambda[2,1]^2*l+75072*lambda[1,2]^2*n^4*lambda[2,1]*l^2+2240*lambda[2,2]*n*lambda[2,1]*l^2+21888*lambda[1,2]^2*n^5*lambda[2,1]*l^2+29184*lambda[1,2]^2*n^3*lambda[2,1]*l^3+25536*lambda[2,2]^2*n^2*l^3*lambda[1,1]+8160*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+17536*lambda[2,2]^2*n^6*lambda[1,1]*l+29184*lambda[2,2]^2*n^3*lambda[1,1]*l^3+16344*lambda[2,2]^2*n^2*lambda[1,1]+880*lambda[2,1]^2*n+3264*lambda[2,2]^2*n^2*l^4*lambda[1,1]-8226*n^2*lambda[2,2]^2*lambda[1,1]^2-33280*lambda[2,2]*n^4*lambda[1,2]-1024*lambda[2,2]*n^6*lambda[1,2]-2176*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^4-384*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^4-2240*lambda[2,2]*l^2*lambda[1,1]*n-960*lambda[2,1]^2*n^4*l^2*lambda[1,2]+19760*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l-1920*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3-8160*lambda[1,2]^2*l^2*lambda[2,1]+32640*lambda[2,2]^2*n^2*l+30848*lambda[2,2]^2*n^3*l-9728*lambda[2,2]*n^5*lambda[1,2]-34816*lambda[2,2]*n^2*lambda[1,2]+1280*lambda[2,1]*n^2*lambda[2,2]*l^3*lambda[1,1]-50560*lambda[2,2]*n^3*lambda[1,2]+5440*lambda[2,2]*n^3*lambda[2,1]+8896*lambda[2,2]^2*n*l^2+5600*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^2-320*lambda[2,1]^2*n^6*lambda[1,2]+320*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l^3+960*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]*l^2+10320*lambda[2,2]*n^2*lambda[2,1]-10320*n*lambda[2,2]*lambda[1,1]-3040*lambda[2,2]^2*l^4*lambda[1,1]^2+19760*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-10640*lambda[2,1]^2*n^4*lambda[1,2]-18440*lambda[2,1]^2*n^3*lambda[1,2]+640*lambda[1,2]*l^2*lambda[1,1]-1280*lambda[2,1]^2*n^2*l^3*lambda[1,2]-1920*n^3*lambda[2,2]*lambda[1,1]*l+960*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-5600*lambda[2,1]^2*n^3*l^2*lambda[1,2]-1920*n^3*lambda[2,1]*lambda[1,2]*l-7680*n^2*lambda[2,1]*lambda[1,2]*l+110784*lambda[2,2]^2*n^3*lambda[1,1]*l^2-18440*n^3*lambda[2,2]*lambda[1,1]^2-22303*n^3*lambda[2,2]^2*lambda[1,1]^2-15000*n*lambda[2,2]*lambda[1,1]^2-376224*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+21888*lambda[2,2]^2*n^5*lambda[1,1]*l^2-170304*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-1408*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]+1536*lambda[2,2]^2*n^5*lambda[1,1]*l^3+960*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]-3040*lambda[2,1]^2*n^5*lambda[1,2]+11776*lambda[2,2]^2*n^4*l+16128*lambda[2,2]^2*n^2*l^2+1536*lambda[2,2]^2*n^5*l-75072*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]-640*lambda[1,2]^2*l^4*lambda[2,1]-1536*lambda[2,2]*n^5*lambda[2,1]*l^3*lambda[1,2]+2304*lambda[2,2]^2*n^6*lambda[1,1]*l^2-320*lambda[2,1]^2*n^3*l^3*lambda[1,2]+3040*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+320*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+8960*lambda[2,2]^2*n^3*l^2+4320*lambda[2,2]*lambda[1,1]*lambda[2,1]-8960*n*lambda[2,1]*lambda[1,2]*l-19760*lambda[2,1]^2*n^3*lambda[1,2]*l-384*lambda[2,2]*n^4*lambda[2,1]*l^4*lambda[1,2]-960*lambda[2,1]*n*lambda[1,1]*l-270048*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+480*lambda[2,1]^2*n*l+43344*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-960*lambda[1,2]*n^9*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-3264*lambda[1,2]*n^2*lambda[2,2]*l^4*lambda[1,1]+22080*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-25536*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-25408*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+960*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l^2+18784*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-1920*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-324816*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-60720*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]-4480*lambda[1,2]^2*l^3*lambda[2,1]-144480*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-11648*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^3-75648*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l+36480*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-2112*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-960*lambda[2,1]*n^2*lambda[1,1]-640*lambda[1,1]*l*lambda[2,1]-3040*lambda[1,2]^2*l^4*lambda[2,1]^2+12348*n^4*lambda[2,2]^2*lambda[1,1]^2-21888*lambda[2,2]*n^5*lambda[2,1]*l^2*lambda[1,2]+54040*lambda[2,2]^2*n^3*lambda[1,1]+162408*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+25536*lambda[1,2]^2*n^2*lambda[2,1]*l^3-4320*lambda[2,1]^2*lambda[1,2]-29184*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+10640*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+72384*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+85152*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+52176*lambda[1,2]^2*n^2*lambda[2,1]*l+704*lambda[1,2]^2*n^4*lambda[2,1]^2*l^5+137916*lambda[1,2]^2*n^4*lambda[2,1]^2*l+3040*lambda[1,2]*n^5*lambda[2,1]*lambda[1,1]-960*lambda[2,1]^2*n*l^3*lambda[1,2]+15000*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+10640*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-158700*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-82416*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-960*n^2*lambda[2,1]*l^2*lambda[1,2]+960*lambda[2,1]*n*lambda[2,2]*l^3*lambda[1,1]-28672*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-110784*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-21888*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^2-24696*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-192*lambda[1,2]*n^10*lambda[2,1]*lambda[2,2]*lambda[1,1]+37804*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-4480*lambda[2,2]^2*l^3*lambda[1,1]+26496*lambda[2,2]^2*n^6*lambda[1,1]+5120*lambda[2,2]^2*n^7*lambda[1,1]-1536*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l^3-2304*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]*l^2+1600*lambda[1,2]*n*lambda[2,2]*l^5*lambda[1,1]*lambda[2,1]-110720*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+7360*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]*l-3008*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^5*lambda[1,1]-88480*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-9440*lambda[2,2]^2*l^3*lambda[1,1]^2+480*lambda[1,1]^2*l*n+67104*lambda[2,2]^2*n^5*lambda[1,1]+86376*lambda[2,2]^2*n^4*lambda[1,1]-320*n^3*lambda[2,2]*lambda[1,1]^2*l^3+704*n^4*lambda[2,2]^2*lambda[1,1]^2*l^5+1504*n^3*lambda[2,2]^2*lambda[1,1]^2*l^5+96*n^5*lambda[2,2]^2*lambda[1,1]^2*l^5-18240*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+1056*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+12704*n^7*lambda[2,2]^2*lambda[1,1]^2*l^2+960*n^7*lambda[2,2]^2*lambda[1,1]^2*l^3+960*n^8*lambda[2,2]^2*lambda[1,1]^2*l^2-60852*n^2*lambda[2,2]^2*lambda[1,1]^2*l+7296*n^8*lambda[2,2]^2*lambda[1,1]^2*l+188112*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2+576*n^2*lambda[2,2]^2*lambda[1,1]^2*l^5-384*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-7680*n^2*lambda[2,2]*lambda[1,1]*l-3840*lambda[2,2]*n*lambda[1,2]*l^3-17792*lambda[2,2]*n*lambda[1,2]*l^2+8960*lambda[2,2]*n*lambda[2,1]*l+1216*lambda[2,2]^2*n*l^3*lambda[1,1]+576*lambda[2,2]^2*n*l^4*lambda[1,1]-960*lambda[2,1]^2*n^5*lambda[1,2]*l-7360*lambda[2,1]^2*n^4*lambda[1,2]*l-960*lambda[2,1]^2*l^2*lambda[1,2]+25280*lambda[2,2]^2*n^3-8160*lambda[2,2]^2*l^2*lambda[1,1]-4320*lambda[2,2]^2*l*lambda[1,1]+60720*lambda[2,2]^2*n^2*l^2*lambda[1,1]);  
 
c[4]:=-(n+3)*(n+2)*(2*l-1+2*n)*(11+2*l+4*n)*(9+2*l+4*n)*(-960*lambda[2,1]*lambda[1,2]*l-960*lambda[2,2]*l*lambda[1,1]-1440*lambda[2,1]*lambda[1,2]-1440*lambda[2,2]*lambda[1,1]+8640*lambda[1,2]^2*l*lambda[2,1]-4680*lambda[2,1]^2*n*lambda[1,2]-192*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+2016*n^4*lambda[2,2]^2*lambda[1,1]^2*l^3+3744*n^5*lambda[2,2]^2*lambda[1,1]^2*l^2+41952*n*lambda[2,2]^2*lambda[1,1]^2*l+46800*n^3*lambda[2,2]^2*lambda[1,1]^2*l^2-960*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]+48*n^4*lambda[2,2]^2*lambda[1,1]^2*l^4+288*n^6*lambda[2,2]^2*lambda[1,1]^2*l^2+384*n^3*lambda[2,2]^2*lambda[1,1]^2*l^4-3920*n*lambda[2,2]*lambda[1,1]^2*l-2592*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+7776*n^3*lambda[2,2]^2*lambda[1,1]^2*l^3+192*n^5*lambda[2,2]^2*lambda[1,1]^2*l^3-33048*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+25272*n^5*lambda[2,2]^2*lambda[1,1]^2+2080*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l+160*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]*l^2+640*lambda[1,2]*n*lambda[1,1]*l^2*lambda[2,1]+3920*lambda[1,2]*n*lambda[1,1]*l*lambda[2,1]-50544*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]-96*lambda[1,2]*n^8*lambda[2,1]*lambda[2,2]*lambda[1,1]+45504*lambda[2,2]^2*n^2*lambda[1,1]*l+9552*n*lambda[2,2]^2*lambda[1,1]^2*l^3+31992*n*lambda[2,2]^2*lambda[1,1]^2*l^2-14112*lambda[2,2]*n^2*lambda[2,1]*l^2*lambda[1,2]+960*lambda[1,2]*l*lambda[1,1]-1920*lambda[2,1]^2*lambda[1,2]*l+864*lambda[1,2]^2*n^7*lambda[2,1]^2+25272*lambda[1,2]^2*n^5*lambda[2,1]^2+57063*lambda[1,2]^2*n^4*lambda[2,1]^2+48*lambda[1,2]^2*n^8*lambda[2,1]^2+6408*lambda[1,2]^2*n^6*lambda[2,1]^2+21816*lambda[1,2]^2*n*lambda[2,1]-4280*lambda[2,1]^2*n^2*lambda[1,2]+864*n^7*lambda[2,2]^2*lambda[1,1]^2+48*n^8*lambda[2,2]^2*lambda[1,1]^2+17712*lambda[1,2]^2*n*lambda[2,1]^2+52293*lambda[1,2]^2*n^2*lambda[2,1]^2+73980*lambda[1,2]^2*n^3*lambda[2,1]^2+2160*lambda[1,2]*n*lambda[1,1]-2016*lambda[2,2]*n*lambda[2,1]*l^3*lambda[1,2]+1440*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-39840*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-640*n*lambda[2,2]*lambda[1,1]^2*l^2+17712*n*lambda[2,2]^2*lambda[1,1]^2-2080*n^2*lambda[2,2]*lambda[1,1]^2*l-320*n^3*lambda[2,2]*lambda[1,1]^2*l-160*n^2*lambda[2,2]*lambda[1,1]^2*l^2-160*lambda[2,1]^2*n^2*l^2*lambda[1,2]-63984*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]-6336*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l-119376*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-11520*lambda[1,2]*l*lambda[2,2]*lambda[1,1]*lambda[2,1]-2080*lambda[2,1]^2*n^2*lambda[1,2]*l-8640*lambda[1,2]*l*lambda[2,2]*lambda[1,1]+576*lambda[1,2]^2*n^5*lambda[2,1]*l-768*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+160*lambda[2,1]*n^2*lambda[2,2]*l^2*lambda[1,1]+2080*lambda[2,1]*n^2*lambda[2,2]*l*lambda[1,1]-640*lambda[2,1]^2*n*l^2*lambda[1,2]-5760*lambda[1,2]*l*lambda[2,2]-4320*lambda[1,2]*lambda[2,2]+1440*lambda[2,2]*lambda[2,1]-480*lambda[1,1]*lambda[2,1]+6656*lambda[1,2]^2*n^2-480*lambda[2,2]*l^2*lambda[1,1]^2+6408*n^6*lambda[2,2]^2*lambda[1,1]^2+1920*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-12160*lambda[2,2]*n*lambda[1,2]*l-13392*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-4320*lambda[2,1]*lambda[1,2]*lambda[2,2]*lambda[1,1]-25488*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]*l+1920*lambda[1,2]^2*l^3*lambda[2,1]^2+1440*lambda[2,1]*lambda[1,2]*lambda[1,1]+5760*lambda[2,2]^2*l*lambda[1,1]^2+576*lambda[2,2]^2*n^4*lambda[1,1]*l^2-3840*lambda[1,2]*l^3*lambda[2,2]*lambda[1,1]*lambda[2,1]-1920*lambda[2,2]*l*lambda[1,1]^2-512*lambda[2,2]*n^2*lambda[1,2]*l^2-6656*lambda[2,2]*n^2*lambda[1,2]*l-8640*lambda[2,1]*lambda[1,2]*lambda[2,2]*l-5280*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]+1920*lambda[1,2]*l*lambda[1,1]*lambda[2,1]+5280*lambda[2,2]^2*l^2*lambda[1,1]^2-960*lambda[2,1]*l^3*lambda[1,2]*lambda[2,2]+960*lambda[2,2]^2*l^2+2304*lambda[1,2]^2*n^3+480*lambda[1,2]*n*lambda[1,1]*l+240*lambda[2,1]^2+2160*lambda[1,2]^2+240*lambda[1,1]^2+2160*lambda[2,2]^2+256*lambda[2,2]^2*n^4+6624*lambda[2,2]^2*n-1440*lambda[2,2]*lambda[1,1]^2+2160*lambda[2,2]^2*lambda[1,1]^2-576*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]*l-6336*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]*l-1152*lambda[2,2]*n^2*lambda[2,1]*l^3*lambda[1,2]+3920*lambda[2,1]*n*lambda[2,2]*l*lambda[1,1]+640*lambda[2,1]*n*lambda[2,2]*l^2*lambda[1,1]-45504*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]*l+6080*lambda[2,2]^2*n*l+6656*lambda[2,2]^2*n^2-194016*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l*lambda[1,1]-115680*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]+256*lambda[1,2]^2*n^4-1920*lambda[1,2]*l^2*lambda[2,2]-4280*n^2*lambda[2,2]*lambda[1,1]^2-384*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^3+4680*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+33048*lambda[1,2]^2*n^3*lambda[2,1]+192*lambda[1,2]^2*n^6*lambda[2,1]+39840*lambda[1,2]^2*n^2*lambda[2,1]+6080*lambda[1,2]^2*n*l-147960*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*lambda[1,1]+2592*lambda[1,2]^2*n^5*lambda[2,1]-37152*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+6624*lambda[1,2]^2*n-480*n*lambda[2,2]*lambda[1,1]*l-21816*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+15696*lambda[2,2]^2*n*l^2*lambda[1,1]-3920*lambda[2,1]^2*n*lambda[1,2]*l-15696*lambda[2,2]*n*lambda[2,1]*l^2*lambda[1,2]+4280*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-34656*lambda[2,2]*n*lambda[2,1]*lambda[1,2]*l+15696*lambda[1,2]^2*n*lambda[2,1]*l^2+34656*lambda[2,2]^2*n*l*lambda[1,1]-480*n^2*lambda[2,1]*lambda[1,2]-480*lambda[1,2]*l^4*lambda[2,2]*lambda[1,1]*lambda[2,1]-480*n^2*lambda[2,2]*lambda[1,1]-2160*n*lambda[2,1]*lambda[1,2]+4320*lambda[2,2]^2*lambda[1,1]+13392*lambda[1,2]^2*n^4*lambda[2,1]-576*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]*l^2-35424*lambda[1,2]*n*lambda[2,2]*lambda[1,1]*lambda[2,1]+5760*lambda[1,2]^2*l*lambda[2,1]^2+21816*lambda[2,2]^2*n*lambda[1,1]+2160*lambda[2,2]*n*lambda[2,1]+1440*lambda[1,2]*lambda[1,1]-576*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2+34656*lambda[1,2]^2*n*lambda[2,1]*l+1440*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]+960*n*lambda[2,2]^2*lambda[1,1]^2*l^4+97008*lambda[1,2]^2*n^2*lambda[2,1]^2*l+57840*lambda[1,2]^2*n^2*lambda[2,1]^2*l^2-1024*lambda[2,2]*n^3*lambda[1,2]*l+576*lambda[2,2]^2*n^5*lambda[1,1]*l+2976*n^6*lambda[2,2]^2*lambda[1,1]^2*l+192*n^7*lambda[2,2]^2*lambda[1,1]^2*l+104568*n^3*lambda[2,2]^2*lambda[1,1]^2*l+57840*n^2*lambda[2,2]^2*lambda[1,1]^2*l^2+59688*n^4*lambda[2,2]^2*lambda[1,1]^2*l+18576*n^5*lambda[2,2]^2*lambda[1,1]^2*l-15552*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-15696*lambda[1,2]*n*lambda[2,2]*l^2*lambda[1,1]-34656*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]-4896*lambda[2,2]*n^3*lambda[2,1]*l^2*lambda[1,2]+25488*lambda[1,2]^2*n^3*lambda[2,1]*l-39840*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]+288*lambda[1,2]^2*n^6*lambda[2,1]^2*l^2+6336*lambda[1,2]^2*n^4*lambda[2,1]*l+384*lambda[1,2]^2*n^3*lambda[2,1]^2*l^4+6336*lambda[2,2]^2*n^4*lambda[1,1]*l+14112*lambda[1,2]^2*n^2*lambda[2,1]*l^2+2016*lambda[1,2]^2*n*lambda[2,1]*l^3+4280*lambda[1,2]*n^2*lambda[2,1]*lambda[1,1]+192*lambda[1,2]^2*n^5*lambda[2,1]^2*l^3+18936*lambda[1,2]^2*n^4*lambda[2,1]^2*l^2+7776*lambda[1,2]^2*n^3*lambda[2,1]^2*l^3+1024*lambda[1,2]^2*n*l^2+960*lambda[1,2]^2*n*lambda[2,1]^2*l^4+9552*lambda[1,2]^2*n*lambda[2,1]^2*l^3+25488*lambda[2,2]^2*n^3*lambda[1,1]*l+3328*lambda[1,2]^2*n^2*l+256*lambda[1,2]^2*n^2*l^2+512*lambda[1,2]^2*n^3*l-45504*lambda[1,2]*n^2*lambda[2,2]*lambda[1,1]*l+13344*lambda[1,2]^2*n^2*lambda[2,1]^2*l^3-2016*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]+480*lambda[1,2]*n^2*lambda[1,1]-160*n^4*lambda[2,2]*lambda[1,1]^2-13248*lambda[2,2]*n*lambda[1,2]+2976*lambda[1,2]^2*n^6*lambda[2,1]^2*l+18576*lambda[1,2]^2*n^5*lambda[2,1]^2*l+31992*lambda[1,2]^2*n*lambda[2,1]^2*l^2+1008*lambda[1,2]^2*n^2*lambda[2,1]^2*l^4+4896*lambda[1,2]^2*n^3*lambda[2,1]*l^2-21816*lambda[1,2]*n*lambda[2,2]*lambda[1,1]+960*lambda[2,1]*l*lambda[2,2]+5280*lambda[1,2]^2*l^2*lambda[2,1]^2-13392*lambda[1,2]*n^4*lambda[2,2]*lambda[1,1]-2592*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]-192*lambda[1,2]*n^6*lambda[2,2]*lambda[1,1]-104586*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*lambda[1,1]-33048*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]+192*lambda[1,2]^2*n^7*lambda[2,1]^2*l-192*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^3+41952*lambda[1,2]^2*n*lambda[2,1]^2*l+48*lambda[1,2]^2*n^4*lambda[2,1]^2*l^4+46800*lambda[1,2]^2*n^3*lambda[2,1]^2*l^2+104568*lambda[1,2]^2*n^3*lambda[2,1]^2*l+576*lambda[1,2]^2*n^4*lambda[2,1]*l^2+192*lambda[1,2]^2*n^3*lambda[2,1]*l^3+1152*lambda[2,2]^2*n^2*l^3*lambda[1,1]-5280*lambda[2,1]*lambda[1,2]*lambda[2,2]*l^2+192*lambda[2,2]^2*n^3*lambda[1,1]*l^3+39840*lambda[2,2]^2*n^2*lambda[1,1]+52293*n^2*lambda[2,2]^2*lambda[1,1]^2-512*lambda[2,2]*n^4*lambda[1,2]+320*lambda[1,2]*n^3*lambda[2,1]*lambda[1,1]*l+5280*lambda[1,2]^2*l^2*lambda[2,1]+3328*lambda[2,2]^2*n^2*l+512*lambda[2,2]^2*n^3*l-13312*lambda[2,2]*n^2*lambda[1,2]-4608*lambda[2,2]*n^3*lambda[1,2]+1024*lambda[2,2]^2*n*l^2+2160*lambda[2,1]^2*lambda[1,2]^2+480*lambda[2,2]*n^2*lambda[2,1]-2160*n*lambda[2,2]*lambda[1,1]+240*lambda[2,2]^2*l^4*lambda[1,1]^2+320*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]*l-160*lambda[2,1]^2*n^4*lambda[1,2]-1440*lambda[2,1]^2*n^3*lambda[1,2]+4320*lambda[2,1]*lambda[1,2]^2+480*lambda[2,2]*l^2*lambda[1,1]*lambda[2,1]+4896*lambda[2,2]^2*n^3*lambda[1,1]*l^2-1440*n^3*lambda[2,2]*lambda[1,1]^2+73980*n^3*lambda[2,2]^2*lambda[1,1]^2-4680*n*lambda[2,2]*lambda[1,1]^2-37872*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-4032*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]+480*lambda[1,2]*l^2*lambda[1,1]*lambda[2,1]+256*lambda[2,2]^2*n^2*l^2-576*lambda[2,2]*n^4*lambda[2,1]*l^2*lambda[1,2]+1440*lambda[2,2]*lambda[1,1]*lambda[2,1]-480*n*lambda[2,1]*lambda[1,2]*l-320*lambda[2,1]^2*n^3*lambda[1,2]*l-5952*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]*l-83904*lambda[1,2]*n*lambda[2,2]*l*lambda[1,1]*lambda[2,1]-10560*lambda[1,2]*l^2*lambda[2,2]*lambda[1,1]*lambda[2,1]-1152*lambda[1,2]*n^2*lambda[2,2]*l^3*lambda[1,1]-1920*lambda[1,2]*n*lambda[2,2]*l^4*lambda[1,1]*lambda[2,1]-7488*lambda[1,2]*n^5*lambda[2,1]*lambda[2,2]*lambda[1,1]*l^2-14112*lambda[1,2]*n^2*lambda[2,2]*l^2*lambda[1,1]+960*lambda[1,2]^2*l^3*lambda[2,1]-25488*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l-576*lambda[1,2]*n^5*lambda[2,2]*lambda[1,1]*l-26688*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^3*lambda[1,1]-2016*lambda[1,2]*n^2*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]+240*lambda[1,2]^2*l^4*lambda[2,1]^2+57063*n^4*lambda[2,2]^2*lambda[1,1]^2+33048*lambda[2,2]^2*n^3*lambda[1,1]+3744*lambda[1,2]^2*n^5*lambda[2,1]^2*l^2+1152*lambda[1,2]^2*n^2*lambda[2,1]*l^3+2880*lambda[1,2]^2*l+960*lambda[1,2]^2*l^2+2880*lambda[2,2]^2*l-1440*lambda[2,1]^2*lambda[1,2]-192*lambda[2,2]*n^3*lambda[2,1]*l^3*lambda[1,2]+160*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-19104*lambda[1,2]*n*lambda[2,2]*l^3*lambda[1,1]*lambda[2,1]+2016*lambda[1,2]^2*n^4*lambda[2,1]^2*l^3+45504*lambda[1,2]^2*n^2*lambda[2,1]*l+59688*lambda[1,2]^2*n^4*lambda[2,1]^2*l+4680*lambda[1,2]*n*lambda[1,1]*lambda[2,1]+160*lambda[1,2]*n^4*lambda[2,1]*lambda[1,1]-12816*lambda[1,2]*n^6*lambda[2,1]*lambda[2,2]*lambda[1,1]-1728*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]-96*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*l^4*lambda[1,1]-4896*lambda[1,2]*n^3*lambda[2,2]*lambda[1,1]*l^2-114126*lambda[1,2]*n^4*lambda[2,1]*lambda[2,2]*lambda[1,1]-209136*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l*lambda[1,1]+960*lambda[2,2]^2*l^3*lambda[1,1]+192*lambda[2,2]^2*n^6*lambda[1,1]-93600*lambda[1,2]*n^3*lambda[2,1]*lambda[2,2]*l^2*lambda[1,1]-384*lambda[1,2]*n^7*lambda[2,1]*lambda[2,2]*lambda[1,1]*l+1920*lambda[2,2]^2*l^3*lambda[1,1]^2+2592*lambda[2,2]^2*n^5*lambda[1,1]+13392*lambda[2,2]^2*n^4*lambda[1,1]+13344*n^2*lambda[2,2]^2*lambda[1,1]^2*l^3+1008*n^2*lambda[2,2]^2*lambda[1,1]^2*l^4+97008*n^2*lambda[2,2]^2*lambda[1,1]^2*l+18936*n^4*lambda[2,2]^2*lambda[1,1]^2*l^2-2048*lambda[2,2]*n*lambda[1,2]*l^2+480*lambda[2,2]*n*lambda[2,1]*l+2016*lambda[2,2]^2*n*l^3*lambda[1,1]-4320*lambda[2,2]*lambda[1,1]*lambda[1,2]-4320*lambda[2,1]*lambda[1,2]*lambda[2,2]-480*lambda[2,1]^2*l^2*lambda[1,2]+2304*lambda[2,2]^2*n^3+5280*lambda[2,2]^2*l^2*lambda[1,1]+8640*lambda[2,2]^2*l*lambda[1,1]+14112*lambda[2,2]^2*n^2*l^2*lambda[1,1]);