2 One sided, Cartesian

2.1 f(1) = 0

The basis set is simply written

                (α+2,β)
Ψn (x) = (1 - x)Pn-1  ,n ≥ 1
(8)

Alternatively, it can be expressed as

         {
           1 - x            n = 1
Ψn (x) =   ∑3    cP (α+2,β)  n ≥ 2                  (9)
              i=1  i n+1-i
for coefficients ci(n), which take the (unnormalized) form

c1(n) = n(β + α + 2n)(α + β + n + 2),
c2(n) = -(β + 1 + 2n + α)(2n2 + 2+ 2n + 2+ βα + α2 + 3α + 2 + β),
c3(n) = (α + n + 1)(β + n - 1)(β + α + 2n + 2).


PIC

Figure 3: The first four basis functions that satisfy Ψn(1) = 0 with α = -12, β = 1, each normalised to have unit 2-norm.


2.2 f(1) = 0

In the Cartesian domain [-1,1], we provide a formulation of orthogonal basis functions that satisfy the boundary condition

f′(1) = 0.                            (10)

An unnormalised basis set may be written, when α = β, as

        {
           1                  n = 1
Ψn (x) =   ∑3i=1ciP(nα++12-,iα)(x)  n ≥ 2                (11)
for any α > -1. The 3 coefficients ci are determined up to an arbitrary normalisation by imposing

c[1] = 8α2 + 8n3α3 - 12n2α - 9n3α + 5n4α2 + 12n3α2 - 143 - 27n2α2 + 22 - 4n2α3 + n5α + 10n4α + 2n5 + 4n2α4 - 84 + 10α3 + 4α4 + 8+ 2n - 4n3 + 2α
c[2] = -(2α4 + 63 + 9α3 + 6n2α2 + 202 + 14α2 + 2n3α + 15n2α + 19+ 5α + 4n3 + 6n2 + 2n)(-1 + n2 - 2α + 2)
c[3] = -4n - α - 6n2 + 2n3 + 6n4 - α2 + α3 + 2n5 + α4 + 113 + 2α5n + 84 + 25n2α3 + 28n3α2 + 13n4α + 9n3α3 + 5n4α2 + 26n2α2 - 11- 22 + 22n3α + 7n2α4 + n5α

Expressions for all quantities involved are provided below.

 
Psi_1:=1;  
 
c[1]:=8*alpha^2+8*n^3*alpha^3-12*n^2*alpha-9*n^3*alpha+5*n^4*alpha^2+12*n^3*alpha^2-14*n*alpha^3-27*n^2*alpha^2+2*n*alpha^2-4*n^2*alpha^3+n^5*alpha+10*n^4*alpha+2*n^5+4*n^2*alpha^4-8*n*alpha^4+10*alpha^3+4*alpha^4+8*n*alpha+2*n-4*n^3+2*alpha;  
 
c[2]:=-(2*alpha^4+6*n*alpha^3+9*alpha^3+6*n^2*alpha^2+20*n*alpha^2+14*alpha^2+2*n^3*alpha+15*n^2*alpha+19*n*alpha+5*alpha+4*n^3+6*n^2+2*n)*(-1+n^2-2*alpha+2*n*alpha);  
 
c[3]:=-4*n-alpha-6*n^2+2*n^3+6*n^4-alpha^2+alpha^3+2*n^5+alpha^4+11*n*alpha^3+2*alpha^5*n+8*n*alpha^4+25*n^2*alpha^3+28*n^3*alpha^2+13*n^4*alpha+9*n^3*alpha^3+5*n^4*alpha^2+26*n^2*alpha^2-11*n*alpha-2*n*alpha^2+22*n^3*alpha+7*n^2*alpha^4+n^5*alpha;  


PIC

Figure 4: The first four basis functions that satisfy Ψn(1) = 0 with α = β = 0, each normalised to have unit 2-norm.


2.3 f′′(1) = 0

In the Cartesian domain [-1,1], we provide a formulation of orthogonal basis functions that satisfy the boundary condition

f′′(1) = 0.                           (12)

An unnormalised basis set may be written, when α = β

        (
        {  1                  n = 1
Ψn (x ) =   2αx + 5 + 5x       n = 2                (13)
        (  ∑4i=1ciPn(α++13-,αi) (x)  n ≥ 3

for any α > -1. The 4 coefficients ci are determined up to an arbitrary normalisation by imposing

c[1] = (-1 + 2α + 2n)(-192n - 192α + 12n8 - 108n6 - 192n2 + 288n3 + 288n4 - 1088α2 - 2416α3 - 108n5 - 2720α4 - 1172n3α5 - 384n2α6 + 2448α5n + 380α5n2 + 960α6n + 19924 + 6876n2α3 + 3552n3α2 + 208n4α + 100n3α3 - 2123n4α2 - 1648α5 - 512α6 + 12n7 - 87n6α + 115n7α - 2652n3α4 - 2965n4α3 - 1056n5α2 + 358n6α2 + 263n5α3 - 652n4α4 - 1280- 25442 + 160n2α + 2188n3α + 3540n2α2 - 10803 + 4364n2α4 - 927n5α - 64α7 + 9n7α3 + 128α7n + 221n6α3 - 80n2α7 + 64n7α2 - 80n3α6 + 16n3α7 + 176n4α5 + 340n5α4 + 32n6α4 + 56n5α5 + 48n4α6 + n8α2 + 7n8α)
c[2] = -(-16α3 + 83 + 16n2α2 - 242 - 16α2 + 10n3α - 6n2α - 30+ 4α + 2n4 + n3 - 9n2 - 4n + 4)(-12n - 72α - 48n2 - 24n3 + 48n4 - 310α2 - 390α3 + 36n5 - 190α4 + 26α5n + 16α5n2 + 4α6n + 334 + 282n2α3 + 370n3α2 + 196n4α + 173n3α3 + 102n4α2 - 42α5 - 4α6 + 23n3α4 + 14n4α3 + 3n5α2 - 211- 3972 - 148n2α + 166n3α + 136n2α2 - 1393 + 122n2α4 + 21n5α)
c[3] = (-144n - 144α + 72n6 - 384n2 - 156n3 + 312n4 - 240α2 + 12α3 + 300n5 + 216α4 + 114n3α5 + 68n2α6 + 766α5n + 672α5n2 + 172α6n + 15284 + 3860n2α3 + 3918n3α2 + 1766n4α + 3232n3α3 + 2060n4α2 + 132α5 + 24α6 + 42n6α + 1035n3α4 + 784n4α3 + 291n5α2 + 6n6α2 + 38n5α3 + 94n4α4 - 1104- 10042 - 716n2α + 1325n3α + 1779n2α2 + 8503 + 2473n2α4 + 631n5α + 16α7n)(-4α2 + 22 + 3n2α - 5- 2α - 2n + n3 - n2)
c[4] = 432n + 192α - 108n8 + 648n6 + 648 + 432n2 - 876n3 - 972n4 + 416α2 + 48α3 + 432n5 - 456α4 + 1900n3α5 + 1149n2α6 - 496α5n + 2520α5n2 + 422α6n - 24284 + 89 - 5368n2α3 - 3553n3α2 + 53n4α + 4487n3α3 + 6731n4α2 - 24n9 - 312α5 + 24α6 + 36n7 + 930n6α - 723n7α + 6507n3α4 + 7633n4α3 + 4190n5α2 - 1673n6α2 - 1297n5α3 + 754n4α4 - 68n7α4 - 8α9n2 - 48n3α8 - 140n6α5 - 170n5α6 - 122n4α7 - 2n9α2 - 18n8α3 + 1556+ 7902 - 896n2α - 4459n3α - 5443n2α2 - 20463 + 222n2α4 + 3640n5α + 72α7 - 536n7α3 - 32α8n2 + 258α7n - 2791n6α3 + 128n2α7 - 1241n7α2 - 502n3α6 - 344n3α7 - 2182n4α5 - 3421n5α4 - 1138n6α4 - 1394n5α5 - 975n4α6 - 14n9α - 135n8α2 - 279n8α + 16α8

Expressions for all quantities involved are provided below.

 
Psi_1:=1;  
 
Psi_2:=2*alpha*x+5+5*x;  
 
c[1]:=(-1+2*alpha+2*n)*(-192*n-192*alpha+12*n^8-108*n^6-192*n^2+288*n^3+288*n^4-1088*alpha^2-2416*alpha^3-108*n^5-2720*alpha^4-1172*n^3*alpha^5-384*n^2*alpha^6+2448*alpha^5*n+380*alpha^5*n^2+960*alpha^6*n+1992*n*alpha^4+6876*n^2*alpha^3+3552*n^3*alpha^2+208*n^4*alpha+100*n^3*alpha^3-2123*n^4*alpha^2-1648*alpha^5-512*alpha^6+12*n^7-87*n^6*alpha+115*n^7*alpha-2652*n^3*alpha^4-2965*n^4*alpha^3-1056*n^5*alpha^2+358*n^6*alpha^2+263*n^5*alpha^3-652*n^4*alpha^4-1280*n*alpha-2544*n*alpha^2+160*n^2*alpha+2188*n^3*alpha+3540*n^2*alpha^2-1080*n*alpha^3+4364*n^2*alpha^4-927*n^5*alpha-64*alpha^7+9*n^7*alpha^3+128*alpha^7*n+221*n^6*alpha^3-80*n^2*alpha^7+64*n^7*alpha^2-80*n^3*alpha^6+16*n^3*alpha^7+176*n^4*alpha^5+340*n^5*alpha^4+32*n^6*alpha^4+56*n^5*alpha^5+48*n^4*alpha^6+n^8*alpha^2+7*n^8*alpha);  
 
c[2]:=-(-16*alpha^3+8*n*alpha^3+16*n^2*alpha^2-24*n*alpha^2-16*alpha^2+10*n^3*alpha-6*n^2*alpha-30*n*alpha+4*alpha+2*n^4+n^3-9*n^2-4*n+4)*(-12*n-72*alpha-48*n^2-24*n^3+48*n^4-310*alpha^2-390*alpha^3+36*n^5-190*alpha^4+26*alpha^5*n+16*alpha^5*n^2+4*alpha^6*n+33*n*alpha^4+282*n^2*alpha^3+370*n^3*alpha^2+196*n^4*alpha+173*n^3*alpha^3+102*n^4*alpha^2-42*alpha^5-4*alpha^6+23*n^3*alpha^4+14*n^4*alpha^3+3*n^5*alpha^2-211*n*alpha-397*n*alpha^2-148*n^2*alpha+166*n^3*alpha+136*n^2*alpha^2-139*n*alpha^3+122*n^2*alpha^4+21*n^5*alpha);  
 
c[3]:=(-144*n-144*alpha+72*n^6-384*n^2-156*n^3+312*n^4-240*alpha^2+12*alpha^3+300*n^5+216*alpha^4+114*n^3*alpha^5+68*n^2*alpha^6+766*alpha^5*n+672*alpha^5*n^2+172*alpha^6*n+1528*n*alpha^4+3860*n^2*alpha^3+3918*n^3*alpha^2+1766*n^4*alpha+3232*n^3*alpha^3+2060*n^4*alpha^2+132*alpha^5+24*alpha^6+42*n^6*alpha+1035*n^3*alpha^4+784*n^4*alpha^3+291*n^5*alpha^2+6*n^6*alpha^2+38*n^5*alpha^3+94*n^4*alpha^4-1104*n*alpha-1004*n*alpha^2-716*n^2*alpha+1325*n^3*alpha+1779*n^2*alpha^2+850*n*alpha^3+2473*n^2*alpha^4+631*n^5*alpha+16*alpha^7*n)*(-4*alpha^2+2*n*alpha^2+3*n^2*alpha-5*n*alpha-2*alpha-2*n+n^3-n^2);  
 
c[4]:=432*n+192*alpha-108*n^8+648*n^6+64*n*alpha^8+432*n^2-876*n^3-972*n^4+416*alpha^2+48*alpha^3+432*n^5-456*alpha^4+1900*n^3*alpha^5+1149*n^2*alpha^6-496*alpha^5*n+2520*alpha^5*n^2+422*alpha^6*n-2428*n*alpha^4+8*n*alpha^9-5368*n^2*alpha^3-3553*n^3*alpha^2+53*n^4*alpha+4487*n^3*alpha^3+6731*n^4*alpha^2-24*n^9-312*alpha^5+24*alpha^6+36*n^7+930*n^6*alpha-723*n^7*alpha+6507*n^3*alpha^4+7633*n^4*alpha^3+4190*n^5*alpha^2-1673*n^6*alpha^2-1297*n^5*alpha^3+754*n^4*alpha^4-68*n^7*alpha^4-8*alpha^9*n^2-48*n^3*alpha^8-140*n^6*alpha^5-170*n^5*alpha^6-122*n^4*alpha^7-2*n^9*alpha^2-18*n^8*alpha^3+1556*n*alpha+790*n*alpha^2-896*n^2*alpha-4459*n^3*alpha-5443*n^2*alpha^2-2046*n*alpha^3+222*n^2*alpha^4+3640*n^5*alpha+72*alpha^7-536*n^7*alpha^3-32*alpha^8*n^2+258*alpha^7*n-2791*n^6*alpha^3+128*n^2*alpha^7-1241*n^7*alpha^2-502*n^3*alpha^6-344*n^3*alpha^7-2182*n^4*alpha^5-3421*n^5*alpha^4-1138*n^6*alpha^4-1394*n^5*alpha^5-975*n^4*alpha^6-14*n^9*alpha-135*n^8*alpha^2-279*n^8*alpha+16*alpha^8;  

2.4 f(1) + Kf(1) = 0

In the Cartesian domain [-1,1], we provide a formulation of orthogonal basis functions that satisfy the boundary condition

 ′
f(1) + Kf (1) = 0.                       (14)

An unnormalised basis set may be written, when α = β, as

        {
           α-  Kαx +  Kα + 2K  + 2- 2Kx   n =  1
Ψn(x) =    ∑3      (α+2,α)                                (15)
             i=1 ciP n+1-i (x),             n ≥  2

for any α > -1. The 3 coefficients ci are determined up to an arbitrary normalisation by imposing

c[1] = n(4n + 4α + 2n6 + 2n2 - 8n3 - 4n4 + 20α2 + 36α3 + 4n5 + 28α4 + 160K2- 16α5n - 16α5K + 8α5n2 + 44K2n2α - 404 + 136K2α2 + 48K2n - 116Kαn + 32Kαn2 - 24+ 16Kn4α + 4K2n2α3 + 4Kn4α2 + 20Kn3α3 + 324n2 + 24K2α2n2 + 180K2α2n + 12K2α4n - 1442n + 88Kn3α2 + 56Knα4 + 156n22 + 92Kn3α + 144n23 - 76n2α3 - 21n3α2 + 11n4α + 36n3α3 + 42n4α2 + 165n + 24Kn3 + 8α5 + 12Kn4 + 136K2α3 + 56K2α4 + 8K2α5 + 48K2α + 80K23 - 12nKα3 + n6α + 20n3α4 + 18n4α3 + 7n5α2 + 24K2n2 + 22+ 282 - 1042 - 24Kn - 16n2α - 1523 - 12Kn2 - 38n3α - 76n2α2 - 143 - 8n2α4 - 884 + 16n5α)
c[2] = -14n6 - 48K2n3α2 + 4n2 + 14n3 + 10n4 - 10n5 - 324K2- 32n3α5 - 8n2α6 + 48α5n + 60α5K + 8α6K - 16α5n2 + 8α6n - 276K2n2α + 1144 - 320K2α2 - 72K2n + 36Kαn - 124Kαn2 + 24- 200Kn4α - 156K2n2α3 - 32Kn5α - 180Kn4α2 - 360Kn3α3 - 3084n2 - 336K2α2n2 - 8K2α3n3 - 24K2α4n2 - 82n5 - 403n4 - 724n3 - 568K2α2n - 176K2α4n + 602n - 520Kn3α2 - 140Knα4 - 400n22 - 280Kn3α - 540n23 + 169n2α3 + 52n3α2 - 20n4α - 88n3α3 - 150n4α2 - 24K2α5n - 565n2 - 885n - 166n - 88K2n3α - 48Kn3 - 60Kn4 - 368K2α3 - 224K2α4 - 68K2α5 - 8K2α6 - 24K2 - 140K2α - 468K23 - 44nKα3 - 4n7 - 24Kn5 - 48K2n3 - 35n6α - 2n7α - 108n3α4 - 165n4α3 - 112n5α2 - 14n6α2 - 38n5α3 - 50n4α4 - 72K2n2 + 10+ 582 + 1162 + 55n2α + 2043 - 12Kn2 + 71n3α + 166n2α2 + 1223 + 44n2α4 + 1644 - 79n5α
c[3] = 10n6 + 24K2n3α2 - 8n2 - 16n3 - 2n4 + 14n5 + 4K2+ 16n3α5 + 4n2α6 + 2α5n + 20α5n2 + 116K2n2α + 44 - 44K2α2 - 24K2n - 80Kαn - 36Kαn2 + 108Kn4α + 76K2n2α3 + 16Kn5α + 92Kn4α2 + 184Kn3α3 + 1564n2 + 156K2α2n2 + 4K2α3n3 + 12K2α4n2 + 42n5 + 203n4 + 364n3 + 136K2α2n + 80K2α4n - 722n + 272Kn3α2 + 88Knα4 + 136n22 + 136Kn3α + 264n23 + 19n2α3 + 50n3α2 + 48n4α + 113n3α3 + 126n4α2 + 12K2α5n + 285n2 + 485n + 86n + 44K2n3α + 12Kn3 + 36Kn4 + 40K2α3 + 64K2α4 + 28K2α5 + 4K2α6 - 24K2 - 68K2α + 176K23 + 32nKα3 + 2n7 + 12Kn5 + 24K2n3 + 19n6α + n7α + 72n3α4 + 99n4α3 + 64n5α2 + 7n6α2 + 19n5α3 + 25n4α4 + 24K2n2 - 2- 42 - 24Kn - 31n2α - 36Kn2 - 23n3α - 27n2α2 + 39n2α4 + 60n5α

Expressions for all quantities involved are provided below.

 
Psi_1:=alpha-K*alpha*x+K*alpha+2*K+2-2*K*x;  
 
c[1]:=n*(4*n+4*alpha+2*n^6+2*n^2-8*n^3-4*n^4+20*alpha^2+36*alpha^3+4*n^5+28*alpha^4+160*K^2*n*alpha-16*alpha^5*n-16*alpha^5*K+8*alpha^5*n^2+44*K^2*n^2*alpha-40*n*alpha^4+136*K^2*alpha^2+48*K^2*n-116*K*alpha*n+32*K*alpha*n^2-24*K*alpha+16*K*n^4*alpha+4*K^2*n^2*alpha^3+4*K*n^4*alpha^2+20*K*n^3*alpha^3+32*K*alpha^4*n^2+24*K^2*alpha^2*n^2+180*K^2*alpha^2*n+12*K^2*alpha^4*n-144*K*alpha^2*n+88*K*n^3*alpha^2+56*K*n*alpha^4+156*n^2*K*alpha^2+92*K*n^3*alpha+144*n^2*K*alpha^3-76*n^2*alpha^3-21*n^3*alpha^2+11*n^4*alpha+36*n^3*alpha^3+42*n^4*alpha^2+16*K*alpha^5*n+24*K*n^3+8*alpha^5+12*K*n^4+136*K^2*alpha^3+56*K^2*alpha^4+8*K^2*alpha^5+48*K^2*alpha+80*K^2*n*alpha^3-12*n*K*alpha^3+n^6*alpha+20*n^3*alpha^4+18*n^4*alpha^3+7*n^5*alpha^2+24*K^2*n^2+22*n*alpha+28*n*alpha^2-104*K*alpha^2-24*K*n-16*n^2*alpha-152*K*alpha^3-12*K*n^2-38*n^3*alpha-76*n^2*alpha^2-14*n*alpha^3-8*n^2*alpha^4-88*K*alpha^4+16*n^5*alpha);  
 
c[2]:=-14*n^6-48*K^2*n^3*alpha^2+4*n^2+14*n^3+10*n^4-10*n^5-324*K^2*n*alpha-32*n^3*alpha^5-8*n^2*alpha^6+48*alpha^5*n+60*alpha^5*K+8*alpha^6*K-16*alpha^5*n^2+8*alpha^6*n-276*K^2*n^2*alpha+114*n*alpha^4-320*K^2*alpha^2-72*K^2*n+36*K*alpha*n-124*K*alpha*n^2+24*K*alpha-200*K*n^4*alpha-156*K^2*n^2*alpha^3-32*K*n^5*alpha-180*K*n^4*alpha^2-360*K*n^3*alpha^3-308*K*alpha^4*n^2-336*K^2*alpha^2*n^2-8*K^2*alpha^3*n^3-24*K^2*alpha^4*n^2-8*K*alpha^2*n^5-40*K*alpha^3*n^4-72*K*alpha^4*n^3-568*K^2*alpha^2*n-176*K^2*alpha^4*n+60*K*alpha^2*n-520*K*n^3*alpha^2-140*K*n*alpha^4-400*n^2*K*alpha^2-280*K*n^3*alpha-540*n^2*K*alpha^3+169*n^2*alpha^3+52*n^3*alpha^2-20*n^4*alpha-88*n^3*alpha^3-150*n^4*alpha^2-24*K^2*alpha^5*n-56*K*alpha^5*n^2-88*K*alpha^5*n-16*K*alpha^6*n-88*K^2*n^3*alpha-48*K*n^3-60*K*n^4-368*K^2*alpha^3-224*K^2*alpha^4-68*K^2*alpha^5-8*K^2*alpha^6-24*K^2-140*K^2*alpha-468*K^2*n*alpha^3-44*n*K*alpha^3-4*n^7-24*K*n^5-48*K^2*n^3-35*n^6*alpha-2*n^7*alpha-108*n^3*alpha^4-165*n^4*alpha^3-112*n^5*alpha^2-14*n^6*alpha^2-38*n^5*alpha^3-50*n^4*alpha^4-72*K^2*n^2+10*n*alpha+58*n*alpha^2+116*K*alpha^2+55*n^2*alpha+204*K*alpha^3-12*K*n^2+71*n^3*alpha+166*n^2*alpha^2+122*n*alpha^3+44*n^2*alpha^4+164*K*alpha^4-79*n^5*alpha;  
 
c[3]:=10*n^6+24*K^2*n^3*alpha^2-8*n^2-16*n^3-2*n^4+14*n^5+4*K^2*n*alpha+16*n^3*alpha^5+4*n^2*alpha^6+2*alpha^5*n+20*alpha^5*n^2+116*K^2*n^2*alpha+4*n*alpha^4-44*K^2*alpha^2-24*K^2*n-80*K*alpha*n-36*K*alpha*n^2+108*K*n^4*alpha+76*K^2*n^2*alpha^3+16*K*n^5*alpha+92*K*n^4*alpha^2+184*K*n^3*alpha^3+156*K*alpha^4*n^2+156*K^2*alpha^2*n^2+4*K^2*alpha^3*n^3+12*K^2*alpha^4*n^2+4*K*alpha^2*n^5+20*K*alpha^3*n^4+36*K*alpha^4*n^3+136*K^2*alpha^2*n+80*K^2*alpha^4*n-72*K*alpha^2*n+272*K*n^3*alpha^2+88*K*n*alpha^4+136*n^2*K*alpha^2+136*K*n^3*alpha+264*n^2*K*alpha^3+19*n^2*alpha^3+50*n^3*alpha^2+48*n^4*alpha+113*n^3*alpha^3+126*n^4*alpha^2+12*K^2*alpha^5*n+28*K*alpha^5*n^2+48*K*alpha^5*n+8*K*alpha^6*n+44*K^2*n^3*alpha+12*K*n^3+36*K*n^4+40*K^2*alpha^3+64*K^2*alpha^4+28*K^2*alpha^5+4*K^2*alpha^6-24*K^2-68*K^2*alpha+176*K^2*n*alpha^3+32*n*K*alpha^3+2*n^7+12*K*n^5+24*K^2*n^3+19*n^6*alpha+n^7*alpha+72*n^3*alpha^4+99*n^4*alpha^3+64*n^5*alpha^2+7*n^6*alpha^2+19*n^5*alpha^3+25*n^4*alpha^4+24*K^2*n^2-2*n*alpha-4*n*alpha^2-24*K*n-31*n^2*alpha-36*K*n^2-23*n^3*alpha-27*n^2*alpha^2+39*n^2*alpha^4+60*n^5*alpha;  

2.5 f(1) = 0,f′′(1) + Kf(1) = 0

In the Cartesian domain [-1,1], we provide a formulation of orthogonal basis functions that satisfy the boundary condition

f(1) = 0
f′′(1) + Kf(1) = 0

An unnormalised basis set may be written, when α = β, as

        {
           - 4α2x + 2K α2x2 + 4α2 + 2K α2 - 4K α2x + 11K α - 22K αx + 22α - 22αx + 11K αx2 - 30x + 15Kx2 + 15K - 30Kx  + 30  n = 1
Ψn (x ) =   ∑4      (α+2,β)                                                                                                          (16)
             i=1ciPn+2-i (x)                                                                                                 n ≥ 2
for any α > -1. The 4 coefficients ci are determined up to an arbitrary normalisation by imposing

c[1] = (144 - 12n + 432α - 360K + 4n6 - 236n2 - 24n3 + 88n4 + 500α2 + 280α3 + 36n5 + 76α4 + 415K2- 16α5n - 8α5K + 8α5n2 + 47K2n2α - 1364 + 450K2α2 + 300K2n - 82Kαn + 776Kαn2 - 972+ 16Kn4α + K2n2α3 + 2Kn4α2 + 10Kn3α3 + 164n2 + 12K2α2n2 + 201K2α2n + 3K2α4n + 3022n + 94Kn3α2 + 84Knα4 + 582n22 + 262Kn3α + 168n23 - 20n2α3 + 263n3α2 + 191n4α + 136n3α3 + 114n4α2 + 85n + 210Kn3 + 8α5 + 30Kn4 + 170K2α3 + 30K2α4 + 2K2α5 + 240K2 + 548K2α + 41K23 + 282nKα3 + n6α + 20n3α4 + 18n4α3 + 7n5α2 + 60K2n2 - 270- 5442 - 9802 - 210Kn - 528n2α - 4603 + 330Kn2 + 137n3α - 340n2α2 - 4143 + 40n2α4 - 1004 + 37n5α)n(2n + 1 + 2α)(n + 1)
c[2] = -(576 - 1104n + 1872α - 2640K + 144n6 + 36K2n3α2 - 1656n2 + 240n3 + 1152n4 + 2432α2 + 1620α3 + 636n5 + 584α4 + 5337K2+ 60n3α5 + 16n2α6 - 312α5n - 202α5K - 12α6K + 144α5n2 - 24α6n + 1540K2n2α - 16164 + 5347K2α2 + 3060K2n + 2074Kαn + 9156Kαn2 - 7468+ 928Kn4α + 140K2n2α3 + 48Kn5α + 312Kn4α2 + 718Kn3α3 + 6984n2 + 710K2α2n2 + 3K2α3n3 + 10K2α4n2 + 62n5 + 323n4 + 624n3 + 3575K2α2n + 181K2α4n + 42002n + 2896Kn3α2 + 1280Knα4 + 8290n22 + 4850Kn3α + 3512n23 - 365n2α3 + 3333n3α2 + 2824n4α + 2143n3α3 + 2327n4α2 + 11K2α5n + 525n2 + 2325n + 166n + 141K2n3α + 2850Kn3 + 108α5 + 8α6 + 840Kn4 + 2429K2α3 + 601K2α4 + 77K2α5 + 4K2α6 + 2760K2 + 6062K2α + 1156K23 + 3358nKα3 + 12n7 + 90Kn5 + 180K2n3 + 124n6α + 3n7α + 596n3α4 + 773n4α3 + 457n5α2 + 22n6α2 + 63n5α3 + 88n4α4 + 1200K2n2 - 4100- 58902 - 82382 + 120Kn - 3740n2α - 45703 + 3780Kn2 + 2035n3α - 2681n2α2 - 42343 + 348n2α4 - 13504 + 982n5α)n(2n + 1 + 2α)
c[3] = (-3600n - 3600K + 24n8 + 1668n6 + 1526K2n3α2 + 180Kn6 - 4980n2 - 1116n3 + 3720n4 + 3960n5 + 21296K2+ 1092n3α5 + 192n2α6 - 2056α5n - 1322α5K - 160α6K + 768α5n2 - 280α6n + 12135K2n2α - 81044 + 19256K2α2 + 8880K2n + 8912Kαn + 32606Kαn2 - 14460+ 11764Kn4α + 2955K2n2α3 + 1996Kn5α + 6998Kn4α2 + 10854Kn3α3 + 76964n2 + 8700K2α2n2 + 305K2α3n3 + 480K2α4n2 + 6662n5 + 17243n4 + 21224n3 + 20029K2α2n + 2489K2α4n + 146222n + 26084Kn3α2 + 6634Knα4 + 39642n22 + 29214Kn3α + 23986n23 - 4818n2α3 + 12453n3α2 + 13967n4α + 11979n3α3 + 16776n4α2 + 333K2α5n + 12485n2 + 18645n + 2726n + 3247K2n3α + 11970Kn3 + 6870Kn4 + 156n35 + 1484n4 + 68Kn5α3 + 11194K2α3 + 3842K2α4 + 778K2α5 + 86K2α6 + 7200K2 + 18120K2α + 9595K23 + 13160nKα3 + 324n7 + 1830Kn5 + 2460K2n3 + 2423n6α + 265n7α + 5250n3α4 + 8880n4α3 + 6777n5α2 + 1068n6α2 + 2097n5α3 + 2154n4α4 + 6300K2n2 - 15000- 232242 - 205182 + 2760Kn - 14380n2α - 145943 + 10230Kn2 + 3784n3α - 13896n2α2 - 182803 + 474n2α4 - 58184 + 8935n5α - 16α7n + 142n6α3 + 16n2α7 + 46n7α2 + 88n3α6 + 196n4α5 + 226n5α4 + 16α7Kn + 80α6Kn2 - 87 + 360K2n4 + 282K2αn4 + 18K2α6n + 6K2α3n4 + 22K2α4n3 + 30K2α5n2 + 72K2α2n4 + 4K2α7 + 6n8α + 12n6α2K + 96n6)(n + 1 + α)
c[4] = -132n8 - 2772n6 - 4972K2n3α2 - 750Kn6 + 3840n2 + 4736n3 - 720n4 - 4080n5 - 2372K2- 4266n3α5 - 918n2α6 - 164α5n - 3365α5n2 - 42α6n - 10379K2n2α - 2664 + 568K2α2 + 2640K2n + 12720Kαn - 1144Kαn2 - 19024Kn4α - 7759K2n2α3 - 6116Kn5α - 18190Kn4α2 - 25448Kn3α3 - 170404n2 - 13332K2α2n2 - 1804K2α3n3 - 2308K2α4n2 - 37042n5 - 79123n4 - 88124n3 - 11590K2α2n - 5598K2α4n + 34162n - 36992Kn3α2 - 9296Knα4 - 24982n22 - 23384Kn3α - 30744n23 - 5145n2α3 - 14340n3α2 - 13481n4α - 21152n3α3 - 26056n4α2 - 1430K2α5n - 49645n2 - 44165n - 11206n - 6336K2n3α - 3120Kn3 - 8n9 - 6870Kn4 - 1504n35 - 15964n4 - 80n54 - 924Kn5α3 - 120n45 - 4031K2α3 - 3676K2α4 - 1532K2α5 - 346K2α6 + 3600K2 + 5460K2α - 11692K23 - 8348nKα3 - 864n7 - 3480Kn5 - 2880K2n3 - 5966n6α - 1210n7α - 13180n3α4 - 20671n4α3 - 15916n5α2 - 4374n6α2 - 8088n5α3 - 8144n4α4 - 2220K2n2 + 240+ 2962 + 7200Kn + 7852n2α + 7080Kn2 + 1528n3α + 2908n2α2 - 603 - 6544n2α4 - 14056n5α - 68n7α3 - 8α8n2 - 4α7n - 1322n6α3 - 132n2α7 - 520n7α2 - 708n3α6 - 48n3α7 - 1585n4α5 - 1908n5α4 - 140n6α4 - 170n5α5 - 122n4α6 - 148α7Kn - 738α6Kn2 - 100α6Kn3 - 44α7Kn2 - 2n9α - 18n8α2 - 8α8Kn - 2α8K2 - 2K2α3n5 - 10K2α7n - 42n7 - 20K2α5n3 - 10K2α4n4 - 20K2α6n2 - 120K2n5 - 1020K2n4 - 60n7K - 1399K2αn4 - 32Kαn7 - 94K2αn5 - 188K2α6n - 137K2α3n4 - 308K2α4n3 - 342K2α5n2 - 674K2α2n4 - 24K2α2n5 - 41K2α7 - 105n8α - 274n6α2K - 283n6 - 820n6

Expressions for all quantities involved are provided below.

 
Psi_1:=2*K*alpha^2-4*alpha^2*x-4*K*alpha^2*x+4*alpha^2+2*K*alpha^2*x^2+11*K*alpha+11*K*alpha*x^2-22*alpha*x-22*K*alpha*x+22*alpha+15*K*x^2+30-30*K*x-30*x+15*K;  
 
c[1]:=(144-12*n+432*alpha-360*K+4*n^6-236*n^2-24*n^3+88*n^4+500*alpha^2+280*alpha^3+36*n^5+76*alpha^4+415*K^2*n*alpha-16*alpha^5*n-8*alpha^5*K+8*alpha^5*n^2+47*K^2*n^2*alpha-136*n*alpha^4+450*K^2*alpha^2+300*K^2*n-82*K*alpha*n+776*K*alpha*n^2-972*K*alpha+16*K*n^4*alpha+K^2*n^2*alpha^3+2*K*n^4*alpha^2+10*K*n^3*alpha^3+16*K*alpha^4*n^2+12*K^2*alpha^2*n^2+201*K^2*alpha^2*n+3*K^2*alpha^4*n+302*K*alpha^2*n+94*K*n^3*alpha^2+84*K*n*alpha^4+582*n^2*K*alpha^2+262*K*n^3*alpha+168*n^2*K*alpha^3-20*n^2*alpha^3+263*n^3*alpha^2+191*n^4*alpha+136*n^3*alpha^3+114*n^4*alpha^2+8*K*alpha^5*n+210*K*n^3+8*alpha^5+30*K*n^4+170*K^2*alpha^3+30*K^2*alpha^4+2*K^2*alpha^5+240*K^2+548*K^2*alpha+41*K^2*n*alpha^3+282*n*K*alpha^3+n^6*alpha+20*n^3*alpha^4+18*n^4*alpha^3+7*n^5*alpha^2+60*K^2*n^2-270*n*alpha-544*n*alpha^2-980*K*alpha^2-210*K*n-528*n^2*alpha-460*K*alpha^3+330*K*n^2+137*n^3*alpha-340*n^2*alpha^2-414*n*alpha^3+40*n^2*alpha^4-100*K*alpha^4+37*n^5*alpha)*n*(2*n+1+2*alpha)*(n+1);  
 
c[2]:=-(576-1104*n+1872*alpha-2640*K+144*n^6+36*K^2*n^3*alpha^2-1656*n^2+240*n^3+1152*n^4+2432*alpha^2+1620*alpha^3+636*n^5+584*alpha^4+5337*K^2*n*alpha+60*n^3*alpha^5+16*n^2*alpha^6-312*alpha^5*n-202*alpha^5*K-12*alpha^6*K+144*alpha^5*n^2-24*alpha^6*n+1540*K^2*n^2*alpha-1616*n*alpha^4+5347*K^2*alpha^2+3060*K^2*n+2074*K*alpha*n+9156*K*alpha*n^2-7468*K*alpha+928*K*n^4*alpha+140*K^2*n^2*alpha^3+48*K*n^5*alpha+312*K*n^4*alpha^2+718*K*n^3*alpha^3+698*K*alpha^4*n^2+710*K^2*alpha^2*n^2+3*K^2*alpha^3*n^3+10*K^2*alpha^4*n^2+6*K*alpha^2*n^5+32*K*alpha^3*n^4+62*K*alpha^4*n^3+3575*K^2*alpha^2*n+181*K^2*alpha^4*n+4200*K*alpha^2*n+2896*K*n^3*alpha^2+1280*K*n*alpha^4+8290*n^2*K*alpha^2+4850*K*n^3*alpha+3512*n^2*K*alpha^3-365*n^2*alpha^3+3333*n^3*alpha^2+2824*n^4*alpha+2143*n^3*alpha^3+2327*n^4*alpha^2+11*K^2*alpha^5*n+52*K*alpha^5*n^2+232*K*alpha^5*n+16*K*alpha^6*n+141*K^2*n^3*alpha+2850*K*n^3+108*alpha^5+8*alpha^6+840*K*n^4+2429*K^2*alpha^3+601*K^2*alpha^4+77*K^2*alpha^5+4*K^2*alpha^6+2760*K^2+6062*K^2*alpha+1156*K^2*n*alpha^3+3358*n*K*alpha^3+12*n^7+90*K*n^5+180*K^2*n^3+124*n^6*alpha+3*n^7*alpha+596*n^3*alpha^4+773*n^4*alpha^3+457*n^5*alpha^2+22*n^6*alpha^2+63*n^5*alpha^3+88*n^4*alpha^4+1200*K^2*n^2-4100*n*alpha-5890*n*alpha^2-8238*K*alpha^2+120*K*n-3740*n^2*alpha-4570*K*alpha^3+3780*K*n^2+2035*n^3*alpha-2681*n^2*alpha^2-4234*n*alpha^3+348*n^2*alpha^4-1350*K*alpha^4+982*n^5*alpha)*n*(2*n+1+2*alpha);  
 
c[3]:=(-3600*n-3600*K+24*n^8+1668*n^6+1526*K^2*n^3*alpha^2+180*K*n^6-4980*n^2-1116*n^3+3720*n^4+3960*n^5+21296*K^2*n*alpha+1092*n^3*alpha^5+192*n^2*alpha^6-2056*alpha^5*n-1322*alpha^5*K-160*alpha^6*K+768*alpha^5*n^2-280*alpha^6*n+12135*K^2*n^2*alpha-8104*n*alpha^4+19256*K^2*alpha^2+8880*K^2*n+8912*K*alpha*n+32606*K*alpha*n^2-14460*K*alpha+11764*K*n^4*alpha+2955*K^2*n^2*alpha^3+1996*K*n^5*alpha+6998*K*n^4*alpha^2+10854*K*n^3*alpha^3+7696*K*alpha^4*n^2+8700*K^2*alpha^2*n^2+305*K^2*alpha^3*n^3+480*K^2*alpha^4*n^2+666*K*alpha^2*n^5+1724*K*alpha^3*n^4+2122*K*alpha^4*n^3+20029*K^2*alpha^2*n+2489*K^2*alpha^4*n+14622*K*alpha^2*n+26084*K*n^3*alpha^2+6634*K*n*alpha^4+39642*n^2*K*alpha^2+29214*K*n^3*alpha+23986*n^2*K*alpha^3-4818*n^2*alpha^3+12453*n^3*alpha^2+13967*n^4*alpha+11979*n^3*alpha^3+16776*n^4*alpha^2+333*K^2*alpha^5*n+1248*K*alpha^5*n^2+1864*K*alpha^5*n+272*K*alpha^6*n+3247*K^2*n^3*alpha+11970*K*n^3+6870*K*n^4+156*n^3*K*alpha^5+148*K*alpha^4*n^4+68*K*n^5*alpha^3+11194*K^2*alpha^3+3842*K^2*alpha^4+778*K^2*alpha^5+86*K^2*alpha^6+7200*K^2+18120*K^2*alpha+9595*K^2*n*alpha^3+13160*n*K*alpha^3+324*n^7+1830*K*n^5+2460*K^2*n^3+2423*n^6*alpha+265*n^7*alpha+5250*n^3*alpha^4+8880*n^4*alpha^3+6777*n^5*alpha^2+1068*n^6*alpha^2+2097*n^5*alpha^3+2154*n^4*alpha^4+6300*K^2*n^2-15000*n*alpha-23224*n*alpha^2-20518*K*alpha^2+2760*K*n-14380*n^2*alpha-14594*K*alpha^3+10230*K*n^2+3784*n^3*alpha-13896*n^2*alpha^2-18280*n*alpha^3+474*n^2*alpha^4-5818*K*alpha^4+8935*n^5*alpha-16*alpha^7*n+142*n^6*alpha^3+16*n^2*alpha^7+46*n^7*alpha^2+88*n^3*alpha^6+196*n^4*alpha^5+226*n^5*alpha^4+16*alpha^7*K*n+80*alpha^6*K*n^2-8*K*alpha^7+360*K^2*n^4+282*K^2*alpha*n^4+18*K^2*alpha^6*n+6*K^2*alpha^3*n^4+22*K^2*alpha^4*n^3+30*K^2*alpha^5*n^2+72*K^2*alpha^2*n^4+4*K^2*alpha^7+6*n^8*alpha+12*n^6*alpha^2*K+96*n^6*K*alpha)*(n+1+alpha);  
 
c[4]:=-132*n^8-2772*n^6-4972*K^2*n^3*alpha^2-750*K*n^6+3840*n^2+4736*n^3-720*n^4-4080*n^5-2372*K^2*n*alpha-4266*n^3*alpha^5-918*n^2*alpha^6-164*alpha^5*n-3365*alpha^5*n^2-42*alpha^6*n-10379*K^2*n^2*alpha-266*n*alpha^4+568*K^2*alpha^2+2640*K^2*n+12720*K*alpha*n-1144*K*alpha*n^2-19024*K*n^4*alpha-7759*K^2*n^2*alpha^3-6116*K*n^5*alpha-18190*K*n^4*alpha^2-25448*K*n^3*alpha^3-17040*K*alpha^4*n^2-13332*K^2*alpha^2*n^2-1804*K^2*alpha^3*n^3-2308*K^2*alpha^4*n^2-3704*K*alpha^2*n^5-7912*K*alpha^3*n^4-8812*K*alpha^4*n^3-11590*K^2*alpha^2*n-5598*K^2*alpha^4*n+3416*K*alpha^2*n-36992*K*n^3*alpha^2-9296*K*n*alpha^4-24982*n^2*K*alpha^2-23384*K*n^3*alpha-30744*n^2*K*alpha^3-5145*n^2*alpha^3-14340*n^3*alpha^2-13481*n^4*alpha-21152*n^3*alpha^3-26056*n^4*alpha^2-1430*K^2*alpha^5*n-4964*K*alpha^5*n^2-4416*K*alpha^5*n-1120*K*alpha^6*n-6336*K^2*n^3*alpha-3120*K*n^3-8*n^9-6870*K*n^4-1504*n^3*K*alpha^5-1596*K*alpha^4*n^4-80*n^5*K*alpha^4-924*K*n^5*alpha^3-120*n^4*K*alpha^5-4031*K^2*alpha^3-3676*K^2*alpha^4-1532*K^2*alpha^5-346*K^2*alpha^6+3600*K^2+5460*K^2*alpha-11692*K^2*n*alpha^3-8348*n*K*alpha^3-864*n^7-3480*K*n^5-2880*K^2*n^3-5966*n^6*alpha-1210*n^7*alpha-13180*n^3*alpha^4-20671*n^4*alpha^3-15916*n^5*alpha^2-4374*n^6*alpha^2-8088*n^5*alpha^3-8144*n^4*alpha^4-2220*K^2*n^2+240*n*alpha+296*n*alpha^2+7200*K*n+7852*n^2*alpha+7080*K*n^2+1528*n^3*alpha+2908*n^2*alpha^2-60*n*alpha^3-6544*n^2*alpha^4-14056*n^5*alpha-68*n^7*alpha^3-8*alpha^8*n^2-4*alpha^7*n-1322*n^6*alpha^3-132*n^2*alpha^7-520*n^7*alpha^2-708*n^3*alpha^6-48*n^3*alpha^7-1585*n^4*alpha^5-1908*n^5*alpha^4-140*n^6*alpha^4-170*n^5*alpha^5-122*n^4*alpha^6-148*alpha^7*K*n-738*alpha^6*K*n^2-100*alpha^6*K*n^3-44*alpha^7*K*n^2-2*n^9*alpha-18*n^8*alpha^2-8*alpha^8*K*n-2*alpha^8*K^2-2*K^2*alpha^3*n^5-10*K^2*alpha^7*n-4*K*alpha^2*n^7-20*K^2*alpha^5*n^3-10*K^2*alpha^4*n^4-20*K^2*alpha^6*n^2-120*K^2*n^5-1020*K^2*n^4-60*n^7*K-1399*K^2*alpha*n^4-32*K*alpha*n^7-94*K^2*alpha*n^5-188*K^2*alpha^6*n-137*K^2*alpha^3*n^4-308*K^2*alpha^4*n^3-342*K^2*alpha^5*n^2-674*K^2*alpha^2*n^4-24*K^2*alpha^2*n^5-41*K^2*alpha^7-105*n^8*alpha-274*n^6*alpha^2*K-28*K*alpha^3*n^6-820*n^6*K*alpha;  

2.6 2nd order, 1 generalised boundary condition

In the Cartesian domain [-1,1], we provide an orthogonal basis that satisfies the generalised boundary condition

            ′         ′′
f (1)+ λ1,1f (1)+ λ1,2f (1) = 0.                 (17)

An unnormalised basis set may be written

          4
Ψ  (x) = ∑  cP (α+3,β)(x),    n ≥ 2
  n          i n+2-i
         i=1

for any α > -1, β > -1. The functions Ψ1 and Ψ2 are given explicitly below. The 4 coefficients ci are determined up to an arbitrary normalisation by imposing

A generalised set ci for arbitrary {n,α,β,λi,j} is currently beyond reach, but we provide three cases with α = β = -12, α = β = 12 and α = β = 0 below.

Case(i) α = β = -12

The ‘starting’ functions are given by

Ψ1 = 4 + 4λ1,1 - 4x
Ψ2 = -80λ1,1 - 40 - 20λ1,12 - 40λ 1,2 - 80λ1,12x - 80λ 1,2λ1,1x - 100λ1,1x - 80λ1,2x - 20x + 60x2 + 80λ 1,1x2 + 40λ 1,12x2
c[1] = 8n(n - 1)(-5670 + 8505n + 5670n2 + 3780λ 1,1n4 + 3780λ 1,1n - 9450λ1,1n2 + 70λ 1,22n10 + 3024λ 1,2n2 - 1512λ 1,2n + 1890λ1,2n3 + 756λ 1,2n6 - 378λ 1,2n5 - 3780λ 1,2n4 + 1890λ 1,1n3 + 1134λ 1,12n6 + 540λ 1,1n8λ 1,2 + 432λ1,21,1 + 216λ1,2n2λ 1,1 - 3780λ1,2n3λ 1,1 - 810n7λ 1,2λ1,1 - 2646n6λ 1,2λ1,1 + 4158λ1,2n5λ 1,1 + 1890λ1,2n4λ 1,1 - 72λ1,22n2 - 378λ 1,12n - 144λ 1,22n + 3780λ 1,12n3 - 189λ 1,12n2 - 390n8λ 1,22 - 175n9λ 1,22 - 3780n4λ 1,12 - 567n5λ 1,12 + 462λ 1,22n6 - 70λ 1,22n4 + 1110λ 1,22n7 - 1911λ 1,22n5 + 1120λ 1,22n3)
c[2] = -12(n - 1)(1890 + 2835n + 1890λ1,1 + 3780n2 + 11340n3 + 1890λ 1,1n - 1890λ1,1n2 + 140λ 1,22n11 - 140λ 1,22n10 + 1512λ 1,2n7 - 2016λ 1,2n2 - 1260λ 1,2n + 2898λ1,2n3 - 504λ 1,2n6 - 3150λ 1,2n5 + 2520λ 1,2n4 + 1890λ 1,1n3 + 7560λ 1,1n5 - 756λ 1,12n6 - 720λ 1,1n8λ 1,2 + 1080λ1,1n9λ 1,2 + 2268n7λ 1,12 - 414λ 1,2n2λ 1,1 - 1458λ1,2n3λ 1,1 - 3402n7λ 1,2λ1,1 + 1134n6λ 1,2λ1,1 + 3780λ1,2n5λ 1,1 - 72λ1,22n2 + 1512λ 1,12n3 + 1701λ 1,12n2 + 870n8λ 1,22 - 885n9λ 1,22 - 3780n4λ 1,12 - 945n5λ 1,12 - 1428λ 1,22n6 + 770λ 1,22n4 + 1554λ 1,22n7 - 1085λ 1,22n5 + 276λ 1,22n3)
c[3] = 6(-5670 + 945n - 5670λ1,1 - 15120n2 + 11340n3 - 7560λ 1,1n4 - 1890λ 1,1n - 1890λ1,1n2 + 140λ 1,22n11 + 1512λ 1,2n7 + 1008λ 1,2n2 - 3780λ 1,2n + 6678λ1,2n3 - 1008λ 1,2n6 - 4410λ 1,2n5 - 1890λ 1,1n3 + 7560λ 1,1n5 - 1512λ 1,12n6 - 360λ 1,1n8λ 1,2 + 1080λ1,1n9λ 1,2 + 2268n7λ 1,12 + 1242λ 1,2n2λ 1,1 - 2718λ1,2n3λ 1,1 - 4662n7λ 1,2λ1,1 + 1638n6λ 1,2λ1,1 + 6300λ1,2n5λ 1,1 - 2520λ1,2n4λ 1,1 + 216λ1,22n2 - 2268λ 1,12n3 - 5103λ 1,12n2 - 90n8λ 1,22 - 1095n9λ 1,22 + 3780n4λ 1,12 - 2835n5λ 1,12 + 504λ 1,22n6 - 630λ 1,22n4 + 2814λ 1,22n7 - 2975λ 1,22n5 + 1116λ 1,22n3)(2n - 1)
c[4] = -42525 - 124740n + 136080n3 - 45360n4 - 6048λ 1,2n8 - 9072λ 1,12n8 + 90720λ 1,1n4 - 28350λ 1,1n - 111510λ1,1n2 - 560λ 1,22n12 - 560λ 1,22n11 + 5920λ 1,22n10 + 6048λ 1,2n7 + 38934λ 1,2n2 + 11340λ 1,2n + 5292λ1,2n3 + 42336λ 1,2n6 - 22680λ 1,2n5 - 75222λ 1,2n4 - 83160λ 1,1n3 + 60480λ 1,1n5 + 48384λ 1,12n6 + 36288λ 1,1n8λ 1,2 - 4320λ1,1n10λ 1,2 + 9072n7λ 1,12 - 30240λ 1,1n6 - 3240λ 1,21,1 - 3024λ1,2n2λ 1,1 + 34398λ1,2n3λ 1,1 + 12312n7λ 1,2λ1,1 - 82026n6λ 1,2λ1,1 - 43470λ1,2n5λ 1,1 + 53082λ1,2n4λ 1,1 + 1008λ1,22n2 + 2835λ 1,12n + 1080λ 1,22n - 33642λ 1,12n3 + 2646λ 1,12n2 - 19341n8λ 1,22 + 6300n9λ 1,22 - 67473n4λ 1,12 - 3780n5λ 1,12 + 24962λ 1,22n6 - 11989λ 1,22n4 - 19644λ 1,22n7 + 23240λ 1,22n5 - 10416λ 1,22n3

Expressions for all quantities involved are provided below.

 
Psi_1:=4+4*lambda[1,1]-4*x;  
 
Psi_2:=-80*lambda[1,1]-40-20*lambda[1,1]^2-40*lambda[1,2]-80*lambda[1,1]^2*x-80*lambda[1,2]*lambda[1,1]*x-100*lambda[1,1]*x-80*lambda[1,2]*x-20*x+60*x^2+80*lambda[1,1]*x^2+40*lambda[1,1]^2*x^2;  
 
c[1]:=8*n*(n-1)*(-5670+8505*n+5670*n^2+3780*lambda[1,1]*n^4+3780*lambda[1,1]*n-9450*lambda[1,1]*n^2+70*lambda[1,2]^2*n^10+3024*lambda[1,2]*n^2-1512*lambda[1,2]*n+1890*lambda[1,2]*n^3+756*lambda[1,2]*n^6-378*lambda[1,2]*n^5-3780*lambda[1,2]*n^4+1890*lambda[1,1]*n^3+1134*lambda[1,1]^2*n^6+540*lambda[1,1]*n^8*lambda[1,2]+432*lambda[1,2]*n*lambda[1,1]+216*lambda[1,2]*n^2*lambda[1,1]-3780*lambda[1,2]*n^3*lambda[1,1]-810*n^7*lambda[1,2]*lambda[1,1]-2646*n^6*lambda[1,2]*lambda[1,1]+4158*lambda[1,2]*n^5*lambda[1,1]+1890*lambda[1,2]*n^4*lambda[1,1]-72*lambda[1,2]^2*n^2-378*lambda[1,1]^2*n-144*lambda[1,2]^2*n+3780*lambda[1,1]^2*n^3-189*lambda[1,1]^2*n^2-390*n^8*lambda[1,2]^2-175*n^9*lambda[1,2]^2-3780*n^4*lambda[1,1]^2-567*n^5*lambda[1,1]^2+462*lambda[1,2]^2*n^6-70*lambda[1,2]^2*n^4+1110*lambda[1,2]^2*n^7-1911*lambda[1,2]^2*n^5+1120*lambda[1,2]^2*n^3);  
 
c[2]:=-12*(n-1)*(1890+2835*n+1890*lambda[1,1]+3780*n^2+11340*n^3+1890*lambda[1,1]*n-1890*lambda[1,1]*n^2+140*lambda[1,2]^2*n^11-140*lambda[1,2]^2*n^10+1512*lambda[1,2]*n^7-2016*lambda[1,2]*n^2-1260*lambda[1,2]*n+2898*lambda[1,2]*n^3-504*lambda[1,2]*n^6-3150*lambda[1,2]*n^5+2520*lambda[1,2]*n^4+1890*lambda[1,1]*n^3+7560*lambda[1,1]*n^5-756*lambda[1,1]^2*n^6-720*lambda[1,1]*n^8*lambda[1,2]+1080*lambda[1,1]*n^9*lambda[1,2]+2268*n^7*lambda[1,1]^2-414*lambda[1,2]*n^2*lambda[1,1]-1458*lambda[1,2]*n^3*lambda[1,1]-3402*n^7*lambda[1,2]*lambda[1,1]+1134*n^6*lambda[1,2]*lambda[1,1]+3780*lambda[1,2]*n^5*lambda[1,1]-72*lambda[1,2]^2*n^2+1512*lambda[1,1]^2*n^3+1701*lambda[1,1]^2*n^2+870*n^8*lambda[1,2]^2-885*n^9*lambda[1,2]^2-3780*n^4*lambda[1,1]^2-945*n^5*lambda[1,1]^2-1428*lambda[1,2]^2*n^6+770*lambda[1,2]^2*n^4+1554*lambda[1,2]^2*n^7-1085*lambda[1,2]^2*n^5+276*lambda[1,2]^2*n^3);  
 
c[3]:=6*(-5670+945*n-5670*lambda[1,1]-15120*n^2+11340*n^3-7560*lambda[1,1]*n^4-1890*lambda[1,1]*n-1890*lambda[1,1]*n^2+140*lambda[1,2]^2*n^11+1512*lambda[1,2]*n^7+1008*lambda[1,2]*n^2-3780*lambda[1,2]*n+6678*lambda[1,2]*n^3-1008*lambda[1,2]*n^6-4410*lambda[1,2]*n^5-1890*lambda[1,1]*n^3+7560*lambda[1,1]*n^5-1512*lambda[1,1]^2*n^6-360*lambda[1,1]*n^8*lambda[1,2]+1080*lambda[1,1]*n^9*lambda[1,2]+2268*n^7*lambda[1,1]^2+1242*lambda[1,2]*n^2*lambda[1,1]-2718*lambda[1,2]*n^3*lambda[1,1]-4662*n^7*lambda[1,2]*lambda[1,1]+1638*n^6*lambda[1,2]*lambda[1,1]+6300*lambda[1,2]*n^5*lambda[1,1]-2520*lambda[1,2]*n^4*lambda[1,1]+216*lambda[1,2]^2*n^2-2268*lambda[1,1]^2*n^3-5103*lambda[1,1]^2*n^2-90*n^8*lambda[1,2]^2-1095*n^9*lambda[1,2]^2+3780*n^4*lambda[1,1]^2-2835*n^5*lambda[1,1]^2+504*lambda[1,2]^2*n^6-630*lambda[1,2]^2*n^4+2814*lambda[1,2]^2*n^7-2975*lambda[1,2]^2*n^5+1116*lambda[1,2]^2*n^3)*(2*n-1);  
 
c[4]:=-42525-124740*n+136080*n^3-45360*n^4-6048*lambda[1,2]*n^8-9072*lambda[1,1]^2*n^8+90720*lambda[1,1]*n^4-28350*lambda[1,1]*n-111510*lambda[1,1]*n^2-560*lambda[1,2]^2*n^12-560*lambda[1,2]^2*n^11+5920*lambda[1,2]^2*n^10+6048*lambda[1,2]*n^7+38934*lambda[1,2]*n^2+11340*lambda[1,2]*n+5292*lambda[1,2]*n^3+42336*lambda[1,2]*n^6-22680*lambda[1,2]*n^5-75222*lambda[1,2]*n^4-83160*lambda[1,1]*n^3+60480*lambda[1,1]*n^5+48384*lambda[1,1]^2*n^6+36288*lambda[1,1]*n^8*lambda[1,2]-4320*lambda[1,1]*n^10*lambda[1,2]+9072*n^7*lambda[1,1]^2-30240*lambda[1,1]*n^6-3240*lambda[1,2]*n*lambda[1,1]-3024*lambda[1,2]*n^2*lambda[1,1]+34398*lambda[1,2]*n^3*lambda[1,1]+12312*n^7*lambda[1,2]*lambda[1,1]-82026*n^6*lambda[1,2]*lambda[1,1]-43470*lambda[1,2]*n^5*lambda[1,1]+53082*lambda[1,2]*n^4*lambda[1,1]+1008*lambda[1,2]^2*n^2+2835*lambda[1,1]^2*n+1080*lambda[1,2]^2*n-33642*lambda[1,1]^2*n^3+2646*lambda[1,1]^2*n^2-19341*n^8*lambda[1,2]^2+6300*n^9*lambda[1,2]^2-67473*n^4*lambda[1,1]^2-3780*n^5*lambda[1,1]^2+24962*lambda[1,2]^2*n^6-11989*lambda[1,2]^2*n^4-19644*lambda[1,2]^2*n^7+23240*lambda[1,2]^2*n^5-10416*lambda[1,2]^2*n^3;  

Case(ii) α = β = 12

The ‘starting’ functions are given by

Ψ1 = 2 + 2λ1,1 - 2x
Ψ2 = -28 - 56λ1,1 - 14λ1,12 - 28λ 1,2 - 112λ1,12x - 112λ 1,2λ1,1x - 154λ1,1x - 42x - 112λ1,2x + 70x2 + 112λ 1,1x2 + 56λ 1,12x2
c[1] = 8n2(n + 3)(207900 + 467775n - 166320λ 1,1 + 142560λ1,2 + 103950n2 + 41580λ 1,1n4 - 291060λ 1,1n + 187110λ1,1n2 + 126λ 1,22n10 - 225720λ 1,2n2 + 225720λ 1,2n - 210870λ1,2n3 + 5940λ 1,2n6 + 38610λ 1,2n5 + 23760λ 1,2n4 + 228690λ 1,1n3 + 4950λ 1,12n6 + 1540λ 1,1n8λ 1,2 - 63360λ1,21,1 + 195800λ1,2n2λ 1,1 + 93720λ1,2n3λ 1,1 + 11550n7λ 1,2λ1,1 + 13530n6λ 1,2λ1,1 - 65670λ1,2n5λ 1,1 - 123750λ1,2n4λ 1,1 - 101600λ1,22n2 + 42570λ 1,12n + 22752λ 1,22n - 61380λ 1,12n3 - 94545λ 1,12n2 + 1316n8λ 1,22 + 1071n9λ 1,22 + 40590n4λ 1,12 + 32175n5λ 1,12 - 22026λ 1,22n6 + 82584λ 1,22n4 - 9786λ 1,22n7 + 28527λ 1,22n5 - 31764λ 1,22n3 - 63360λ 1,2λ1,1 + 35640λ1,12 + 28800λ 1,22)
c[2] = -12n(n + 3)(623700 + 883575n - 207900λ1,1 + 166320λ1,2 + 623700n2 + 207900n3 + 388080λ 1,1n4 + 48510λ 1,1n + 561330λ1,1n2 + 252λ 1,22n11 + 2436λ 1,22n10 + 11880λ 1,2n7 - 188100λ 1,2n2 + 51480λ 1,2n - 220770λ1,2n3 + 75240λ 1,2n6 + 125730λ 1,2n5 - 21780λ 1,2n4 + 686070λ 1,1n3 + 83160λ 1,1n5 + 62700λ 1,12n6 + 24640λ 1,1n8λ 1,2 + 3080λ1,1n9λ 1,2 + 9900n7λ 1,12 + 146520λ 1,21,1 + 200640λ1,2n2λ 1,1 - 32010λ1,2n3λ 1,1 + 60170n7λ 1,2λ1,1 + 10450n6λ 1,2λ1,1 - 169840λ1,2n5λ 1,1 - 243650λ1,2n4λ 1,1 - 40464λ1,22n2 - 111870λ 1,12n - 44928λ 1,22n - 48840λ 1,12n3 - 187935λ 1,12n2 - 2800n8λ 1,22 + 6727n9λ 1,22 + 129690n4λ 1,12 + 146355n5λ 1,12 - 48472λ 1,22n6 + 92900λ 1,22n4 - 40034λ 1,22n7 + 27451λ 1,22n5 + 46932λ 1,22n3)
c[3] = 6(-623700 + 415800n + 1195425n2 + 831600n3 + 207900n4 + 11880λ 1,2n8 + 9900λ 1,12n8 + 1226610λ 1,1n4 - 540540λ 1,1n + 103950λ1,1n2 + 252λ 1,22n12 + 3360λ 1,22n11 + 16177λ 1,22n10 + 102960λ 1,2n7 - 237600λ 1,2n2 + 427680λ 1,2n - 1035540λ1,2n3 + 294030λ 1,2n6 + 184140λ 1,2n5 - 579150λ 1,2n4 + 1198890λ 1,1n3 + 526680λ 1,1n5 + 286605λ 1,12n6 + 135630λ 1,1n8λ 1,2 + 33880λ1,1n9λ 1,2 + 3080λ1,1n10λ 1,2 + 85800n7λ 1,12 + 83160λ 1,1n6 + 31680λ 1,21,1 + 225720λ1,2n2λ 1,1 - 88000λ1,2n3λ 1,1 + 207570n7λ 1,2λ1,1 - 70620n6λ 1,2λ1,1 - 624690λ1,2n5λ 1,1 - 685850λ1,2n4λ 1,1 - 85968λ1,22n2 - 17820λ 1,12n - 14400λ 1,22n + 2145λ 1,12n3 - 128700λ 1,12n2 - 34434n8λ 1,22 + 27020n9λ 1,22 + 338580n4λ 1,12 + 462990n5λ 1,12 - 206859λ 1,22n6 + 300032λ 1,22n4 - 189900λ 1,22n7 + 89280λ 1,22n5 + 95440λ 1,22n3)(2n + 1)
c[4] = -2806650 + 2338875n + 6860700n2 + 831600n3 - 2494800n4 - 831600n5 - 427680λ 1,2n8 - 356400λ 1,12n8 + 3742200λ 1,1n4 - 3367980λ 1,1n + 1683990λ1,1n2 - 15120λ 1,22n12 - 82096λ 1,22n11 - 160356λ 1,22n10 - 1045440λ 1,2n7 - 2405700λ 1,2n2 + 1924560λ 1,2n - 4998510λ1,2n3 + 534600λ 1,2n6 + 4434210λ 1,2n5 + 2031480λ 1,2n4 + 9168390λ 1,1n3 - 2661120λ 1,1n5 - 552420λ 1,12n6 - 12320λ 1,1n11λ 1,2 - 1008λ1,22n13 - 706200λ 1,1n8λ 1,2 - 607200λ1,1n9λ 1,2 - 147840λ1,1n10λ 1,2 - 1037520n7λ 1,12 - 332640λ 1,1n7 - 39600λ 1,12n9 - 47520λ 1,2n9 - 1995840λ 1,1n6 + 142560λ 1,21,1 + 1318680λ1,2n2λ 1,1 - 1742400λ1,2n3λ 1,1 + 1487970n7λ 1,2λ1,1 + 4015110n6λ 1,2λ1,1 + 612590λ1,2n5λ 1,1 - 4360950λ1,2n4λ 1,1 - 354456λ1,22n2 - 80190λ 1,12n - 64800λ 1,22n + 418770λ 1,12n3 - 1162755λ 1,12n2 + 920130n8λ 1,22 + 139731n9λ 1,22 + 3564000n4λ 1,12 + 2364615n5λ 1,12 - 1473888λ 1,22n6 + 1029690λ 1,22n4 + 578862λ 1,22n7 - 1451573λ 1,22n5 + 934884λ 1,22n3

Expressions for all quantities involved are provided below.

 
Psi_1:=2+2*lambda[1,1]-2*x;  
 
Psi_2:=-28-56*lambda[1,1]-14*lambda[1,1]^2-28*lambda[1,2]-112*lambda[1,1]^2*x-112*lambda[1,2]*lambda[1,1]*x-154*lambda[1,1]*x-42*x-112*lambda[1,2]*x+70*x^2+112*lambda[1,1]*x^2+56*lambda[1,1]^2*x^2;  
 
c[1]:=8*n^2*(n+3)*(207900+467775*n-166320*lambda[1,1]+142560*lambda[1,2]+103950*n^2+41580*lambda[1,1]*n^4-291060*lambda[1,1]*n+187110*lambda[1,1]*n^2+126*lambda[1,2]^2*n^10-225720*lambda[1,2]*n^2+225720*lambda[1,2]*n-210870*lambda[1,2]*n^3+5940*lambda[1,2]*n^6+38610*lambda[1,2]*n^5+23760*lambda[1,2]*n^4+228690*lambda[1,1]*n^3+4950*lambda[1,1]^2*n^6+1540*lambda[1,1]*n^8*lambda[1,2]-63360*lambda[1,2]*n*lambda[1,1]+195800*lambda[1,2]*n^2*lambda[1,1]+93720*lambda[1,2]*n^3*lambda[1,1]+11550*n^7*lambda[1,2]*lambda[1,1]+13530*n^6*lambda[1,2]*lambda[1,1]-65670*lambda[1,2]*n^5*lambda[1,1]-123750*lambda[1,2]*n^4*lambda[1,1]-101600*lambda[1,2]^2*n^2+42570*lambda[1,1]^2*n+22752*lambda[1,2]^2*n-61380*lambda[1,1]^2*n^3-94545*lambda[1,1]^2*n^2+1316*n^8*lambda[1,2]^2+1071*n^9*lambda[1,2]^2+40590*n^4*lambda[1,1]^2+32175*n^5*lambda[1,1]^2-22026*lambda[1,2]^2*n^6+82584*lambda[1,2]^2*n^4-9786*lambda[1,2]^2*n^7+28527*lambda[1,2]^2*n^5-31764*lambda[1,2]^2*n^3-63360*lambda[1,2]*lambda[1,1]+35640*lambda[1,1]^2+28800*lambda[1,2]^2);  
 
c[2]:=-12*n*(n+3)*(623700+883575*n-207900*lambda[1,1]+166320*lambda[1,2]+623700*n^2+207900*n^3+388080*lambda[1,1]*n^4+48510*lambda[1,1]*n+561330*lambda[1,1]*n^2+252*lambda[1,2]^2*n^11+2436*lambda[1,2]^2*n^10+11880*lambda[1,2]*n^7-188100*lambda[1,2]*n^2+51480*lambda[1,2]*n-220770*lambda[1,2]*n^3+75240*lambda[1,2]*n^6+125730*lambda[1,2]*n^5-21780*lambda[1,2]*n^4+686070*lambda[1,1]*n^3+83160*lambda[1,1]*n^5+62700*lambda[1,1]^2*n^6+24640*lambda[1,1]*n^8*lambda[1,2]+3080*lambda[1,1]*n^9*lambda[1,2]+9900*n^7*lambda[1,1]^2+146520*lambda[1,2]*n*lambda[1,1]+200640*lambda[1,2]*n^2*lambda[1,1]-32010*lambda[1,2]*n^3*lambda[1,1]+60170*n^7*lambda[1,2]*lambda[1,1]+10450*n^6*lambda[1,2]*lambda[1,1]-169840*lambda[1,2]*n^5*lambda[1,1]-243650*lambda[1,2]*n^4*lambda[1,1]-40464*lambda[1,2]^2*n^2-111870*lambda[1,1]^2*n-44928*lambda[1,2]^2*n-48840*lambda[1,1]^2*n^3-187935*lambda[1,1]^2*n^2-2800*n^8*lambda[1,2]^2+6727*n^9*lambda[1,2]^2+129690*n^4*lambda[1,1]^2+146355*n^5*lambda[1,1]^2-48472*lambda[1,2]^2*n^6+92900*lambda[1,2]^2*n^4-40034*lambda[1,2]^2*n^7+27451*lambda[1,2]^2*n^5+46932*lambda[1,2]^2*n^3);  
 
c[3]:=6*(-623700+415800*n+1195425*n^2+831600*n^3+207900*n^4+11880*lambda[1,2]*n^8+9900*lambda[1,1]^2*n^8+1226610*lambda[1,1]*n^4-540540*lambda[1,1]*n+103950*lambda[1,1]*n^2+252*lambda[1,2]^2*n^12+3360*lambda[1,2]^2*n^11+16177*lambda[1,2]^2*n^10+102960*lambda[1,2]*n^7-237600*lambda[1,2]*n^2+427680*lambda[1,2]*n-1035540*lambda[1,2]*n^3+294030*lambda[1,2]*n^6+184140*lambda[1,2]*n^5-579150*lambda[1,2]*n^4+1198890*lambda[1,1]*n^3+526680*lambda[1,1]*n^5+286605*lambda[1,1]^2*n^6+135630*lambda[1,1]*n^8*lambda[1,2]+33880*lambda[1,1]*n^9*lambda[1,2]+3080*lambda[1,1]*n^10*lambda[1,2]+85800*n^7*lambda[1,1]^2+83160*lambda[1,1]*n^6+31680*lambda[1,2]*n*lambda[1,1]+225720*lambda[1,2]*n^2*lambda[1,1]-88000*lambda[1,2]*n^3*lambda[1,1]+207570*n^7*lambda[1,2]*lambda[1,1]-70620*n^6*lambda[1,2]*lambda[1,1]-624690*lambda[1,2]*n^5*lambda[1,1]-685850*lambda[1,2]*n^4*lambda[1,1]-85968*lambda[1,2]^2*n^2-17820*lambda[1,1]^2*n-14400*lambda[1,2]^2*n+2145*lambda[1,1]^2*n^3-128700*lambda[1,1]^2*n^2-34434*n^8*lambda[1,2]^2+27020*n^9*lambda[1,2]^2+338580*n^4*lambda[1,1]^2+462990*n^5*lambda[1,1]^2-206859*lambda[1,2]^2*n^6+300032*lambda[1,2]^2*n^4-189900*lambda[1,2]^2*n^7+89280*lambda[1,2]^2*n^5+95440*lambda[1,2]^2*n^3)*(2*n+1);  
 
c[4]:=-2806650+2338875*n+6860700*n^2+831600*n^3-2494800*n^4-831600*n^5-427680*lambda[1,2]*n^8-356400*lambda[1,1]^2*n^8+3742200*lambda[1,1]*n^4-3367980*lambda[1,1]*n+1683990*lambda[1,1]*n^2-15120*lambda[1,2]^2*n^12-82096*lambda[1,2]^2*n^11-160356*lambda[1,2]^2*n^10-1045440*lambda[1,2]*n^7-2405700*lambda[1,2]*n^2+1924560*lambda[1,2]*n-4998510*lambda[1,2]*n^3+534600*lambda[1,2]*n^6+4434210*lambda[1,2]*n^5+2031480*lambda[1,2]*n^4+9168390*lambda[1,1]*n^3-2661120*lambda[1,1]*n^5-552420*lambda[1,1]^2*n^6-12320*lambda[1,1]*n^11*lambda[1,2]-1008*lambda[1,2]^2*n^13-706200*lambda[1,1]*n^8*lambda[1,2]-607200*lambda[1,1]*n^9*lambda[1,2]-147840*lambda[1,1]*n^10*lambda[1,2]-1037520*n^7*lambda[1,1]^2-332640*lambda[1,1]*n^7-39600*lambda[1,1]^2*n^9-47520*lambda[1,2]*n^9-1995840*lambda[1,1]*n^6+142560*lambda[1,2]*n*lambda[1,1]+1318680*lambda[1,2]*n^2*lambda[1,1]-1742400*lambda[1,2]*n^3*lambda[1,1]+1487970*n^7*lambda[1,2]*lambda[1,1]+4015110*n^6*lambda[1,2]*lambda[1,1]+612590*lambda[1,2]*n^5*lambda[1,1]-4360950*lambda[1,2]*n^4*lambda[1,1]-354456*lambda[1,2]^2*n^2-80190*lambda[1,1]^2*n-64800*lambda[1,2]^2*n+418770*lambda[1,1]^2*n^3-1162755*lambda[1,1]^2*n^2+920130*n^8*lambda[1,2]^2+139731*n^9*lambda[1,2]^2+3564000*n^4*lambda[1,1]^2+2364615*n^5*lambda[1,1]^2-1473888*lambda[1,2]^2*n^6+1029690*lambda[1,2]^2*n^4+578862*lambda[1,2]^2*n^7-1451573*lambda[1,2]^2*n^5+934884*lambda[1,2]^2*n^3;  

Case(iii) α = β = 0

The ‘starting’ functions are given by

Ψ1 = 5 + 5λ1,1 - 5x
Ψ2 = -30 - 60λ1,1 - 15λ1,12 - 30λ 1,2 - 90λ1,12x - 120λ 1,1x - 90λ1,2λ1,1x - 30x - 90λ1,2x + 60x2 + 90λ 1,1x2 + 45λ 1,12x2
c[1] = (2n3 + 9n2 + 7n - 6)n2(3n8λ 1,22 + 30n6λ 1,2λ1,1 - 30λ1,22n6 + 80n4λ 1,12 - 180λ 1,2n4λ 1,1 + 80λ1,2n4 + 99λ 1,22n4 - 160λ 1,12n2 + 270λ 1,2n2λ 1,1 + 480λ1,1n2 - 120λ 1,22n2 - 400λ 1,2n2 + 80λ 1,12 - 480λ 1,1 - 120λ1,2λ1,1 + 48λ1,22 + 960 + 320λ 1,2)
c[2] = -3(960 + 1600n + 1600n2 + 960n3 + 1120λ 1,1n4 + 480λ 1,1n2 + 3λ 1,22n11 + 13λ 1,22n10 + 80λ 1,2n7 + 80λ 1,2n2 - 80λ 1,2n3 + 240λ 1,2n6 - 320λ 1,2n4 + 1120λ 1,1n3 + 480λ 1,1n5 + 240λ 1,12n6 + 110λ 1,1n8λ 1,2 + 30λ1,1n9λ 1,2 + 80n7λ 1,12 + 120λ 1,2n2λ 1,1 + 280λ1,2n3λ 1,1 + 20n7λ 1,2λ1,1 - 300n6λ 1,2λ1,1 - 330λ1,2n5λ 1,1 + 70λ1,2n4λ 1,1 - 12λ1,22n2 - 320λ 1,12n3 - 160λ 1,12n2 - 75n8λ 1,22 - 5n9λ 1,22 - 80n4λ 1,12 + 240n5λ 1,12 + 99λ 1,22n6 - 25λ 1,22n4 - 51λ 1,22n7 + 105λ 1,22n5 - 52λ 1,22n3)(2n2 + 3n - 2)
c[3] = 3(-3840 - 2560n - 960λ1,1 + 960n2 + 3520n3 + 1920n4 + 160λ 1,2n8 + 160λ 1,12n8 + 2720λ 1,1n4 - 2560λ 1,1n - 2720λ1,1n2 + 6λ 1,22n12 + 43λ 1,22n11 + 71λ 1,22n10 + 720λ 1,2n7 + 2080λ 1,2n2 + 960λ 1,2n + 560λ1,2n6 - 1680λ 1,2n5 - 2800λ 1,2n4 - 480λ 1,1n3 + 3040λ 1,1n5 + 1040λ 1,12n6 + 510λ 1,1n8λ 1,2 + 350λ1,1n9λ 1,2 + 60λ1,1n10λ 1,2 + 720n7λ 1,12 + 960λ 1,1n6 + 240λ 1,21,1 + 640λ1,2n2λ 1,1 + 920λ1,2n3λ 1,1 - 500n7λ 1,2λ1,1 - 1760n6λ 1,2λ1,1 - 1010λ1,2n5λ 1,1 + 550λ1,2n4λ 1,1 - 144λ1,22n2 - 480λ 1,12n - 720λ 1,12n3 - 1040λ 1,12n2 - 552n8λ 1,22 - 150n9λ 1,22 - 160n4λ 1,12 + 480n5λ 1,12 + 723λ 1,22n6 - 104λ 1,22n4 - 261λ 1,22n7 + 800λ 1,22n5 - 432λ 1,22n3)n
c[4] = -5760 - 6720n + 6720n2 + 8640n3 - 960n4 - 1920n5 - 720λ 1,2n8 - 720λ 1,12n8 - 160n9λ 1,2 + 12000λ1,1n4 - 5760λ 1,1n - 9600λ1,1n2 - 160λ 1,12n9 - 6λ 1,22n13 - 51λ 1,22n12 - 105λ 1,22n11 + 207λ 1,22n10 + 240λ 1,2n7 + 2880λ 1,2n2 + 2880λ 1,2n - 5840λ1,2n3 + 4320λ 1,2n6 + 2880λ 1,2n5 - 6480λ 1,2n4 + 3360λ 1,1n3 + 3360λ 1,1n5 - 960λ 1,1n7 + 3120λ 1,12n6 + 1800λ 1,1n8λ 1,2 - 60λ1,1n11λ 1,2 - 450λ1,1n9λ 1,2 - 390λ1,1n10λ 1,2 - 240n7λ 1,12 - 2400λ 1,1n6 + 2160λ 1,2n2λ 1,1 + 3240λ1,2n3λ 1,1 + 4320n7λ 1,2λ1,1 - 270n6λ 1,2λ1,1 - 7050λ1,2n5λ 1,1 - 3300λ1,2n4λ 1,1 - 648λ1,22n2 - 4160λ 1,12n3 - 1920λ 1,12n2 + 297n8λ 1,22 + 927n9λ 1,22 - 480n4λ 1,12 + 4560n5λ 1,12 - 1659λ 1,22n6 + 1854λ 1,22n4 - 2055λ 1,22n7 + 1779λ 1,22n5 - 540λ 1,22n3

Expressions for all quantities involved are provided below.

 
Psi_1:=5+5*lambda[1,1]-5*x;  
 
Psi_2:=-30-60*lambda[1,1]-15*lambda[1,1]^2-30*lambda[1,2]-90*lambda[1,1]^2*x-120*lambda[1,1]*x-90*lambda[1,2]*lambda[1,1]*x-30*x-90*lambda[1,2]*x+60*x^2+90*lambda[1,1]*x^2+45*lambda[1,1]^2*x^2;  
 
c[1]:=(2*n^3+9*n^2+7*n-6)*n^2*(3*n^8*lambda[1,2]^2+30*n^6*lambda[1,2]*lambda[1,1]-30*lambda[1,2]^2*n^6+80*n^4*lambda[1,1]^2-180*lambda[1,2]*n^4*lambda[1,1]+80*lambda[1,2]*n^4+99*lambda[1,2]^2*n^4-160*lambda[1,1]^2*n^2+270*lambda[1,2]*n^2*lambda[1,1]+480*lambda[1,1]*n^2-120*lambda[1,2]^2*n^2-400*lambda[1,2]*n^2+80*lambda[1,1]^2-480*lambda[1,1]-120*lambda[1,2]*lambda[1,1]+48*lambda[1,2]^2+960+320*lambda[1,2]);  
 
c[2]:=-3*(960+1600*n+1600*n^2+960*n^3+1120*lambda[1,1]*n^4+480*lambda[1,1]*n^2+3*lambda[1,2]^2*n^11+13*lambda[1,2]^2*n^10+80*lambda[1,2]*n^7+80*lambda[1,2]*n^2-80*lambda[1,2]*n^3+240*lambda[1,2]*n^6-320*lambda[1,2]*n^4+1120*lambda[1,1]*n^3+480*lambda[1,1]*n^5+240*lambda[1,1]^2*n^6+110*lambda[1,1]*n^8*lambda[1,2]+30*lambda[1,1]*n^9*lambda[1,2]+80*n^7*lambda[1,1]^2+120*lambda[1,2]*n^2*lambda[1,1]+280*lambda[1,2]*n^3*lambda[1,1]+20*n^7*lambda[1,2]*lambda[1,1]-300*n^6*lambda[1,2]*lambda[1,1]-330*lambda[1,2]*n^5*lambda[1,1]+70*lambda[1,2]*n^4*lambda[1,1]-12*lambda[1,2]^2*n^2-320*lambda[1,1]^2*n^3-160*lambda[1,1]^2*n^2-75*n^8*lambda[1,2]^2-5*n^9*lambda[1,2]^2-80*n^4*lambda[1,1]^2+240*n^5*lambda[1,1]^2+99*lambda[1,2]^2*n^6-25*lambda[1,2]^2*n^4-51*lambda[1,2]^2*n^7+105*lambda[1,2]^2*n^5-52*lambda[1,2]^2*n^3)*(2*n^2+3*n-2);  
 
c[3]:=3*(-3840-2560*n-960*lambda[1,1]+960*n^2+3520*n^3+1920*n^4+160*lambda[1,2]*n^8+160*lambda[1,1]^2*n^8+2720*lambda[1,1]*n^4-2560*lambda[1,1]*n-2720*lambda[1,1]*n^2+6*lambda[1,2]^2*n^12+43*lambda[1,2]^2*n^11+71*lambda[1,2]^2*n^10+720*lambda[1,2]*n^7+2080*lambda[1,2]*n^2+960*lambda[1,2]*n+560*lambda[1,2]*n^6-1680*lambda[1,2]*n^5-2800*lambda[1,2]*n^4-480*lambda[1,1]*n^3+3040*lambda[1,1]*n^5+1040*lambda[1,1]^2*n^6+510*lambda[1,1]*n^8*lambda[1,2]+350*lambda[1,1]*n^9*lambda[1,2]+60*lambda[1,1]*n^10*lambda[1,2]+720*n^7*lambda[1,1]^2+960*lambda[1,1]*n^6+240*lambda[1,2]*n*lambda[1,1]+640*lambda[1,2]*n^2*lambda[1,1]+920*lambda[1,2]*n^3*lambda[1,1]-500*n^7*lambda[1,2]*lambda[1,1]-1760*n^6*lambda[1,2]*lambda[1,1]-1010*lambda[1,2]*n^5*lambda[1,1]+550*lambda[1,2]*n^4*lambda[1,1]-144*lambda[1,2]^2*n^2-480*lambda[1,1]^2*n-720*lambda[1,1]^2*n^3-1040*lambda[1,1]^2*n^2-552*n^8*lambda[1,2]^2-150*n^9*lambda[1,2]^2-160*n^4*lambda[1,1]^2+480*n^5*lambda[1,1]^2+723*lambda[1,2]^2*n^6-104*lambda[1,2]^2*n^4-261*lambda[1,2]^2*n^7+800*lambda[1,2]^2*n^5-432*lambda[1,2]^2*n^3)*n;  
 
c[4]:=-5760-6720*n+6720*n^2+8640*n^3-960*n^4-1920*n^5-720*lambda[1,2]*n^8-720*lambda[1,1]^2*n^8-160*n^9*lambda[1,2]+12000*lambda[1,1]*n^4-5760*lambda[1,1]*n-9600*lambda[1,1]*n^2-160*lambda[1,1]^2*n^9-6*lambda[1,2]^2*n^13-51*lambda[1,2]^2*n^12-105*lambda[1,2]^2*n^11+207*lambda[1,2]^2*n^10+240*lambda[1,2]*n^7+2880*lambda[1,2]*n^2+2880*lambda[1,2]*n-5840*lambda[1,2]*n^3+4320*lambda[1,2]*n^6+2880*lambda[1,2]*n^5-6480*lambda[1,2]*n^4+3360*lambda[1,1]*n^3+3360*lambda[1,1]*n^5-960*lambda[1,1]*n^7+3120*lambda[1,1]^2*n^6+1800*lambda[1,1]*n^8*lambda[1,2]-60*lambda[1,1]*n^11*lambda[1,2]-450*lambda[1,1]*n^9*lambda[1,2]-390*lambda[1,1]*n^10*lambda[1,2]-240*n^7*lambda[1,1]^2-2400*lambda[1,1]*n^6+2160*lambda[1,2]*n^2*lambda[1,1]+3240*lambda[1,2]*n^3*lambda[1,1]+4320*n^7*lambda[1,2]*lambda[1,1]-270*n^6*lambda[1,2]*lambda[1,1]-7050*lambda[1,2]*n^5*lambda[1,1]-3300*lambda[1,2]*n^4*lambda[1,1]-648*lambda[1,2]^2*n^2-4160*lambda[1,1]^2*n^3-1920*lambda[1,1]^2*n^2+297*n^8*lambda[1,2]^2+927*n^9*lambda[1,2]^2-480*n^4*lambda[1,1]^2+4560*n^5*lambda[1,1]^2-1659*lambda[1,2]^2*n^6+1854*lambda[1,2]^2*n^4-2055*lambda[1,2]^2*n^7+1779*lambda[1,2]^2*n^5-540*lambda[1,2]^2*n^3;  

2.7 2nd order, 2 generalised boundary conditions

In the Cartesian domain [-1,1], we provide an orthogonal basis that satisfies the generalised boundary conditions

           ′          ′′
f (1) + λ1,1f (1)+ λ1,2f (1) = 0,                 (18)
 f(1)+ λ2,1f ′(1)+ λ2,2f′′(1) = 0.                 (19)

An unnormalised basis set may be written

          4
         ∑     (α+3,β)
Ψn (x) =    ciP n+2-i (x),    n ≥ 2
         i=1

for any α > -1, β > -1 where where the ci are polynomials of degree 13 in n. The function Ψ1 is given explicitly below. The 4 coefficients ci are determined up to an arbitrary normalisation by imposing

A generalised set ci for arbitrary {n,α,β,λi,j} is currently beyond reach, but we provide three cases with α = β = -12, α = β = 12 and α = β = 0 below.

Case(i) α = β = -12

The ‘starting’ functions are given by

Ψ1 = -20λ1,1 - 40λ1,2 + 20λ2,1 - 40λ2,1λ1,2 + 40λ2,2 + 40λ2,2λ1,1 + 40λ1,1x - 40λ2,2x - 40λ2,1x + 40λ1,2x - 20λ1,1x2 + 20λ 2,1x2

c[1] = 8n2(n + 1)(-1690n4λ 2,2λ1,1λ2,1λ1,2 + 22680λ2,1λ1,2 + 22680λ2,2λ1,1 - 6426n2λ 2,1λ1,2λ1,1 - 1890n3λ 2,1λ1,2λ1,1 - 2968λ2,2n6λ 2,1λ1,2 - 2268λ2,12,2λ1,1 + 756λ2,1n6λ 2,2λ1,1 + 8120λ2,2n4λ 2,1λ1,2 - 1820λ2,2n7λ 2,1λ1,2 - 280λ2,2n8λ 2,1λ1,2 + 8120n4λ 2,2λ1,1λ1,2 - 2016λ2,2λ1,11,2 + 1540λ2,2n3λ 2,1λ1,2 + 4158λ2,1n5λ 2,2λ1,1 + 2296λ2,2n5λ 2,1λ1,2 - 2968n6λ 2,2λ1,1λ1,2 - 1820n7λ 2,2λ1,1λ1,2 + 2296n5λ 2,2λ1,1λ1,2 + 5670n4λ 2,1λ1,2λ1,1 - 2016λ2,22,1λ1,2 - 192n2λ 2,2λ1,1λ2,1λ1,2 + 1890n3λ 2,2λ1,12 - 92610λ 2,11,1 + 2968λ2,22n6λ 1,1 - 1043n5λ 2,22λ 1,12 + 485n8λ 2,22λ 1,12 + 225n9λ 2,22λ 1,12 - 4158λ 2,12n5λ 1,2 - 41580λ1,21,1 + 1000n3λ 2,12λ 1,22 + 96n2λ 2,12λ 1,22 + 30n10λ 2,22λ 1,12 + 22680λ 1,2n2λ 1,1 - 1540n3λ 2,1λ1,22 + 485n8λ 2,12λ 1,22 - 110n7λ 2,12λ 1,22 - 1456n6λ 2,12λ 1,22 + 34020λ 1,2n3λ 1,1 - 7560n4λ 2,1λ1,2 - 34020n3λ 2,1λ1,2 - 22680n2λ 2,1λ1,2 + 41580λ2,1λ1,2n + 41580λ2,2λ1,1n + 96λ2,22λ 1,12n2 - 110n7λ 2,22λ 1,12 - 1456n6λ 2,22λ 1,12 - 5670n4λ 2,2λ1,12 - 756λ 2,12n6λ 1,2 - 5670λ2,12n4λ 1,2 + 7560λ2,1n4λ 2,2 + 1890λ2,12n3λ 1,2 + 34020λ2,1n3λ 2,2 + 280n8λ 2,1λ1,22 + 2016λ 2,1λ1,22n + 7560λ 1,2n4λ 1,1 - 1043n5λ 2,12λ 1,22 + 6426n2λ 2,2λ1,12 + 2968n6λ 2,1λ1,22 + 1820n7λ 2,1λ1,22 + 845n4λ 2,22λ 1,12 - 7560n4λ 2,2λ1,1 - 34020n3λ 2,2λ1,1 - 22680n2λ 2,2λ1,1 + 4872n2λ 2,1λ1,22 - 2296n5λ 2,1λ1,22 + 845n4λ 2,12λ 1,22 + 1000n3λ 2,22λ 1,12 - 26460λ 2,1n2λ 1,1 - 8120n4λ 2,1λ1,22 + 30n10λ 2,12λ 1,22 - 4158n5λ 2,2λ1,12
- 2352λ2,2n6λ 1,2 + 144λ2,2λ1,12,1λ1,2 + 2912n6λ 2,2λ1,1λ2,1λ1,2 + 2086n5λ 2,2λ1,1λ2,1λ1,2 - 970n8λ 2,2λ1,1λ2,1λ1,2 + 220n7λ 2,2λ1,1λ2,1λ1,2 - 2000n3λ 2,2λ1,1λ2,1λ1,2 - 60n10λ 2,2λ1,1λ2,1λ1,2 - 450n9λ 2,2λ1,1λ2,1λ1,2 + 4158n5λ 2,1λ1,2λ1,1 - 1890λ2,1n3λ 2,2λ1,1 - 4872n2λ 2,2λ1,1λ1,2 + 756n6λ 2,1λ1,2λ1,1 - 4872λ2,2n2λ 2,1λ1,2 - 2268λ2,1λ1,21,1 + 1540n3λ 2,2λ1,1λ1,2 - 6426λ2,1n2λ 2,2λ1,1 - 280n8λ 2,2λ1,1λ1,2 + 6426λ2,12n2λ 1,2 + 22680λ2,1n2λ 2,2 + 2268λ2,12 1,2 + 6468λ2,22n5 - 14280λ 2,22n3 + 6300λ 2,22n4 + 10332λ 2,22n - 17556λ 2,22n2 - 17556λ 1,22n2 + 46305λ 1,12n + 10332λ 1,22n + 13230λ 1,12n2 + 13230λ 2,12n2 + 46305λ 2,12n + 1176λ 2,22n6 - 39690λ 1,1λ2,1 + 1176λ1,22n6 + 6300λ 1,22n4 + 6468λ 1,22n5 - 14280λ 1,22n3 - 22680λ 1,2λ1,1 - 22680λ2,2λ2,1 - 15120λ2,2λ1,2 + 2268λ2,2λ1,12n - 72λ 2,22λ 1,12n - 2296λ 2,22n5λ 1,1 - 1540λ2,22n3λ 1,1 - 12936λ2,2n5λ 1,2 - 12600λ2,2n4λ 1,2 - 8120λ2,22n4λ 1,1 + 225n9λ 2,12λ 1,22 - 756n6λ 2,2λ1,12 + 35112λ 2,2n2λ 1,2 + 4872λ2,22n2λ 1,1 + 28560λ2,2n3λ 1,2 - 20664λ2,21,2 + 2016λ2,22 1,1 - 72λ2,12λ 1,22n + 19845λ 2,12 + 19845λ 1,12 + 7560λ 2,22 + 7560λ 1,22 + 5670λ 2,1n4λ 2,2λ1,1 - 41580λ2,12,2 + 1820λ2,22n7λ 1,1 + 280λ2,22n8λ 1,1)
c[2] = -12(-8050n4λ 2,2λ1,1λ2,1λ1,2 + 105840λ2,1λ1,2 + 105840λ2,2λ1,1 + 1512λ2,1n7λ 2,2λ1,1 - 48510n2λ 2,1λ1,2λ1,1 + 2898n3λ 2,1λ1,2λ1,1 - 27720λ2,2n6λ 2,1λ1,2 - 42588λ2,12,2λ1,1 + 12600λ2,1n6λ 2,2λ1,1 + 59920λ2,2n4λ 2,1λ1,2 - 20356λ2,2n7λ 2,1λ1,2 - 5600λ2,2n8λ 2,1λ1,2 + 59920n4λ 2,2λ1,1λ1,2 - 560λ2,2n9λ 2,1λ1,2 - 27216λ2,2λ1,11,2 + 39536λ2,2n3λ 2,1λ1,2 + 39438λ2,1n5λ 2,2λ1,1 + 9436λ2,2n5λ 2,1λ1,2 - 27720n6λ 2,2λ1,1λ1,2 - 560n9λ 2,2λ1,1λ1,2 - 20356n7λ 2,2λ1,1λ1,2 + 9436n5λ 2,2λ1,1λ1,2 + 49770n4λ 2,1λ1,2λ1,1 - 27216λ2,22,1λ1,2 - 10080n2λ 2,2λ1,1λ2,1λ1,2 - 2898n3λ 2,2λ1,12 - 515970λ 2,11,1 - 10080λ2,2λ1,1λ1,2 - 10080λ2,2λ2,1λ1,2 - 15120λ2,1λ2,2λ1,1 - 15120λ2,1λ1,2λ1,1 + 560λ2,22n9λ 1,1 + 27720λ2,22n6λ 1,1 - 14823n5λ 2,22λ 1,12 + 5145n8λ 2,22λ 1,12 + 3025n9λ 2,22λ 1,12 - 39438λ 2,12n5λ 1,2 - 47880λ1,21,1 + 12872n3λ 2,12λ 1,22 + 5040n2λ 2,12λ 1,22 + 700n10λ 2,22λ 1,12 + 196560λ 1,2n2λ 1,1 - 39536n3λ 2,1λ1,22 + 5145n8λ 2,12λ 1,22 - 1062n7λ 2,12λ 1,22 - 14910n6λ 2,12λ 1,22 - 4704λ 2,2n7λ 1,2 + 238140λ1,2n3λ 1,1 - 100800n4λ 2,1λ1,2 - 238140n3λ 2,1λ1,2 - 196560n2λ 2,1λ1,2 + 47880λ2,1λ1,2n + 47880λ2,2λ1,1n + 5040λ2,22λ 1,12n2 + 60n11λ 2,22λ 1,12 - 1062n7λ 2,22λ 1,12 - 14910n6λ 2,22λ 1,12 - 49770n4λ 2,2λ1,12 - 1512λ 2,12n7λ 1,2 - 12600λ2,12n6λ 1,2 + 15120λ2,1n5λ 2,2 - 49770λ2,12n4λ 1,2 + 100800λ2,1n4λ 2,2 - 2898λ2,12n3λ 1,2 + 238140λ2,1n3λ 2,2 + 5600n8λ 2,1λ1,22 + 27216λ 2,1λ1,22n + 15120λ 1,2n5λ 1,1 + 100800λ1,2n4λ 1,1 - 14823n5λ 2,12λ 1,22 + 48510n2λ 2,2λ1,12 + 27720n6λ 2,1λ1,22 + 560n9λ 2,1λ1,22 + 20356n7λ 2,1λ1,22 + 4025n4λ 2,22λ 1,12 - 100800n4λ 2,2λ1,1
- 15120n5λ 2,2λ1,1 - 238140n3λ 2,2λ1,1 - 196560n2λ 2,2λ1,1 - 15120n5λ 2,1λ1,2 + 17360n2λ 2,1λ1,22 - 9436n5λ 2,1λ1,22 + 4025n4λ 2,12λ 1,22 - 52920λ 2,1n3λ 1,1 + 12872n3λ 2,22λ 1,12 - 264600λ 2,1n2λ 1,1 - 59920n4λ 2,1λ1,22 + 60n11λ 2,12λ 1,22 + 700n10λ 2,12λ 1,22 - 39438n5λ 2,2λ1,12 - 39200λ 2,2n6λ 1,2 + 144λ2,2λ1,12,1λ1,2 + 29820n6λ 2,2λ1,1λ2,1λ1,2 + 29646n5λ 2,2λ1,1λ2,1λ1,2 - 10290n8λ 2,2λ1,1λ2,1λ1,2 + 2124n7λ 2,2λ1,1λ2,1λ1,2 - 25744n3λ 2,2λ1,1λ2,1λ1,2 - 1400n10λ 2,2λ1,1λ2,1λ1,2 - 6050n9λ 2,2λ1,1λ2,1λ1,2 - 120n11λ 2,2λ1,1λ2,1λ1,2 + 39438n5λ 2,1λ1,2λ1,1 + 2898λ2,1n3λ 2,2λ1,1 - 17360n2λ 2,2λ1,1λ1,2 + 1512n7λ 2,1λ1,2λ1,1 + 12600n6λ 2,1λ1,2λ1,1 - 17360λ2,2n2λ 2,1λ1,2 - 42588λ2,1λ1,21,1 + 39536n3λ 2,2λ1,1λ1,2 - 48510λ2,1n2λ 2,2λ1,1 - 5600n8λ 2,2λ1,1λ1,2 + 48510λ2,12n2λ 1,2 + 196560λ2,1n2λ 2,2 + 42588λ2,12 1,2 + 56308λ2,22n5 - 39592λ 2,22n3 + 51660λ 2,22n4 - 19908λ 2,22n - 88060λ 2,22n2 - 88060λ 1,22n2 + 257985λ 1,12n - 19908λ 1,22n + 26460λ 1,12n3 + 132300λ 1,12n2 + 26460λ 2,12n3 + 132300λ 2,12n2 + 257985λ 2,12n + 2352λ 2,22n7 + 19600λ 2,22n6 - 357210λ 1,1λ2,1 + 19600λ1,22n6 + 51660λ 1,22n4 + 2352λ 1,22n7 + 56308λ 1,22n5 - 39592λ 1,22n3 - 105840λ 1,2λ1,1 - 105840λ2,2λ2,1 - 35280λ2,2λ1,2 + 15120λ2,12λ 1,2 + 15120λ2,2λ1,12 + 10080λ 2,22λ 1,1 + 10080λ2,1λ1,22 + 42588λ 2,2λ1,12n - 72λ 2,22λ 1,12n - 9436λ 2,22n5λ 1,1 - 39536λ2,22n3λ 1,1 - 1512n7λ 2,2λ1,12 - 112616λ 2,2n5λ 1,2 - 103320λ2,2n4λ 1,2 - 59920λ2,22n4λ 1,1 + 3025n9λ 2,12λ 1,22 - 12600n6λ 2,2λ1,12 + 176120λ 2,2n2λ 1,2 + 17360λ2,22n2λ 1,1 + 79184λ2,2n3λ 1,2 + 39816λ2,21,2 + 27216λ2,22 1,1 - 72λ2,12λ 1,22n + 178605λ 2,12 + 178605λ 1,12 + 17640λ 2,22 + 17640λ 1,22 + 49770λ 2,1n4λ 2,2λ1,1 - 47880λ2,12,2 + 20356λ2,22n7λ 1,1 + 5600λ2,22n8λ 1,1)n2
c[3] = 6(2n + 1)(-58564n4λ 2,2λ1,1λ2,1λ1,2 + 14616λ2,1n7λ 2,2λ1,1 + 110376n2λ 2,1λ1,2λ1,1 + 89334n3λ 2,1λ1,2λ1,1 - 41412λ2,2n6λ 2,1λ1,2 + 68040λ2,12,2λ1,1 + 1512λ2,1n8λ 2,2λ1,1 + 54054λ2,1n6λ 2,2λ1,1 + 84896λ2,2n4λ 2,1λ1,2 - 64568λ2,2n7λ 2,1λ1,2 - 30996λ2,2n8λ 2,1λ1,2 + 84896n4λ 2,2λ1,1λ1,2 - 560λ2,2n10λ 2,1λ1,2 - 6720λ2,2n9λ 2,1λ1,2 + 10080λ2,2λ1,11,2 + 8848λ2,2n3λ 2,1λ1,2 + 96390λ2,1n5λ 2,2λ1,1 + 54880λ2,2n5λ 2,1λ1,2 - 41412n6λ 2,2λ1,1λ1,2 - 6720n9λ 2,2λ1,1λ1,2 - 64568n7λ 2,2λ1,1λ1,2 - 560n10λ 2,2λ1,1λ1,2 + 54880n5λ 2,2λ1,1λ1,2 + 94878n4λ 2,1λ1,2λ1,1 + 10080λ2,22,1λ1,2 - 48n2λ 2,2λ1,1λ2,1λ1,2 - 89334n3λ 2,2λ1,12 - 489510λ 2,11,1 + 560λ2,22n10λ 1,1 + 6720λ2,22n9λ 1,1 + 41412λ2,22n6λ 1,1 - 23225n5λ 2,22λ 1,12 + 60n12λ 2,22λ 1,12 + 12828n8λ 2,22λ 1,12 + 13175n9λ 2,22λ 1,12 - 96390λ 2,12n5λ 1,2 + 75600λ1,21,1 + 29896n3λ 2,12λ 1,22 + 24n2λ 2,12λ 1,22 + 4885n10λ 2,22λ 1,12 + 143640λ 1,2n2λ 1,1 - 8848n3λ 2,1λ1,22 - 4704n8λ 2,2λ1,2 + 12828n8λ 2,12λ 1,22 - 15666n7λ 2,12λ 1,22 - 47079n6λ 2,12λ 1,22 - 45472λ 2,2n7λ 1,2 + 297360λ1,2n3λ 1,1 - 283500n4λ 2,1λ1,2 - 297360n3λ 2,1λ1,2 - 143640n2λ 2,1λ1,2 - 75600λ2,1λ1,2n - 75600λ2,2λ1,1n + 24λ2,22λ 1,12n2 + 15120n6λ 1,2λ1,1 + 860n11λ 2,22λ 1,12 - 15666n7λ 2,22λ 1,12 - 47079n6λ 2,22λ 1,12 - 94878n4λ 2,2λ1,12 - 52920n4λ 1,1λ2,1 - 1512λ2,12n8λ 1,2 - 14616λ2,12n7λ 1,2 - 54054λ2,12n6λ 1,2 + 110880λ2,1n5λ 2,2 - 94878λ2,12n4λ 1,2 + 283500λ2,1n4λ 2,2 - 89334λ2,12n3λ 1,2 + 297360λ2,1n3λ 2,2 + 30996n8λ 2,1λ1,22 - 10080λ 2,1λ1,22n + 110880λ 1,2n5λ 1,1 + 283500λ1,2n4λ 1,1 - 23225n5λ 2,12λ 1,22 - 110376n2λ 2,2λ1,12 + 41412n6λ 2,1λ1,22 + 6720n9λ 2,1λ1,22 + 64568n7λ 2,1λ1,22 + 29282n4λ 2,22λ 1,12 - 283500n4λ 2,2λ1,1 - 110880n5λ 2,2λ1,1
- 15120n6λ 2,2λ1,1 - 297360n3λ 2,2λ1,1 - 143640n2λ 2,2λ1,1 - 15120n6λ 2,1λ1,2 - 110880n5λ 2,1λ1,2 + 14448n2λ 2,1λ1,22 + 560n10λ 2,1λ1,22 - 54880n5λ 2,1λ1,22 + 29282n4λ 2,12λ 1,22 + 15120n6λ 2,2λ2,1 - 264600λ2,1n3λ 1,1 + 29896n3λ 2,22λ 1,12 - 463050λ 2,1n2λ 1,1 - 84896n4λ 2,1λ1,22 + 860n11λ 2,12λ 1,22 + 60n12λ 2,12λ 1,22 + 4885n10λ 2,12λ 1,22 - 96390n5λ 2,2λ1,12 - 1512n8λ 2,2λ1,12 - 158088λ 2,2n6λ 1,2 + 10080λ2,2λ1,12,1λ1,2 + 94158n6λ 2,2λ1,1λ2,1λ1,2 + 46450n5λ 2,2λ1,1λ2,1λ1,2 - 25656n8λ 2,2λ1,1λ2,1λ1,2 + 31332n7λ 2,2λ1,1λ2,1λ1,2 - 59792n3λ 2,2λ1,1λ2,1λ1,2 - 120n12λ 2,2λ1,1λ2,1λ1,2 - 9770n10λ 2,2λ1,1λ2,1λ1,2 - 26350n9λ 2,2λ1,1λ2,1λ1,2 - 1720n11λ 2,2λ1,1λ2,1λ1,2 + 96390n5λ 2,1λ1,2λ1,1 + 1512n8λ 2,1λ1,2λ1,1 + 89334λ2,1n3λ 2,2λ1,1 - 14448n2λ 2,2λ1,1λ1,2 + 14616n7λ 2,1λ1,2λ1,1 + 54054n6λ 2,1λ1,2λ1,1 - 14448λ2,2n2λ 2,1λ1,2 + 68040λ2,1λ1,21,1 + 8848n3λ 2,2λ1,1λ1,2 + 110376λ2,1n2λ 2,2λ1,1 - 30996n8λ 2,2λ1,1λ1,2 - 110376λ2,12n2λ 1,2 + 143640λ2,1n2λ 2,2 - 68040λ2,12 1,2 + 105140λ2,22n5 - 122836λ 2,22n3 - 5712λ 2,22n4 - 7560λ 2,22n - 73164λ 2,22n2 - 73164λ 1,22n2 + 244755λ 1,12n - 7560λ 1,22n + 132300λ 1,12n3 + 231525λ 1,12n2 + 2352n8λ 1,22 + 132300λ 2,12n3 + 231525λ 2,12n2 + 244755λ 2,12n + 22736λ 2,22n7 + 79044λ 2,22n6 + 2352n8λ 2,22 + 26460n4λ 1,12 - 396900λ 1,1λ2,1 + 26460n4λ 2,12 + 79044λ 1,22n6 - 5712λ 1,22n4 + 22736λ 1,22n7 + 105140λ 1,22n5 - 122836λ 1,22n3 - 68040λ 2,2λ1,12n - 5040λ 2,22λ 1,12n - 54880λ 2,22n5λ 1,1 - 8848λ2,22n3λ 1,1 - 14616n7λ 2,2λ1,12 - 210280λ 2,2n5λ 1,2 + 11424λ2,2n4λ 1,2 - 84896λ2,22n4λ 1,1 + 13175n9λ 2,12λ 1,22 - 54054n6λ 2,2λ1,12 + 146328λ 2,2n2λ 1,2 + 14448λ2,22n2λ 1,1 + 245672λ2,2n3λ 1,2 + 15120λ2,21,2 - 10080λ2,22 1,1 - 5040λ2,12λ 1,22n + 198450λ 2,12 + 198450λ 1,12 + 94878λ 2,1n4λ 2,2λ1,1 + 75600λ2,12,2 + 64568λ2,22n7λ 1,1 + 30996λ2,22n8λ 1,1)
c[4] = -2134548n4λ 2,2λ1,1λ2,1λ1,2 - 341712λ2,1n7λ 2,2λ1,1 + 2082024n2λ 2,1λ1,2λ1,1 + 2588922n3λ 2,1λ1,2λ1,1 + 1092λ2,2n6λ 2,1λ1,2 + 612360λ2,12,2λ1,1 - 72576λ2,1n8λ 2,2λ1,1 - 743904λ2,1n6λ 2,2λ1,1 - 3482388λ2,2n4λ 2,1λ1,2 + 950796λ2,2n7λ 2,1λ1,2 + 644448λ2,2n8λ 2,1λ1,2 - 3482388n4λ 2,2λ1,1λ1,2 + 33600λ2,2n10λ 2,1λ1,2 + 206304λ2,2n9λ 2,1λ1,2 + 90720λ2,2λ1,11,2 + 2240n11λ 2,2λ1,1λ1,2 - 2156616λ2,2n3λ 2,1λ1,2 - 472122λ2,1n5λ 2,2λ1,1 + 2240n11λ 2,2λ2,1λ1,2 - 2268644λ2,2n5λ 2,1λ1,2 + 1092n6λ 2,2λ1,1λ1,2 + 206304n9λ 2,2λ1,1λ1,2 + 950796n7λ 2,2λ1,1λ1,2 + 33600n10λ 2,2λ1,1λ1,2 - 2268644n5λ 2,2λ1,1λ1,2 + 1115856n4λ 2,1λ1,2λ1,1 + 90720λ2,22,1λ1,2 - 6048λ2,1n9λ 2,2λ1,1 + 211248n2λ 2,2λ1,1λ2,1λ1,2 - 2588922n3λ 2,2λ1,12 + 6048λ 2,12n9λ 1,2 - 240λ2,12n13λ 1,22 - 5596290λ 2,11,1 - 33600λ2,22n10λ 1,1 - 206304λ2,22n9λ 1,1 - 1092λ2,22n6λ 1,1 + 1636657n5λ 2,22λ 1,12 - 4320n12λ 2,22λ 1,12 - 375234n8λ 2,22λ 1,12 - 332247n9λ 2,22λ 1,12 + 472122λ 2,12n5λ 1,2 + 3061800λ1,21,1 + 6048n9λ 2,2λ1,12 + 208368n3λ 2,12λ 1,22 - 105624n2λ 2,12λ 1,22 - 139200n10λ 2,22λ 1,12 + 5817420λ 1,2n2λ 1,1 + 2156616n3λ 2,1λ1,22 + 225792n8λ 2,2λ1,2 - 375234n8λ 2,12λ 1,22 + 153582n7λ 2,12λ 1,22 + 1144704n6λ 2,12λ 1,22 + 1022784λ 2,2n7λ 1,2 - 2240λ2,22n11λ 1,1 - 240n13λ 2,22λ 1,12 + 2687580λ 1,2n3λ 1,1 - 60480n7λ 1,2λ1,1 + 211680n5λ 1,1λ2,1 + 1360800n4λ 2,1λ1,2 - 2687580n3λ 2,1λ1,2 - 5817420n2λ 2,1λ1,2 - 3061800λ2,1λ1,2n - 3061800λ2,2λ1,1n - 105624λ2,22λ 1,12n2 - 544320n6λ 1,2λ1,1 - 33160n11λ 2,22λ 1,12 + 153582n7λ 2,22λ 1,12 + 1144704n6λ 2,22λ 1,12 - 1115856n4λ 2,2λ1,12 + 1270080n4λ 1,1λ2,1 + 72576λ2,12n8λ 1,2 + 341712λ2,12n7λ 1,2 + 743904λ2,12n6λ 1,2 - 1663200λ2,1n5λ 2,2 - 1115856λ2,12n4λ 1,2 - 1360800λ2,1n4λ 2,2 - 2588922λ2,12n3λ 1,2 + 2687580λ2,1n3λ 2,2 - 2240λ2,1n11λ 1,22 - 644448n8λ 2,1λ1,22 - 60480n7λ 2,2λ2,1 - 90720λ2,1λ1,22n - 1663200λ 1,2n5λ 1,1 - 1360800λ1,2n4λ 1,1 + 1636657n5λ 2,12λ 1,22 - 2082024n2λ 2,2λ1,12 - 1092n6λ 2,1λ1,22 - 206304n9λ 2,1λ1,22 - 950796n7λ 2,1λ1,22 + 1067274n4λ 2,22λ 1,12 + 60480n7λ 2,1λ1,2
+ 1360800n4λ 2,2λ1,1 + 1663200n5λ 2,2λ1,1 + 544320n6λ 2,2λ1,1 + 60480n7λ 2,2λ1,1 - 2687580n3λ 2,2λ1,1 - 5817420n2λ 2,2λ1,1 + 544320n6λ 2,1λ1,2 + 1663200n5λ 2,1λ1,2 + 371952n2λ 2,1λ1,22 - 33600n10λ 2,1λ1,22 + 2268644n5λ 2,1λ1,22 + 1067274n4λ 2,12λ 1,22 - 544320n6λ 2,2λ2,1 + 2010960λ2,1n3λ 1,1 + 208368n3λ 2,22λ 1,12 - 1270080λ 2,1n2λ 1,1 + 3482388n4λ 2,1λ1,22 - 33160n11λ 2,12λ 1,22 - 4320n12λ 2,12λ 1,22 - 139200n10λ 2,12λ 1,22 + 472122n5λ 2,2λ1,12 + 72576n8λ 2,2λ1,12 + 1951488λ 2,2n6λ 1,2 + 90720λ2,2λ1,12,1λ1,2 - 2289408n6λ 2,2λ1,1λ2,1λ1,2 - 3273314n5λ 2,2λ1,1λ2,1λ1,2 + 750468n8λ 2,2λ1,1λ2,1λ1,2 - 307164n7λ 2,2λ1,1λ2,1λ1,2 - 416736n3λ 2,2λ1,1λ2,1λ1,2 + 8640n12λ 2,2λ1,1λ2,1λ1,2 + 278400n10λ 2,2λ1,1λ2,1λ1,2 + 664494n9λ 2,2λ1,1λ2,1λ1,2 + 66320n11λ 2,2λ1,1λ2,1λ1,2 + 480λ2,1n13λ 2,2λ1,1λ1,2 - 472122n5λ 2,1λ1,2λ1,1 - 72576n8λ 2,1λ1,2λ1,1 + 2588922λ2,1n3λ 2,2λ1,1 - 371952n2λ 2,2λ1,1λ1,2 - 341712n7λ 2,1λ1,2λ1,1 - 743904n6λ 2,1λ1,2λ1,1 - 371952λ2,2n2λ 2,1λ1,2 + 612360λ2,1λ1,21,1 - 6048λ2,1n9λ 1,2λ1,1 - 2156616n3λ 2,2λ1,1λ1,2 + 2082024λ2,1n2λ 2,2λ1,1 + 644448n8λ 2,2λ1,1λ1,2 - 2082024λ2,12n2λ 1,2 + 5817420λ2,1n2λ 2,2 - 612360λ2,12 1,2 - 180012λ2,22n5 + 3131352λ 2,22n3 + 2189376λ 2,22n4 - 68040λ 2,22n + 1299564λ 2,22n2 + 1299564λ 1,22n2 + 2798145λ 1,12n - 68040λ 1,22n - 1005480λ 1,12n3 + 635040λ 1,12n2 - 112896n8λ 1,22 - 1005480λ 2,12n3 + 635040λ 2,12n2 + 2798145λ 2,12n - 511392λ 2,22n7 - 975744λ 2,22n6 - 9408n9λ 1,22 - 9408n9λ 2,22 - 112896n8λ 2,22 - 635040n4λ 1,12 - 105840n5λ 1,12 - 3572100λ 1,1λ2,1 - 635040n4λ 2,12 - 105840n5λ 2,12 - 975744λ 1,22n6 + 2189376λ 1,22n4 - 511392λ 1,22n7 - 180012λ 1,22n5 + 3131352λ 1,22n3 - 612360λ 2,2λ1,12n - 45360λ 2,22λ 1,12n + 2268644λ 2,22n5λ 1,1 + 2156616λ2,22n3λ 1,1 + 341712n7λ 2,2λ1,12 + 360024λ 2,2n5λ 1,2 - 4378752λ2,2n4λ 1,2 + 3482388λ2,22n4λ 1,1 - 332247n9λ 2,12λ 1,22 + 743904n6λ 2,2λ1,12 - 2599128λ 2,2n2λ 1,2 + 371952λ2,22n2λ 1,1 - 6262704λ2,2n3λ 1,2 + 136080λ2,21,2 - 90720λ2,22 1,1 + 18816n9λ 2,2λ1,2 - 45360λ2,12λ 1,22n + 1786050λ 2,12 + 1786050λ 1,12 + 1115856λ 2,1n4λ 2,2λ1,1 + 3061800λ2,12,2 - 950796λ2,22n7λ 1,1 - 644448λ2,22n8λ 1,1

Expressions for all quantities involved are provided below.

 
Psi_1:=-20*lambda[1,1]-40*lambda[1,2]+20*lambda[2,1]-40*lambda[2,1]*lambda[1,2]+40*lambda[2,2]+40*lambda[2,2]*lambda[1,1]+40*lambda[1,1]*x-40*lambda[2,2]*x-40*lambda[2,1]*x+40*lambda[1,2]*x-20*lambda[1,1]*x^2+20*lambda[2,1]*x^2;  
 
c[1]:=8*n^2*(n+1)*(-1690*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+22680*lambda[2,1]*lambda[1,2]+22680*lambda[2,2]*lambda[1,1]-6426*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]-1890*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-2968*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]-2268*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+756*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+8120*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-1820*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-280*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+8120*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-2016*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+1540*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+4158*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+2296*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-2968*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-1820*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]+2296*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+5670*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-2016*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-192*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+1890*n^3*lambda[2,2]*lambda[1,1]^2-92610*lambda[2,1]*n*lambda[1,1]+2968*lambda[2,2]^2*n^6*lambda[1,1]-1043*n^5*lambda[2,2]^2*lambda[1,1]^2+485*n^8*lambda[2,2]^2*lambda[1,1]^2+225*n^9*lambda[2,2]^2*lambda[1,1]^2-4158*lambda[2,1]^2*n^5*lambda[1,2]-41580*lambda[1,2]*n*lambda[1,1]+1000*n^3*lambda[2,1]^2*lambda[1,2]^2+96*n^2*lambda[2,1]^2*lambda[1,2]^2+30*n^10*lambda[2,2]^2*lambda[1,1]^2+22680*lambda[1,2]*n^2*lambda[1,1]-1540*n^3*lambda[2,1]*lambda[1,2]^2+485*n^8*lambda[2,1]^2*lambda[1,2]^2-110*n^7*lambda[2,1]^2*lambda[1,2]^2-1456*n^6*lambda[2,1]^2*lambda[1,2]^2+34020*lambda[1,2]*n^3*lambda[1,1]-7560*n^4*lambda[2,1]*lambda[1,2]-34020*n^3*lambda[2,1]*lambda[1,2]-22680*n^2*lambda[2,1]*lambda[1,2]+41580*lambda[2,1]*lambda[1,2]*n+41580*lambda[2,2]*lambda[1,1]*n+96*lambda[2,2]^2*lambda[1,1]^2*n^2-110*n^7*lambda[2,2]^2*lambda[1,1]^2-1456*n^6*lambda[2,2]^2*lambda[1,1]^2-5670*n^4*lambda[2,2]*lambda[1,1]^2-756*lambda[2,1]^2*n^6*lambda[1,2]-5670*lambda[2,1]^2*n^4*lambda[1,2]+7560*lambda[2,1]*n^4*lambda[2,2]+1890*lambda[2,1]^2*n^3*lambda[1,2]+34020*lambda[2,1]*n^3*lambda[2,2]+280*n^8*lambda[2,1]*lambda[1,2]^2+2016*lambda[2,1]*lambda[1,2]^2*n+7560*lambda[1,2]*n^4*lambda[1,1]-1043*n^5*lambda[2,1]^2*lambda[1,2]^2+6426*n^2*lambda[2,2]*lambda[1,1]^2+2968*n^6*lambda[2,1]*lambda[1,2]^2+1820*n^7*lambda[2,1]*lambda[1,2]^2+845*n^4*lambda[2,2]^2*lambda[1,1]^2-7560*n^4*lambda[2,2]*lambda[1,1]-34020*n^3*lambda[2,2]*lambda[1,1]-22680*n^2*lambda[2,2]*lambda[1,1]+4872*n^2*lambda[2,1]*lambda[1,2]^2-2296*n^5*lambda[2,1]*lambda[1,2]^2+845*n^4*lambda[2,1]^2*lambda[1,2]^2+1000*n^3*lambda[2,2]^2*lambda[1,1]^2-26460*lambda[2,1]*n^2*lambda[1,1]-8120*n^4*lambda[2,1]*lambda[1,2]^2+30*n^10*lambda[2,1]^2*lambda[1,2]^2-4158*n^5*lambda[2,2]*lambda[1,1]^2-2352*lambda[2,2]*n^6*lambda[1,2]+144*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]+2912*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+2086*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-970*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+220*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2000*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-60*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-450*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+4158*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]-1890*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-4872*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+756*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]-4872*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-2268*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+1540*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]-6426*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-280*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]+6426*lambda[2,1]^2*n^2*lambda[1,2]+22680*lambda[2,1]*n^2*lambda[2,2]+2268*lambda[2,1]^2*n*lambda[1,2]+6468*lambda[2,2]^2*n^5-14280*lambda[2,2]^2*n^3+6300*lambda[2,2]^2*n^4+10332*lambda[2,2]^2*n-17556*lambda[2,2]^2*n^2-17556*lambda[1,2]^2*n^2+46305*lambda[1,1]^2*n+10332*lambda[1,2]^2*n+13230*lambda[1,1]^2*n^2+13230*lambda[2,1]^2*n^2+46305*lambda[2,1]^2*n+1176*lambda[2,2]^2*n^6-39690*lambda[1,1]*lambda[2,1]+1176*lambda[1,2]^2*n^6+6300*lambda[1,2]^2*n^4+6468*lambda[1,2]^2*n^5-14280*lambda[1,2]^2*n^3-22680*lambda[1,2]*lambda[1,1]-22680*lambda[2,2]*lambda[2,1]-15120*lambda[2,2]*lambda[1,2]+2268*lambda[2,2]*lambda[1,1]^2*n-72*lambda[2,2]^2*lambda[1,1]^2*n-2296*lambda[2,2]^2*n^5*lambda[1,1]-1540*lambda[2,2]^2*n^3*lambda[1,1]-12936*lambda[2,2]*n^5*lambda[1,2]-12600*lambda[2,2]*n^4*lambda[1,2]-8120*lambda[2,2]^2*n^4*lambda[1,1]+225*n^9*lambda[2,1]^2*lambda[1,2]^2-756*n^6*lambda[2,2]*lambda[1,1]^2+35112*lambda[2,2]*n^2*lambda[1,2]+4872*lambda[2,2]^2*n^2*lambda[1,1]+28560*lambda[2,2]*n^3*lambda[1,2]-20664*lambda[2,2]*n*lambda[1,2]+2016*lambda[2,2]^2*n*lambda[1,1]-72*lambda[2,1]^2*lambda[1,2]^2*n+19845*lambda[2,1]^2+19845*lambda[1,1]^2+7560*lambda[2,2]^2+7560*lambda[1,2]^2+5670*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-41580*lambda[2,1]*n*lambda[2,2]+1820*lambda[2,2]^2*n^7*lambda[1,1]+280*lambda[2,2]^2*n^8*lambda[1,1]);  
 
c[2]:=-12*(-8050*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+105840*lambda[2,1]*lambda[1,2]+105840*lambda[2,2]*lambda[1,1]+1512*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]-48510*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+2898*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-27720*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]-42588*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+12600*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+59920*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-20356*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-5600*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+59920*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-560*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]-27216*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+39536*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+39438*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+9436*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-27720*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-560*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]-20356*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]+9436*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+49770*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-27216*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-10080*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2898*n^3*lambda[2,2]*lambda[1,1]^2-515970*lambda[2,1]*n*lambda[1,1]-10080*lambda[2,2]*lambda[1,1]*lambda[1,2]-10080*lambda[2,2]*lambda[2,1]*lambda[1,2]-15120*lambda[2,1]*lambda[2,2]*lambda[1,1]-15120*lambda[2,1]*lambda[1,2]*lambda[1,1]+560*lambda[2,2]^2*n^9*lambda[1,1]+27720*lambda[2,2]^2*n^6*lambda[1,1]-14823*n^5*lambda[2,2]^2*lambda[1,1]^2+5145*n^8*lambda[2,2]^2*lambda[1,1]^2+3025*n^9*lambda[2,2]^2*lambda[1,1]^2-39438*lambda[2,1]^2*n^5*lambda[1,2]-47880*lambda[1,2]*n*lambda[1,1]+12872*n^3*lambda[2,1]^2*lambda[1,2]^2+5040*n^2*lambda[2,1]^2*lambda[1,2]^2+700*n^10*lambda[2,2]^2*lambda[1,1]^2+196560*lambda[1,2]*n^2*lambda[1,1]-39536*n^3*lambda[2,1]*lambda[1,2]^2+5145*n^8*lambda[2,1]^2*lambda[1,2]^2-1062*n^7*lambda[2,1]^2*lambda[1,2]^2-14910*n^6*lambda[2,1]^2*lambda[1,2]^2-4704*lambda[2,2]*n^7*lambda[1,2]+238140*lambda[1,2]*n^3*lambda[1,1]-100800*n^4*lambda[2,1]*lambda[1,2]-238140*n^3*lambda[2,1]*lambda[1,2]-196560*n^2*lambda[2,1]*lambda[1,2]+47880*lambda[2,1]*lambda[1,2]*n+47880*lambda[2,2]*lambda[1,1]*n+5040*lambda[2,2]^2*lambda[1,1]^2*n^2+60*n^11*lambda[2,2]^2*lambda[1,1]^2-1062*n^7*lambda[2,2]^2*lambda[1,1]^2-14910*n^6*lambda[2,2]^2*lambda[1,1]^2-49770*n^4*lambda[2,2]*lambda[1,1]^2-1512*lambda[2,1]^2*n^7*lambda[1,2]-12600*lambda[2,1]^2*n^6*lambda[1,2]+15120*lambda[2,1]*n^5*lambda[2,2]-49770*lambda[2,1]^2*n^4*lambda[1,2]+100800*lambda[2,1]*n^4*lambda[2,2]-2898*lambda[2,1]^2*n^3*lambda[1,2]+238140*lambda[2,1]*n^3*lambda[2,2]+5600*n^8*lambda[2,1]*lambda[1,2]^2+27216*lambda[2,1]*lambda[1,2]^2*n+15120*lambda[1,2]*n^5*lambda[1,1]+100800*lambda[1,2]*n^4*lambda[1,1]-14823*n^5*lambda[2,1]^2*lambda[1,2]^2+48510*n^2*lambda[2,2]*lambda[1,1]^2+27720*n^6*lambda[2,1]*lambda[1,2]^2+560*n^9*lambda[2,1]*lambda[1,2]^2+20356*n^7*lambda[2,1]*lambda[1,2]^2+4025*n^4*lambda[2,2]^2*lambda[1,1]^2-100800*n^4*lambda[2,2]*lambda[1,1]-15120*n^5*lambda[2,2]*lambda[1,1]-238140*n^3*lambda[2,2]*lambda[1,1]-196560*n^2*lambda[2,2]*lambda[1,1]-15120*n^5*lambda[2,1]*lambda[1,2]+17360*n^2*lambda[2,1]*lambda[1,2]^2-9436*n^5*lambda[2,1]*lambda[1,2]^2+4025*n^4*lambda[2,1]^2*lambda[1,2]^2-52920*lambda[2,1]*n^3*lambda[1,1]+12872*n^3*lambda[2,2]^2*lambda[1,1]^2-264600*lambda[2,1]*n^2*lambda[1,1]-59920*n^4*lambda[2,1]*lambda[1,2]^2+60*n^11*lambda[2,1]^2*lambda[1,2]^2+700*n^10*lambda[2,1]^2*lambda[1,2]^2-39438*n^5*lambda[2,2]*lambda[1,1]^2-39200*lambda[2,2]*n^6*lambda[1,2]+144*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]+29820*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+29646*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-10290*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+2124*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-25744*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-1400*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-6050*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-120*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+39438*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+2898*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-17360*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+1512*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]+12600*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]-17360*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-42588*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+39536*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]-48510*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-5600*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]+48510*lambda[2,1]^2*n^2*lambda[1,2]+196560*lambda[2,1]*n^2*lambda[2,2]+42588*lambda[2,1]^2*n*lambda[1,2]+56308*lambda[2,2]^2*n^5-39592*lambda[2,2]^2*n^3+51660*lambda[2,2]^2*n^4-19908*lambda[2,2]^2*n-88060*lambda[2,2]^2*n^2-88060*lambda[1,2]^2*n^2+257985*lambda[1,1]^2*n-19908*lambda[1,2]^2*n+26460*lambda[1,1]^2*n^3+132300*lambda[1,1]^2*n^2+26460*lambda[2,1]^2*n^3+132300*lambda[2,1]^2*n^2+257985*lambda[2,1]^2*n+2352*lambda[2,2]^2*n^7+19600*lambda[2,2]^2*n^6-357210*lambda[1,1]*lambda[2,1]+19600*lambda[1,2]^2*n^6+51660*lambda[1,2]^2*n^4+2352*lambda[1,2]^2*n^7+56308*lambda[1,2]^2*n^5-39592*lambda[1,2]^2*n^3-105840*lambda[1,2]*lambda[1,1]-105840*lambda[2,2]*lambda[2,1]-35280*lambda[2,2]*lambda[1,2]+15120*lambda[2,1]^2*lambda[1,2]+15120*lambda[2,2]*lambda[1,1]^2+10080*lambda[2,2]^2*lambda[1,1]+10080*lambda[2,1]*lambda[1,2]^2+42588*lambda[2,2]*lambda[1,1]^2*n-72*lambda[2,2]^2*lambda[1,1]^2*n-9436*lambda[2,2]^2*n^5*lambda[1,1]-39536*lambda[2,2]^2*n^3*lambda[1,1]-1512*n^7*lambda[2,2]*lambda[1,1]^2-112616*lambda[2,2]*n^5*lambda[1,2]-103320*lambda[2,2]*n^4*lambda[1,2]-59920*lambda[2,2]^2*n^4*lambda[1,1]+3025*n^9*lambda[2,1]^2*lambda[1,2]^2-12600*n^6*lambda[2,2]*lambda[1,1]^2+176120*lambda[2,2]*n^2*lambda[1,2]+17360*lambda[2,2]^2*n^2*lambda[1,1]+79184*lambda[2,2]*n^3*lambda[1,2]+39816*lambda[2,2]*n*lambda[1,2]+27216*lambda[2,2]^2*n*lambda[1,1]-72*lambda[2,1]^2*lambda[1,2]^2*n+178605*lambda[2,1]^2+178605*lambda[1,1]^2+17640*lambda[2,2]^2+17640*lambda[1,2]^2+49770*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-47880*lambda[2,1]*n*lambda[2,2]+20356*lambda[2,2]^2*n^7*lambda[1,1]+5600*lambda[2,2]^2*n^8*lambda[1,1])*n^2;  
 
c[3]:=6*(2*n+1)*(-58564*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+14616*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]+110376*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+89334*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-41412*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+68040*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+1512*lambda[2,1]*n^8*lambda[2,2]*lambda[1,1]+54054*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+84896*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-64568*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-30996*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+84896*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-560*lambda[2,2]*n^10*lambda[2,1]*lambda[1,2]-6720*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]+10080*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+8848*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+96390*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+54880*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-41412*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-6720*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]-64568*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-560*n^10*lambda[2,2]*lambda[1,1]*lambda[1,2]+54880*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+94878*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]+10080*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-48*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-89334*n^3*lambda[2,2]*lambda[1,1]^2-489510*lambda[2,1]*n*lambda[1,1]+560*lambda[2,2]^2*n^10*lambda[1,1]+6720*lambda[2,2]^2*n^9*lambda[1,1]+41412*lambda[2,2]^2*n^6*lambda[1,1]-23225*n^5*lambda[2,2]^2*lambda[1,1]^2+60*n^12*lambda[2,2]^2*lambda[1,1]^2+12828*n^8*lambda[2,2]^2*lambda[1,1]^2+13175*n^9*lambda[2,2]^2*lambda[1,1]^2-96390*lambda[2,1]^2*n^5*lambda[1,2]+75600*lambda[1,2]*n*lambda[1,1]+29896*n^3*lambda[2,1]^2*lambda[1,2]^2+24*n^2*lambda[2,1]^2*lambda[1,2]^2+4885*n^10*lambda[2,2]^2*lambda[1,1]^2+143640*lambda[1,2]*n^2*lambda[1,1]-8848*n^3*lambda[2,1]*lambda[1,2]^2-4704*n^8*lambda[2,2]*lambda[1,2]+12828*n^8*lambda[2,1]^2*lambda[1,2]^2-15666*n^7*lambda[2,1]^2*lambda[1,2]^2-47079*n^6*lambda[2,1]^2*lambda[1,2]^2-45472*lambda[2,2]*n^7*lambda[1,2]+297360*lambda[1,2]*n^3*lambda[1,1]-283500*n^4*lambda[2,1]*lambda[1,2]-297360*n^3*lambda[2,1]*lambda[1,2]-143640*n^2*lambda[2,1]*lambda[1,2]-75600*lambda[2,1]*lambda[1,2]*n-75600*lambda[2,2]*lambda[1,1]*n+24*lambda[2,2]^2*lambda[1,1]^2*n^2+15120*n^6*lambda[1,2]*lambda[1,1]+860*n^11*lambda[2,2]^2*lambda[1,1]^2-15666*n^7*lambda[2,2]^2*lambda[1,1]^2-47079*n^6*lambda[2,2]^2*lambda[1,1]^2-94878*n^4*lambda[2,2]*lambda[1,1]^2-52920*n^4*lambda[1,1]*lambda[2,1]-1512*lambda[2,1]^2*n^8*lambda[1,2]-14616*lambda[2,1]^2*n^7*lambda[1,2]-54054*lambda[2,1]^2*n^6*lambda[1,2]+110880*lambda[2,1]*n^5*lambda[2,2]-94878*lambda[2,1]^2*n^4*lambda[1,2]+283500*lambda[2,1]*n^4*lambda[2,2]-89334*lambda[2,1]^2*n^3*lambda[1,2]+297360*lambda[2,1]*n^3*lambda[2,2]+30996*n^8*lambda[2,1]*lambda[1,2]^2-10080*lambda[2,1]*lambda[1,2]^2*n+110880*lambda[1,2]*n^5*lambda[1,1]+283500*lambda[1,2]*n^4*lambda[1,1]-23225*n^5*lambda[2,1]^2*lambda[1,2]^2-110376*n^2*lambda[2,2]*lambda[1,1]^2+41412*n^6*lambda[2,1]*lambda[1,2]^2+6720*n^9*lambda[2,1]*lambda[1,2]^2+64568*n^7*lambda[2,1]*lambda[1,2]^2+29282*n^4*lambda[2,2]^2*lambda[1,1]^2-283500*n^4*lambda[2,2]*lambda[1,1]-110880*n^5*lambda[2,2]*lambda[1,1]-15120*n^6*lambda[2,2]*lambda[1,1]-297360*n^3*lambda[2,2]*lambda[1,1]-143640*n^2*lambda[2,2]*lambda[1,1]-15120*n^6*lambda[2,1]*lambda[1,2]-110880*n^5*lambda[2,1]*lambda[1,2]+14448*n^2*lambda[2,1]*lambda[1,2]^2+560*n^10*lambda[2,1]*lambda[1,2]^2-54880*n^5*lambda[2,1]*lambda[1,2]^2+29282*n^4*lambda[2,1]^2*lambda[1,2]^2+15120*n^6*lambda[2,2]*lambda[2,1]-264600*lambda[2,1]*n^3*lambda[1,1]+29896*n^3*lambda[2,2]^2*lambda[1,1]^2-463050*lambda[2,1]*n^2*lambda[1,1]-84896*n^4*lambda[2,1]*lambda[1,2]^2+860*n^11*lambda[2,1]^2*lambda[1,2]^2+60*n^12*lambda[2,1]^2*lambda[1,2]^2+4885*n^10*lambda[2,1]^2*lambda[1,2]^2-96390*n^5*lambda[2,2]*lambda[1,1]^2-1512*n^8*lambda[2,2]*lambda[1,1]^2-158088*lambda[2,2]*n^6*lambda[1,2]+10080*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]+94158*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+46450*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-25656*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+31332*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-59792*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-120*n^12*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-9770*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-26350*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-1720*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+96390*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+1512*n^8*lambda[2,1]*lambda[1,2]*lambda[1,1]+89334*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-14448*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+14616*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]+54054*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]-14448*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]+68040*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+8848*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]+110376*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-30996*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]-110376*lambda[2,1]^2*n^2*lambda[1,2]+143640*lambda[2,1]*n^2*lambda[2,2]-68040*lambda[2,1]^2*n*lambda[1,2]+105140*lambda[2,2]^2*n^5-122836*lambda[2,2]^2*n^3-5712*lambda[2,2]^2*n^4-7560*lambda[2,2]^2*n-73164*lambda[2,2]^2*n^2-73164*lambda[1,2]^2*n^2+244755*lambda[1,1]^2*n-7560*lambda[1,2]^2*n+132300*lambda[1,1]^2*n^3+231525*lambda[1,1]^2*n^2+2352*n^8*lambda[1,2]^2+132300*lambda[2,1]^2*n^3+231525*lambda[2,1]^2*n^2+244755*lambda[2,1]^2*n+22736*lambda[2,2]^2*n^7+79044*lambda[2,2]^2*n^6+2352*n^8*lambda[2,2]^2+26460*n^4*lambda[1,1]^2-396900*lambda[1,1]*lambda[2,1]+26460*n^4*lambda[2,1]^2+79044*lambda[1,2]^2*n^6-5712*lambda[1,2]^2*n^4+22736*lambda[1,2]^2*n^7+105140*lambda[1,2]^2*n^5-122836*lambda[1,2]^2*n^3-68040*lambda[2,2]*lambda[1,1]^2*n-5040*lambda[2,2]^2*lambda[1,1]^2*n-54880*lambda[2,2]^2*n^5*lambda[1,1]-8848*lambda[2,2]^2*n^3*lambda[1,1]-14616*n^7*lambda[2,2]*lambda[1,1]^2-210280*lambda[2,2]*n^5*lambda[1,2]+11424*lambda[2,2]*n^4*lambda[1,2]-84896*lambda[2,2]^2*n^4*lambda[1,1]+13175*n^9*lambda[2,1]^2*lambda[1,2]^2-54054*n^6*lambda[2,2]*lambda[1,1]^2+146328*lambda[2,2]*n^2*lambda[1,2]+14448*lambda[2,2]^2*n^2*lambda[1,1]+245672*lambda[2,2]*n^3*lambda[1,2]+15120*lambda[2,2]*n*lambda[1,2]-10080*lambda[2,2]^2*n*lambda[1,1]-5040*lambda[2,1]^2*lambda[1,2]^2*n+198450*lambda[2,1]^2+198450*lambda[1,1]^2+94878*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+75600*lambda[2,1]*n*lambda[2,2]+64568*lambda[2,2]^2*n^7*lambda[1,1]+30996*lambda[2,2]^2*n^8*lambda[1,1]);  
 
c[4]:=-2134548*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-341712*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]+2082024*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+2588922*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]+1092*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+612360*lambda[2,1]*n*lambda[2,2]*lambda[1,1]-72576*lambda[2,1]*n^8*lambda[2,2]*lambda[1,1]-743904*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]-3482388*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]+950796*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]+644448*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-3482388*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]+33600*lambda[2,2]*n^10*lambda[2,1]*lambda[1,2]+206304*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]+90720*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+2240*n^11*lambda[2,2]*lambda[1,1]*lambda[1,2]-2156616*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]-472122*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+2240*n^11*lambda[2,2]*lambda[2,1]*lambda[1,2]-2268644*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+1092*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]+206304*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]+950796*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]+33600*n^10*lambda[2,2]*lambda[1,1]*lambda[1,2]-2268644*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+1115856*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]+90720*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-6048*lambda[2,1]*n^9*lambda[2,2]*lambda[1,1]+211248*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2588922*n^3*lambda[2,2]*lambda[1,1]^2+6048*lambda[2,1]^2*n^9*lambda[1,2]-240*lambda[2,1]^2*n^13*lambda[1,2]^2-5596290*lambda[2,1]*n*lambda[1,1]-33600*lambda[2,2]^2*n^10*lambda[1,1]-206304*lambda[2,2]^2*n^9*lambda[1,1]-1092*lambda[2,2]^2*n^6*lambda[1,1]+1636657*n^5*lambda[2,2]^2*lambda[1,1]^2-4320*n^12*lambda[2,2]^2*lambda[1,1]^2-375234*n^8*lambda[2,2]^2*lambda[1,1]^2-332247*n^9*lambda[2,2]^2*lambda[1,1]^2+472122*lambda[2,1]^2*n^5*lambda[1,2]+3061800*lambda[1,2]*n*lambda[1,1]+6048*n^9*lambda[2,2]*lambda[1,1]^2+208368*n^3*lambda[2,1]^2*lambda[1,2]^2-105624*n^2*lambda[2,1]^2*lambda[1,2]^2-139200*n^10*lambda[2,2]^2*lambda[1,1]^2+5817420*lambda[1,2]*n^2*lambda[1,1]+2156616*n^3*lambda[2,1]*lambda[1,2]^2+225792*n^8*lambda[2,2]*lambda[1,2]-375234*n^8*lambda[2,1]^2*lambda[1,2]^2+153582*n^7*lambda[2,1]^2*lambda[1,2]^2+1144704*n^6*lambda[2,1]^2*lambda[1,2]^2+1022784*lambda[2,2]*n^7*lambda[1,2]-2240*lambda[2,2]^2*n^11*lambda[1,1]-240*n^13*lambda[2,2]^2*lambda[1,1]^2+2687580*lambda[1,2]*n^3*lambda[1,1]-60480*n^7*lambda[1,2]*lambda[1,1]+211680*n^5*lambda[1,1]*lambda[2,1]+1360800*n^4*lambda[2,1]*lambda[1,2]-2687580*n^3*lambda[2,1]*lambda[1,2]-5817420*n^2*lambda[2,1]*lambda[1,2]-3061800*lambda[2,1]*lambda[1,2]*n-3061800*lambda[2,2]*lambda[1,1]*n-105624*lambda[2,2]^2*lambda[1,1]^2*n^2-544320*n^6*lambda[1,2]*lambda[1,1]-33160*n^11*lambda[2,2]^2*lambda[1,1]^2+153582*n^7*lambda[2,2]^2*lambda[1,1]^2+1144704*n^6*lambda[2,2]^2*lambda[1,1]^2-1115856*n^4*lambda[2,2]*lambda[1,1]^2+1270080*n^4*lambda[1,1]*lambda[2,1]+72576*lambda[2,1]^2*n^8*lambda[1,2]+341712*lambda[2,1]^2*n^7*lambda[1,2]+743904*lambda[2,1]^2*n^6*lambda[1,2]-1663200*lambda[2,1]*n^5*lambda[2,2]-1115856*lambda[2,1]^2*n^4*lambda[1,2]-1360800*lambda[2,1]*n^4*lambda[2,2]-2588922*lambda[2,1]^2*n^3*lambda[1,2]+2687580*lambda[2,1]*n^3*lambda[2,2]-2240*lambda[2,1]*n^11*lambda[1,2]^2-644448*n^8*lambda[2,1]*lambda[1,2]^2-60480*n^7*lambda[2,2]*lambda[2,1]-90720*lambda[2,1]*lambda[1,2]^2*n-1663200*lambda[1,2]*n^5*lambda[1,1]-1360800*lambda[1,2]*n^4*lambda[1,1]+1636657*n^5*lambda[2,1]^2*lambda[1,2]^2-2082024*n^2*lambda[2,2]*lambda[1,1]^2-1092*n^6*lambda[2,1]*lambda[1,2]^2-206304*n^9*lambda[2,1]*lambda[1,2]^2-950796*n^7*lambda[2,1]*lambda[1,2]^2+1067274*n^4*lambda[2,2]^2*lambda[1,1]^2+60480*n^7*lambda[2,1]*lambda[1,2]+1360800*n^4*lambda[2,2]*lambda[1,1]+1663200*n^5*lambda[2,2]*lambda[1,1]+544320*n^6*lambda[2,2]*lambda[1,1]+60480*n^7*lambda[2,2]*lambda[1,1]-2687580*n^3*lambda[2,2]*lambda[1,1]-5817420*n^2*lambda[2,2]*lambda[1,1]+544320*n^6*lambda[2,1]*lambda[1,2]+1663200*n^5*lambda[2,1]*lambda[1,2]+371952*n^2*lambda[2,1]*lambda[1,2]^2-33600*n^10*lambda[2,1]*lambda[1,2]^2+2268644*n^5*lambda[2,1]*lambda[1,2]^2+1067274*n^4*lambda[2,1]^2*lambda[1,2]^2-544320*n^6*lambda[2,2]*lambda[2,1]+2010960*lambda[2,1]*n^3*lambda[1,1]+208368*n^3*lambda[2,2]^2*lambda[1,1]^2-1270080*lambda[2,1]*n^2*lambda[1,1]+3482388*n^4*lambda[2,1]*lambda[1,2]^2-33160*n^11*lambda[2,1]^2*lambda[1,2]^2-4320*n^12*lambda[2,1]^2*lambda[1,2]^2-139200*n^10*lambda[2,1]^2*lambda[1,2]^2+472122*n^5*lambda[2,2]*lambda[1,1]^2+72576*n^8*lambda[2,2]*lambda[1,1]^2+1951488*lambda[2,2]*n^6*lambda[1,2]+90720*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]-2289408*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-3273314*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+750468*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-307164*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-416736*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+8640*n^12*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+278400*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+664494*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+66320*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+480*lambda[2,1]*n^13*lambda[2,2]*lambda[1,1]*lambda[1,2]-472122*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]-72576*n^8*lambda[2,1]*lambda[1,2]*lambda[1,1]+2588922*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-371952*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]-341712*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]-743904*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]-371952*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]+612360*lambda[2,1]*lambda[1,2]*n*lambda[1,1]-6048*lambda[2,1]*n^9*lambda[1,2]*lambda[1,1]-2156616*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]+2082024*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+644448*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]-2082024*lambda[2,1]^2*n^2*lambda[1,2]+5817420*lambda[2,1]*n^2*lambda[2,2]-612360*lambda[2,1]^2*n*lambda[1,2]-180012*lambda[2,2]^2*n^5+3131352*lambda[2,2]^2*n^3+2189376*lambda[2,2]^2*n^4-68040*lambda[2,2]^2*n+1299564*lambda[2,2]^2*n^2+1299564*lambda[1,2]^2*n^2+2798145*lambda[1,1]^2*n-68040*lambda[1,2]^2*n-1005480*lambda[1,1]^2*n^3+635040*lambda[1,1]^2*n^2-112896*n^8*lambda[1,2]^2-1005480*lambda[2,1]^2*n^3+635040*lambda[2,1]^2*n^2+2798145*lambda[2,1]^2*n-511392*lambda[2,2]^2*n^7-975744*lambda[2,2]^2*n^6-9408*n^9*lambda[1,2]^2-9408*n^9*lambda[2,2]^2-112896*n^8*lambda[2,2]^2-635040*n^4*lambda[1,1]^2-105840*n^5*lambda[1,1]^2-3572100*lambda[1,1]*lambda[2,1]-635040*n^4*lambda[2,1]^2-105840*n^5*lambda[2,1]^2-975744*lambda[1,2]^2*n^6+2189376*lambda[1,2]^2*n^4-511392*lambda[1,2]^2*n^7-180012*lambda[1,2]^2*n^5+3131352*lambda[1,2]^2*n^3-612360*lambda[2,2]*lambda[1,1]^2*n-45360*lambda[2,2]^2*lambda[1,1]^2*n+2268644*lambda[2,2]^2*n^5*lambda[1,1]+2156616*lambda[2,2]^2*n^3*lambda[1,1]+341712*n^7*lambda[2,2]*lambda[1,1]^2+360024*lambda[2,2]*n^5*lambda[1,2]-4378752*lambda[2,2]*n^4*lambda[1,2]+3482388*lambda[2,2]^2*n^4*lambda[1,1]-332247*n^9*lambda[2,1]^2*lambda[1,2]^2+743904*n^6*lambda[2,2]*lambda[1,1]^2-2599128*lambda[2,2]*n^2*lambda[1,2]+371952*lambda[2,2]^2*n^2*lambda[1,1]-6262704*lambda[2,2]*n^3*lambda[1,2]+136080*lambda[2,2]*n*lambda[1,2]-90720*lambda[2,2]^2*n*lambda[1,1]+18816*n^9*lambda[2,2]*lambda[1,2]-45360*lambda[2,1]^2*lambda[1,2]^2*n+1786050*lambda[2,1]^2+1786050*lambda[1,1]^2+1115856*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+3061800*lambda[2,1]*n*lambda[2,2]-950796*lambda[2,2]^2*n^7*lambda[1,1]-644448*lambda[2,2]^2*n^8*lambda[1,1];  

Case(ii) α = β = 12

The ‘starting’ functions are given by

Ψ1 = -14λ1,1 - 28λ1,2 + 14λ2,1 - 28λ2,1λ1,2 + 28λ2,2 + 28λ2,2λ1,1 + 28λ1,1x - 28λ2,2x - 28λ2,1x + 28λ1,2x - 14λ1,1x2 + 14λ 2,1x2

c[1] = 8n(n2 + 2n + 1)(197342n4λ 2,2λ1,1λ2,1λ1,2 + 2494800λ2,1λ1,2 + 2494800λ2,2λ1,1 - 240570n2λ 2,1λ1,2λ1,1 + 389070n3λ 2,1λ1,2λ1,1 - 128952λ2,2n6λ 2,1λ1,2 - 534600λ2,12,2λ1,1 + 5940λ2,1n6λ 2,2λ1,1 + 53352λ2,2n4λ 2,1λ1,2 - 23436λ2,2n7λ 2,1λ1,2 - 1512λ2,2n8λ 2,1λ1,2 + 53352n4λ 2,2λ1,1λ1,2 - 505440λ2,2λ1,11,2 + 687636λ2,2n3λ 2,1λ1,2 + 74250λ2,1n5λ 2,2λ1,1 - 262440λ2,2n5λ 2,1λ1,2 - 128952n6λ 2,2λ1,1λ1,2 - 23436n7λ 2,2λ1,1λ1,2 - 262440n5λ 2,2λ1,1λ1,2 + 305910n4λ 2,1λ1,2λ1,1 - 505440λ2,22,1λ1,2 - 121608n2λ 2,2λ1,1λ2,1λ1,2 - 389070n3λ 2,2λ1,12 - 2432430λ 2,11,1 + 128952λ2,22n6λ 1,1 - 31425n5λ 2,22λ 1,12 + 9261n8λ 2,22λ 1,12 + 1295n9λ 2,22λ 1,12 - 74250λ 2,12n5λ 1,2 - 291060λ1,21,1 - 9848n3λ 2,12λ 1,22 + 60804n2λ 2,12λ 1,22 + 70n10λ 2,22λ 1,12 + 1912680λ 1,2n2λ 1,1 - 687636n3λ 2,1λ1,22 + 9261n8λ 2,12λ 1,22 + 30618n7λ 2,12λ 1,22 + 37176n6λ 2,12λ 1,22
+ 790020λ1,2n3λ 1,1 - 83160n4λ 2,1λ1,2 - 790020n3λ 2,1λ1,2 - 1912680n2λ 2,1λ1,2 + 291060λ2,1λ1,2n + 291060λ2,2λ1,1n + 60804λ2,22λ 1,12n2 + 30618n7λ 2,22λ 1,12 + 37176n6λ 2,22λ 1,12 - 305910n4λ 2,2λ1,12 - 5940λ 2,12n6λ 1,2 - 305910λ2,12n4λ 1,2 + 83160λ2,1n4λ 2,2 - 389070λ2,12n3λ 1,2 + 790020λ2,1n3λ 2,2 + 1512n8λ 2,1λ1,22 + 505440λ 2,1λ1,22n + 83160λ 1,2n4λ 1,1 - 31425n5λ 2,12λ 1,22 + 240570n2λ 2,2λ1,12 + 128952n6λ 2,1λ1,22 + 23436n7λ 2,1λ1,22 - 98671n4λ 2,22λ 1,12 - 83160n4λ 2,2λ1,1 - 790020n3λ 2,2λ1,1 - 1912680n2λ 2,2λ1,1 - 180792n2λ 2,1λ1,22 + 262440n5λ 2,1λ1,22 - 98671n4λ 2,12λ 1,22 - 9848n3λ 2,22λ 1,12 - 374220λ 2,1n2λ 1,1 - 53352n4λ 2,1λ1,22 + 70n10λ 2,12λ 1,22 - 74250n5λ 2,2λ1,12 - 19440λ 2,2n6λ 1,2 - 1440λ2,2λ1,12,1λ1,2 - 74352n6λ 2,2λ1,1λ2,1λ1,2 + 62850n5λ 2,2λ1,1λ2,1λ1,2 - 18522n8λ 2,2λ1,1λ2,1λ1,2 - 61236n7λ 2,2λ1,1λ2,1λ1,2 + 19696n3λ 2,2λ1,1λ2,1λ1,2 - 140n10λ 2,2λ1,1λ2,1λ1,2 - 2590n9λ 2,2λ1,1λ2,1λ1,2 + 74250n5λ 2,1λ1,2λ1,1 + 389070λ2,1n3λ 2,2λ1,1 + 180792n2λ 2,2λ1,1λ1,2 + 5940n6λ 2,1λ1,2λ1,1 + 180792λ2,2n2λ 2,1λ1,2 - 534600λ2,1λ1,21,1 + 687636n3λ 2,2λ1,1λ1,2 - 240570λ2,1n2λ 2,2λ1,1 - 1512n8λ 2,2λ1,1λ1,2 + 240570λ2,12n2λ 1,2 + 1912680λ2,1n2λ 2,2 + 534600λ2,12 1,2 + 121500λ2,22n5 + 277560λ 2,22n3 + 462780λ 2,22n4 - 742500λ 2,22n - 1263060λ 2,22n2 - 1263060λ 1,22n2 + 1216215λ 1,12n - 742500λ 1,22n + 187110λ 1,12n2 + 187110λ 2,12n2 + 1216215λ 2,12n + 9720λ 2,22n6 - 2806650λ 1,1λ2,1 + 9720λ1,22n6 + 462780λ 1,22n4 + 121500λ 1,22n5 + 277560λ 1,22n3 - 2494800λ 1,2λ1,1 - 2494800λ2,2λ2,1 - 2268000λ2,2λ1,2 + 534600λ2,2λ1,12n + 720λ 2,22λ 1,12n + 262440λ 2,22n5λ 1,1 - 687636λ2,22n3λ 1,1 - 243000λ2,2n5λ 1,2 - 925560λ2,2n4λ 1,2 - 53352λ2,22n4λ 1,1 + 1295n9λ 2,12λ 1,22 - 5940n6λ 2,2λ1,12 + 2526120λ 2,2n2λ 1,2 - 180792λ2,22n2λ 1,1 - 555120λ2,2n3λ 1,2 + 1485000λ2,21,2 + 505440λ2,22 1,1 + 720λ2,12λ 1,22n + 1403325λ 2,12 + 1403325λ 1,12 + 1134000λ 2,22 + 1134000λ 1,22 + 305910λ 2,1n4λ 2,2λ1,1 - 291060λ2,12,2 + 23436λ2,22n7λ 1,1 + 1512λ2,22n8λ 1,1)
c[2] = -12(2419334n4λ 2,2λ1,1λ2,1λ1,2 + 13097700λ2,1λ1,2 + 13097700λ2,2λ1,1 + 11880λ2,1n7λ 2,2λ1,1 - 798930n2λ 2,1λ1,2λ1,1 + 4075830n3λ 2,1λ1,2λ1,1 - 1725120λ2,2n6λ 2,1λ1,2 - 5482620λ2,12,2λ1,1 + 186120λ2,1n6λ 2,2λ1,1 - 528156λ2,2n4λ 2,1λ1,2 - 451692λ2,2n7λ 2,1λ1,2 - 58464λ2,2n8λ 2,1λ1,2 - 528156n4λ 2,2λ1,1λ1,2 - 3024λ2,2n9λ 2,1λ1,2 - 2327400λ2,2λ1,11,2 + 5546952λ2,2n3λ 2,1λ1,2 + 1145430λ2,1n5λ 2,2λ1,1 - 3036996λ2,2n5λ 2,1λ1,2 - 1725120n6λ 2,2λ1,1λ1,2 - 3024n9λ 2,2λ1,1λ1,2 - 451692n7λ 2,2λ1,1λ1,2 - 3036996n5λ 2,2λ1,1λ1,2 + 3357090n4λ 2,1λ1,2λ1,1 - 2327400λ2,22,1λ1,2 - 1083960n2λ 2,2λ1,1λ2,1λ1,2 - 4075830n3λ 2,2λ1,12 - 19521810λ 2,11,1 - 2268000λ2,2λ1,1λ1,2 - 2268000λ2,2λ2,1λ1,2 - 2494800λ2,1λ2,2λ1,1 - 2494800λ2,1λ1,2λ1,1 + 3024λ2,22n9λ 1,1 + 1725120λ2,22n6λ 1,1 - 212567n5λ 2,22λ 1,12 + 154917n8λ 2,22λ 1,12 + 30737n9λ 2,22λ 1,12 - 1145430λ 2,12n5λ 1,2 + 3908520λ1,21,1 - 756356n3λ 2,12λ 1,22 + 541980n2λ 2,12λ 1,22 + 3220n10λ 2,22λ 1,12 + 15717240λ 1,2n2λ 1,1 - 5546952n3λ 2,1λ1,22 + 154917n8λ 2,12λ 1,22 + 423246n7λ 2,12λ 1,22 + 509550n6λ 2,12λ 1,22
- 38880λ2,2n7λ 1,2 + 8773380λ1,2n3λ 1,1 - 1995840n4λ 2,1λ1,2 - 8773380n3λ 2,1λ1,2 - 15717240n2λ 2,1λ1,2 - 3908520λ2,1λ1,2n - 3908520λ2,2λ1,1n + 541980λ2,22λ 1,12n2 + 140n11λ 2,22λ 1,12 + 423246n7λ 2,22λ 1,12 + 509550n6λ 2,22λ 1,12 - 3357090n4λ 2,2λ1,12 - 11880λ 2,12n7λ 1,2 - 186120λ2,12n6λ 1,2 + 166320λ2,1n5λ 2,2 - 3357090λ2,12n4λ 1,2 + 1995840λ2,1n4λ 2,2 - 4075830λ2,12n3λ 1,2 + 8773380λ2,1n3λ 2,2 + 58464n8λ 2,1λ1,22 + 2327400λ 2,1λ1,22n + 166320λ 1,2n5λ 1,1 + 1995840λ1,2n4λ 1,1 - 212567n5λ 2,12λ 1,22 + 798930n2λ 2,2λ1,12 + 1725120n6λ 2,1λ1,22 + 3024n9λ 2,1λ1,22 + 451692n7λ 2,1λ1,22 - 1209667n4λ 2,22λ 1,12 - 1995840n4λ 2,2λ1,1 - 166320n5λ 2,2λ1,1 - 8773380n3λ 2,2λ1,1 - 15717240n2λ 2,2λ1,1 - 166320n5λ 2,1λ1,2 - 4851900n2λ 2,1λ1,22 + 3036996n5λ 2,1λ1,22 - 1209667n4λ 2,12λ 1,22 - 748440λ 2,1n3λ 1,1 - 756356n3λ 2,22λ 1,12 - 6237000λ 2,1n2λ 1,1 + 528156n4λ 2,1λ1,22 + 140n11λ 2,12λ 1,22 + 3220n10λ 2,12λ 1,22 - 1145430n5λ 2,2λ1,12 - 609120λ 2,2n6λ 1,2 - 1029600λ2,2λ1,12,1λ1,2 - 1019100n6λ 2,2λ1,1λ2,1λ1,2 + 425134n5λ 2,2λ1,1λ2,1λ1,2 - 309834n8λ 2,2λ1,1λ2,1λ1,2 - 846492n7λ 2,2λ1,1λ2,1λ1,2 + 1512712n3λ 2,2λ1,1λ2,1λ1,2 - 6440n10λ 2,2λ1,1λ2,1λ1,2 - 61474n9λ 2,2λ1,1λ2,1λ1,2 - 280n11λ 2,2λ1,1λ2,1λ1,2 + 1145430n5λ 2,1λ1,2λ1,1 + 4075830λ2,1n3λ 2,2λ1,1 + 4851900n2λ 2,2λ1,1λ1,2 + 11880n7λ 2,1λ1,2λ1,1 + 186120n6λ 2,1λ1,2λ1,1 + 4851900λ2,2n2λ 2,1λ1,2 - 5482620λ2,1λ1,21,1 + 5546952n3λ 2,2λ1,1λ1,2 - 798930λ2,1n2λ 2,2λ1,1 - 58464n8λ 2,2λ1,1λ1,2 + 798930λ2,12n2λ 1,2 + 15717240λ2,1n2λ 2,2 + 5482620λ2,12 1,2 + 1798740λ2,22n5 + 3452760λ 2,22n3 + 4676940λ 2,22n4 - 7584300λ 2,22n - 6070140λ 2,22n2 - 6070140λ 1,22n2 + 9760905λ 1,12n - 7584300λ 1,22n + 374220λ 1,12n3 + 3118500λ 1,12n2 + 374220λ 2,12n3 + 3118500λ 2,12n2 + 9760905λ 2,12n + 19440λ 2,22n7 + 304560λ 2,22n6 - 21517650λ 1,1λ2,1 + 304560λ1,22n6 + 4676940λ 1,22n4 + 19440λ 1,22n7 + 1798740λ 1,22n5 + 3452760λ 1,22n3 - 13097700λ 1,2λ1,1 - 13097700λ2,2λ2,1 - 6804000λ2,2λ1,2 + 2494800λ2,12λ 1,2 + 2494800λ2,2λ1,12 + 2268000λ 2,22λ 1,1 + 2268000λ2,1λ1,22 + 5482620λ 2,2λ1,12n + 514800λ 2,22λ 1,12n + 3036996λ 2,22n5λ 1,1 - 5546952λ2,22n3λ 1,1 - 11880n7λ 2,2λ1,12 - 3597480λ 2,2n5λ 1,2 - 9353880λ2,2n4λ 1,2 + 528156λ2,22n4λ 1,1 + 30737n9λ 2,12λ 1,22 - 186120n6λ 2,2λ1,12 + 12140280λ 2,2n2λ 1,2 - 4851900λ2,22n2λ 1,1 - 6905520λ2,2n3λ 1,2 + 15168600λ2,21,2 + 2327400λ2,22 1,1 + 514800λ2,12λ 1,22n + 10758825λ 2,12 + 10758825λ 1,12 + 3402000λ 2,22 + 3402000λ 1,22 + 3357090λ 2,1n4λ 2,2λ1,1 + 3908520λ2,12,2 + 451692λ2,22n7λ 1,1 + 58464λ2,22n8λ 1,1)n(n + 1)
c[3] = 6(2n + 3)(4689030n4λ 2,2λ1,1λ2,1λ1,2 + 13097700λ2,1λ1,2 + 13097700λ2,2λ1,1 + 205920λ2,1n7λ 2,2λ1,1 + 8762490n2λ 2,1λ1,2λ1,1 + 12816540n3λ 2,1λ1,2λ1,1 - 7108452λ2,2n6λ 2,1λ1,2 + 2702700λ2,12,2λ1,1 + 11880λ2,1n8λ 2,2λ1,1 + 1438470λ2,1n6λ 2,2λ1,1 - 2651940λ2,2n4λ 2,1λ1,2 - 2738340λ2,2n7λ 2,1λ1,2 - 583740λ2,2n8λ 2,1λ1,2 - 2651940n4λ 2,2λ1,1λ1,2 - 3024λ2,2n10λ 2,1λ1,2 - 65520λ2,2n9λ 2,1λ1,2 + 3878280λ2,2λ1,11,2 + 8261100λ2,2n3λ 2,1λ1,2 + 5231160λ2,1n5λ 2,2λ1,1 - 9335520λ2,2n5λ 2,1λ1,2 - 7108452n6λ 2,2λ1,1λ1,2 - 65520n9λ 2,2λ1,1λ1,2 - 2738340n7λ 2,2λ1,1λ1,2 - 3024n10λ 2,2λ1,1λ1,2 - 9335520n5λ 2,2λ1,1λ1,2 + 10743480n4λ 2,1λ1,2λ1,1 + 3878280λ2,22,1λ1,2 + 1142856n2λ 2,2λ1,1λ2,1λ1,2 - 12816540n3λ 2,2λ1,12 - 37297260λ 2,11,1 + 3024λ2,22n10λ 1,1 + 65520λ2,22n9λ 1,1 + 7108452λ2,22n6λ 1,1 - 18670n5λ 2,22λ 1,12 + 140n12λ 2,22λ 1,12 + 889215n8λ 2,22λ 1,12 + 245490n9λ 2,22λ 1,12 - 5231160λ 2,12n5λ 1,2 + 9355500λ1,21,1 - 2161800n3λ 2,12λ 1,22 - 571428n2λ 2,12λ 1,22 + 40257n10λ 2,22λ 1,12 + 28773360λ 1,2n2λ 1,1 - 8261100n3λ 2,1λ1,22 - 38880n8λ 2,2λ1,2 + 889215n8λ 2,12λ 1,22 + 1885980n7λ 2,12λ 1,22 + 1986331n6λ 2,12λ 1,22 - 673920λ 2,2n7λ 1,2 + 24906420λ1,2n3λ 1,1 - 10602900n4λ 2,1λ1,2 - 24906420n3λ 2,1λ1,2 - 28773360n2λ 2,1λ1,2 - 9355500λ2,1λ1,2n - 9355500λ2,2λ1,1n - 571428λ2,22λ 1,12n2 + 166320n6λ 1,2λ1,1 + 3640n11λ 2,22λ 1,12 + 1885980n7λ 2,22λ 1,12 + 1986331n6λ 2,22λ 1,12 - 10743480n4λ 2,2λ1,12 - 748440n4λ 1,1λ2,1 - 11880λ2,12n8λ 1,2 - 205920λ2,12n7λ 1,2 - 1438470λ2,12n6λ 1,2
+ 2162160λ2,1n5λ 2,2 - 10743480λ2,12n4λ 1,2 + 10602900λ2,1n4λ 2,2 - 12816540λ2,12n3λ 1,2 + 24906420λ2,1n3λ 2,2 + 583740n8λ 2,1λ1,22 - 3878280λ 2,1λ1,22n + 2162160λ 1,2n5λ 1,1 + 10602900λ1,2n4λ 1,1 - 18670n5λ 2,12λ 1,22 - 8762490n2λ 2,2λ1,12 + 7108452n6λ 2,1λ1,22 + 65520n9λ 2,1λ1,22 + 2738340n7λ 2,1λ1,22 - 2344515n4λ 2,22λ 1,12 - 10602900n4λ 2,2λ1,1 - 2162160n5λ 2,2λ1,1 - 166320n6λ 2,2λ1,1 - 24906420n3λ 2,2λ1,1 - 28773360n2λ 2,2λ1,1 - 166320n6λ 2,1λ1,2 - 2162160n5λ 2,1λ1,2 - 10347156n2λ 2,1λ1,22 + 3024n10λ 2,1λ1,22 + 9335520n5λ 2,1λ1,22 - 2344515n4λ 2,12λ 1,22 + 166320n6λ 2,2λ2,1 - 6486480λ2,1n3λ 1,1 - 2161800n3λ 2,22λ 1,12 - 21517650λ 2,1n2λ 1,1 + 2651940n4λ 2,1λ1,22 + 3640n11λ 2,12λ 1,22 + 140n12λ 2,12λ 1,22 + 40257n10λ 2,12λ 1,22 - 5231160n5λ 2,2λ1,12 - 11880n8λ 2,2λ1,12 - 4556520λ 2,2n6λ 1,2 - 90720λ2,2λ1,12,1λ1,2 - 3972662n6λ 2,2λ1,1λ2,1λ1,2 + 37340n5λ 2,2λ1,1λ2,1λ1,2 - 1778430n8λ 2,2λ1,1λ2,1λ1,2 - 3771960n7λ 2,2λ1,1λ2,1λ1,2 + 4323600n3λ 2,2λ1,1λ2,1λ1,2 - 280n12λ 2,2λ1,1λ2,1λ1,2 - 80514n10λ 2,2λ1,1λ2,1λ1,2 - 490980n9λ 2,2λ1,1λ2,1λ1,2 - 7280n11λ 2,2λ1,1λ2,1λ1,2 + 5231160n5λ 2,1λ1,2λ1,1 + 11880n8λ 2,1λ1,2λ1,1 + 12816540λ2,1n3λ 2,2λ1,1 + 10347156n2λ 2,2λ1,1λ1,2 + 205920n7λ 2,1λ1,2λ1,1 + 1438470n6λ 2,1λ1,2λ1,1 + 10347156λ2,2n2λ 2,1λ1,2 + 2702700λ2,1λ1,21,1 + 8261100n3λ 2,2λ1,1λ1,2 + 8762490λ2,1n2λ 2,2λ1,1 - 583740n8λ 2,2λ1,1λ1,2 - 8762490λ2,12n2λ 1,2 + 28773360λ2,1n2λ 2,2 - 2702700λ2,12 1,2 + 7486560λ2,22n5 + 4140180λ 2,22n3 + 11626740λ 2,22n4 - 14231700λ 2,22n - 11656440λ 2,22n2 - 11656440λ 1,22n2 + 18648630λ 1,12n - 14231700λ 1,22n + 3243240λ 1,12n3 + 10758825λ 1,12n2 + 19440n8λ 1,22 + 3243240λ 2,12n3 + 10758825λ 2,12n2 + 18648630λ 2,12n + 336960λ 2,22n7 + 2278260λ 2,22n6 + 19440n8λ 2,22 + 374220n4λ 1,12 - 32744250λ 1,1λ2,1 + 374220n4λ 2,12 + 2278260λ 1,22n6 + 11626740λ 1,22n4 + 336960λ 1,22n7 + 7486560λ 1,22n5 + 4140180λ 1,22n3 - 13097700λ 1,2λ1,1 - 13097700λ2,2λ2,1 - 2702700λ2,2λ1,12n + 45360λ 2,22λ 1,12n + 9335520λ 2,22n5λ 1,1 - 8261100λ2,22n3λ 1,1 - 205920n7λ 2,2λ1,12 - 14973120λ 2,2n5λ 1,2 - 23253480λ2,2n4λ 1,2 + 2651940λ2,22n4λ 1,1 + 245490n9λ 2,12λ 1,22 - 1438470n6λ 2,2λ1,12 + 23312880λ 2,2n2λ 1,2 - 10347156λ2,22n2λ 1,1 - 8280360λ2,2n3λ 1,2 + 28463400λ2,21,2 - 3878280λ2,22 1,1 + 45360λ2,12λ 1,22n + 16372125λ 2,12 + 16372125λ 1,12 + 10743480λ 2,1n4λ 2,2λ1,1 + 9355500λ2,12,2 + 2738340λ2,22n7λ 1,1 + 583740λ2,22n8λ 1,1)
c[4] = 26897914n4λ 2,2λ1,1λ2,1λ1,2 - 8672400λ2,1n7λ 2,2λ1,1 + 27101250n2λ 2,1λ1,2λ1,1 - 75779550n3λ 2,1λ1,2λ1,1 + 171555624λ2,2n6λ 2,1λ1,2 + 31185000λ2,12,2λ1,1 - 997920λ2,1n8λ 2,2λ1,1 - 40035600λ2,1n6λ 2,2λ1,1 + 99965664λ2,2n4λ 2,1λ1,2 + 78021684λ2,2n7λ 2,1λ1,2 + 21301056λ2,2n8λ 2,1λ1,2 + 99965664n4λ 2,2λ1,1λ1,2 + 314496λ2,2n10λ 2,1λ1,2 + 3481056λ2,2n9λ 2,1λ1,2 - 2268000λ2,2λ1,11,2 + 12096n11λ 2,2λ1,1λ1,2 - 36919260λ2,2n3λ 2,1λ1,2 - 103857930λ2,1n5λ 2,2λ1,1 + 12096n11λ 2,2λ2,1λ1,2 + 209148264λ2,2n5λ 2,1λ1,2 + 171555624n6λ 2,2λ1,1λ1,2 + 3481056n9λ 2,2λ1,1λ1,2 + 78021684n7λ 2,2λ1,1λ1,2 + 314496n10λ 2,2λ1,1λ1,2 + 209148264n5λ 2,2λ1,1λ1,2 - 143240130n4λ 2,1λ1,2λ1,1 - 2268000λ2,22,1λ1,2 - 47520λ2,1n9λ 2,2λ1,1 - 19611000n2λ 2,2λ1,1λ2,1λ1,2 + 75779550n3λ 2,2λ1,12 + 47520λ 2,12n9λ 1,2 - 560λ2,12n13λ 1,22 + 57068550λ 2,11,1 - 314496λ2,22n10λ 1,1 - 3481056λ2,22n9λ 1,1 - 171555624λ2,22n6λ 1,1 - 67339907n5λ 2,22λ 1,12 - 17360n12λ 2,22λ 1,12 - 30475893n8λ 2,22λ 1,12 - 9271443n9λ 2,22λ 1,12 + 103857930λ 2,12n5λ 1,2 + 109147500λ1,21,1 + 47520n9λ 2,2λ1,12 + 15860880n3λ 2,12λ 1,22 + 9805500n2λ 2,12λ 1,22 - 1857688n10λ 2,22λ 1,12 - 41580000λ 1,2n2λ 1,1 + 36919260n3λ 2,1λ1,22 + 3265920n8λ 2,2λ1,2 - 30475893n8λ 2,12λ 1,22 - 65884402n7λ 2,12λ 1,22 - 89743522n6λ 2,12λ 1,22 + 27777600λ 2,2n7λ 1,2 - 12096λ2,22n11λ 1,1 - 560n13λ 2,22λ 1,12 - 240540300λ 1,2n3λ 1,1 - 665280n7λ 1,2λ1,1 + 2993760n5λ 1,1λ2,1 + 190270080n4λ 2,1λ1,2 + 240540300n3λ 2,1λ1,2 + 41580000n2λ 2,1λ1,2 - 109147500λ2,1λ1,2n - 109147500λ2,2λ1,1n + 9805500λ2,22λ 1,12n2 - 10644480n6λ 1,2λ1,1 - 236488n11λ 2,22λ 1,12 - 65884402n7λ 2,22λ 1,12 - 89743522n6λ 2,22λ 1,12 + 143240130n4λ 2,2λ1,12 + 32931360n4λ 1,1λ2,1 + 997920λ2,12n8λ 1,2 + 8672400λ2,12n7λ 1,2 + 40035600λ2,12n6λ 1,2 - 65530080λ2,1n5λ 2,2 + 143240130λ2,12n4λ 1,2 - 190270080λ2,1n4λ 2,2 + 75779550λ2,12n3λ 1,2 - 240540300λ2,1n3λ 2,2 - 12096λ2,1n11λ 1,22 - 21301056n8λ 2,1λ1,22 - 665280n7λ 2,2λ2,1 + 2268000λ2,1λ1,22n - 65530080λ 1,2n5λ 1,1 - 190270080λ1,2n4λ 1,1 - 67339907n5λ 2,12λ 1,22
- 27101250n2λ 2,2λ1,12 - 171555624n6λ 2,1λ1,22 - 3481056n9λ 2,1λ1,22 - 78021684n7λ 2,1λ1,22 - 13448957n4λ 2,22λ 1,12 + 665280n7λ 2,1λ1,2 + 190270080n4λ 2,2λ1,1 + 65530080n5λ 2,2λ1,1 + 10644480n6λ 2,2λ1,1 + 665280n7λ 2,2λ1,1 + 240540300n3λ 2,2λ1,1 + 41580000n2λ 2,2λ1,1 + 10644480n6λ 2,1λ1,2 + 65530080n5λ 2,1λ1,2 + 41661000n2λ 2,1λ1,22 - 314496n10λ 2,1λ1,22 - 209148264n5λ 2,1λ1,22 - 13448957n4λ 2,12λ 1,22 - 10644480n6λ 2,2λ2,1 + 130228560λ2,1n3λ 1,1 + 15860880n3λ 2,22λ 1,12 + 205072560λ 2,1n2λ 1,1 - 99965664n4λ 2,1λ1,22 - 236488n11λ 2,12λ 1,22 - 17360n12λ 2,12λ 1,22 - 1857688n10λ 2,12λ 1,22 + 103857930n5λ 2,2λ1,12 + 997920n8λ 2,2λ1,12 + 121348800λ 2,2n6λ 1,2 - 2268000λ2,2λ1,12,1λ1,2 + 179487044n6λ 2,2λ1,1λ2,1λ1,2 + 134679814n5λ 2,2λ1,1λ2,1λ1,2 + 60951786n8λ 2,2λ1,1λ2,1λ1,2 + 131768804n7λ 2,2λ1,1λ2,1λ1,2 - 31721760n3λ 2,2λ1,1λ2,1λ1,2 + 34720n12λ 2,2λ1,1λ2,1λ1,2 + 3715376n10λ 2,2λ1,1λ2,1λ1,2 + 18542886n9λ 2,2λ1,1λ2,1λ1,2 + 472976n11λ 2,2λ1,1λ2,1λ1,2 + 1120λ2,1n13λ 2,2λ1,1λ1,2 - 103857930n5λ 2,1λ1,2λ1,1 - 997920n8λ 2,1λ1,2λ1,1 - 75779550λ2,1n3λ 2,2λ1,1 - 41661000n2λ 2,2λ1,1λ1,2 - 8672400n7λ 2,1λ1,2λ1,1 - 40035600n6λ 2,1λ1,2λ1,1 - 41661000λ2,2n2λ 2,1λ1,2 + 31185000λ2,1λ1,21,1 - 47520λ2,1n9λ 1,2λ1,1 - 36919260n3λ 2,2λ1,1λ1,2 + 27101250λ2,1n2λ 2,2λ1,1 + 21301056n8λ 2,2λ1,1λ1,2 - 27101250λ2,12n2λ 1,2 - 41580000λ2,1n2λ 2,2 - 31185000λ2,12 1,2 - 140162940λ2,22n5 - 14666400λ 2,22n3 - 147906540λ 2,22n4 + 1417500λ 2,22n + 63247500λ 2,22n2 + 63247500λ 1,22n2 - 28534275λ 1,12n + 1417500λ 1,22n - 65114280λ 1,12n3 - 102536280λ 1,12n2 - 1632960n8λ 1,22 - 65114280λ 2,12n3 - 102536280λ 2,12n2 - 28534275λ 2,12n - 13888800λ 2,22n7 - 60674400λ 2,22n6 - 77760n9λ 1,22 - 77760n9λ 2,22 - 1632960n8λ 2,22 - 16465680n4λ 1,12 - 1496880n5λ 1,12 - 98232750λ 1,1λ2,1 - 16465680n4λ 2,12 - 1496880n5λ 2,12 - 60674400λ 1,22n6 - 147906540λ 1,22n4 - 13888800λ 1,22n7 - 140162940λ 1,22n5 - 14666400λ 1,22n3 - 31185000λ 2,2λ1,12n + 1134000λ 2,22λ 1,12n - 209148264λ 2,22n5λ 1,1 + 36919260λ2,22n3λ 1,1 + 8672400n7λ 2,2λ1,12 + 280325880λ 2,2n5λ 1,2 + 295813080λ2,2n4λ 1,2 - 99965664λ2,22n4λ 1,1 - 9271443n9λ 2,12λ 1,22 + 40035600n6λ 2,2λ1,12 - 126495000λ 2,2n2λ 1,2 + 41661000λ2,22n2λ 1,1 + 29332800λ2,2n3λ 1,2 - 2835000λ2,21,2 + 2268000λ2,22 1,1 + 155520n9λ 2,2λ1,2 + 1134000λ2,12λ 1,22n + 49116375λ 2,12 + 49116375λ 1,12 - 143240130λ 2,1n4λ 2,2λ1,1 + 109147500λ2,12,2 - 78021684λ2,22n7λ 1,1 - 21301056λ2,22n8λ 1,1

Expressions for all quantities involved are provided below.

 
Psi_1:=-14*lambda[1,1]-28*lambda[1,2]+14*lambda[2,1]-28*lambda[2,1]*lambda[1,2]+28*lambda[2,2]+28*lambda[2,2]*lambda[1,1]+28*lambda[1,1]*x-28*lambda[2,2]*x-28*lambda[2,1]*x+28*lambda[1,2]*x-14*lambda[1,1]*x^2+14*lambda[2,1]*x^2;  
 
c[1]:=8*n*(n^2+2*n+1)*(197342*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+2494800*lambda[2,1]*lambda[1,2]+2494800*lambda[2,2]*lambda[1,1]-240570*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+389070*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-128952*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]-534600*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+5940*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+53352*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-23436*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-1512*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+53352*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-505440*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+687636*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+74250*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]-262440*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-128952*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-23436*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-262440*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+305910*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-505440*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-121608*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-389070*n^3*lambda[2,2]*lambda[1,1]^2-2432430*lambda[2,1]*n*lambda[1,1]+128952*lambda[2,2]^2*n^6*lambda[1,1]-31425*n^5*lambda[2,2]^2*lambda[1,1]^2+9261*n^8*lambda[2,2]^2*lambda[1,1]^2+1295*n^9*lambda[2,2]^2*lambda[1,1]^2-74250*lambda[2,1]^2*n^5*lambda[1,2]-291060*lambda[1,2]*n*lambda[1,1]-9848*n^3*lambda[2,1]^2*lambda[1,2]^2+60804*n^2*lambda[2,1]^2*lambda[1,2]^2+70*n^10*lambda[2,2]^2*lambda[1,1]^2+1912680*lambda[1,2]*n^2*lambda[1,1]-687636*n^3*lambda[2,1]*lambda[1,2]^2+9261*n^8*lambda[2,1]^2*lambda[1,2]^2+30618*n^7*lambda[2,1]^2*lambda[1,2]^2+37176*n^6*lambda[2,1]^2*lambda[1,2]^2+790020*lambda[1,2]*n^3*lambda[1,1]-83160*n^4*lambda[2,1]*lambda[1,2]-790020*n^3*lambda[2,1]*lambda[1,2]-1912680*n^2*lambda[2,1]*lambda[1,2]+291060*lambda[2,1]*lambda[1,2]*n+291060*lambda[2,2]*lambda[1,1]*n+60804*lambda[2,2]^2*lambda[1,1]^2*n^2+30618*n^7*lambda[2,2]^2*lambda[1,1]^2+37176*n^6*lambda[2,2]^2*lambda[1,1]^2-305910*n^4*lambda[2,2]*lambda[1,1]^2-5940*lambda[2,1]^2*n^6*lambda[1,2]-305910*lambda[2,1]^2*n^4*lambda[1,2]+83160*lambda[2,1]*n^4*lambda[2,2]-389070*lambda[2,1]^2*n^3*lambda[1,2]+790020*lambda[2,1]*n^3*lambda[2,2]+1512*n^8*lambda[2,1]*lambda[1,2]^2+505440*lambda[2,1]*lambda[1,2]^2*n+83160*lambda[1,2]*n^4*lambda[1,1]-31425*n^5*lambda[2,1]^2*lambda[1,2]^2+240570*n^2*lambda[2,2]*lambda[1,1]^2+128952*n^6*lambda[2,1]*lambda[1,2]^2+23436*n^7*lambda[2,1]*lambda[1,2]^2-98671*n^4*lambda[2,2]^2*lambda[1,1]^2-83160*n^4*lambda[2,2]*lambda[1,1]-790020*n^3*lambda[2,2]*lambda[1,1]-1912680*n^2*lambda[2,2]*lambda[1,1]-180792*n^2*lambda[2,1]*lambda[1,2]^2+262440*n^5*lambda[2,1]*lambda[1,2]^2-98671*n^4*lambda[2,1]^2*lambda[1,2]^2-9848*n^3*lambda[2,2]^2*lambda[1,1]^2-374220*lambda[2,1]*n^2*lambda[1,1]-53352*n^4*lambda[2,1]*lambda[1,2]^2+70*n^10*lambda[2,1]^2*lambda[1,2]^2-74250*n^5*lambda[2,2]*lambda[1,1]^2-19440*lambda[2,2]*n^6*lambda[1,2]-1440*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]-74352*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+62850*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-18522*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-61236*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+19696*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-140*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2590*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+74250*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+389070*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+180792*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+5940*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]+180792*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-534600*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+687636*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]-240570*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-1512*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]+240570*lambda[2,1]^2*n^2*lambda[1,2]+1912680*lambda[2,1]*n^2*lambda[2,2]+534600*lambda[2,1]^2*n*lambda[1,2]+121500*lambda[2,2]^2*n^5+277560*lambda[2,2]^2*n^3+462780*lambda[2,2]^2*n^4-742500*lambda[2,2]^2*n-1263060*lambda[2,2]^2*n^2-1263060*lambda[1,2]^2*n^2+1216215*lambda[1,1]^2*n-742500*lambda[1,2]^2*n+187110*lambda[1,1]^2*n^2+187110*lambda[2,1]^2*n^2+1216215*lambda[2,1]^2*n+9720*lambda[2,2]^2*n^6-2806650*lambda[1,1]*lambda[2,1]+9720*lambda[1,2]^2*n^6+462780*lambda[1,2]^2*n^4+121500*lambda[1,2]^2*n^5+277560*lambda[1,2]^2*n^3-2494800*lambda[1,2]*lambda[1,1]-2494800*lambda[2,2]*lambda[2,1]-2268000*lambda[2,2]*lambda[1,2]+534600*lambda[2,2]*lambda[1,1]^2*n+720*lambda[2,2]^2*lambda[1,1]^2*n+262440*lambda[2,2]^2*n^5*lambda[1,1]-687636*lambda[2,2]^2*n^3*lambda[1,1]-243000*lambda[2,2]*n^5*lambda[1,2]-925560*lambda[2,2]*n^4*lambda[1,2]-53352*lambda[2,2]^2*n^4*lambda[1,1]+1295*n^9*lambda[2,1]^2*lambda[1,2]^2-5940*n^6*lambda[2,2]*lambda[1,1]^2+2526120*lambda[2,2]*n^2*lambda[1,2]-180792*lambda[2,2]^2*n^2*lambda[1,1]-555120*lambda[2,2]*n^3*lambda[1,2]+1485000*lambda[2,2]*n*lambda[1,2]+505440*lambda[2,2]^2*n*lambda[1,1]+720*lambda[2,1]^2*lambda[1,2]^2*n+1403325*lambda[2,1]^2+1403325*lambda[1,1]^2+1134000*lambda[2,2]^2+1134000*lambda[1,2]^2+305910*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]-291060*lambda[2,1]*n*lambda[2,2]+23436*lambda[2,2]^2*n^7*lambda[1,1]+1512*lambda[2,2]^2*n^8*lambda[1,1]);  
 
c[2]:=-12*(2419334*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+13097700*lambda[2,1]*lambda[1,2]+13097700*lambda[2,2]*lambda[1,1]+11880*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]-798930*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+4075830*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-1725120*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]-5482620*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+186120*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]-528156*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-451692*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-58464*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-528156*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-3024*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]-2327400*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+5546952*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+1145430*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]-3036996*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-1725120*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-3024*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]-451692*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-3036996*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+3357090*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-2327400*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-1083960*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-4075830*n^3*lambda[2,2]*lambda[1,1]^2-19521810*lambda[2,1]*n*lambda[1,1]-2268000*lambda[2,2]*lambda[1,1]*lambda[1,2]-2268000*lambda[2,2]*lambda[2,1]*lambda[1,2]-2494800*lambda[2,1]*lambda[2,2]*lambda[1,1]-2494800*lambda[2,1]*lambda[1,2]*lambda[1,1]+3024*lambda[2,2]^2*n^9*lambda[1,1]+1725120*lambda[2,2]^2*n^6*lambda[1,1]-212567*n^5*lambda[2,2]^2*lambda[1,1]^2+154917*n^8*lambda[2,2]^2*lambda[1,1]^2+30737*n^9*lambda[2,2]^2*lambda[1,1]^2-1145430*lambda[2,1]^2*n^5*lambda[1,2]+3908520*lambda[1,2]*n*lambda[1,1]-756356*n^3*lambda[2,1]^2*lambda[1,2]^2+541980*n^2*lambda[2,1]^2*lambda[1,2]^2+3220*n^10*lambda[2,2]^2*lambda[1,1]^2+15717240*lambda[1,2]*n^2*lambda[1,1]-5546952*n^3*lambda[2,1]*lambda[1,2]^2+154917*n^8*lambda[2,1]^2*lambda[1,2]^2+423246*n^7*lambda[2,1]^2*lambda[1,2]^2+509550*n^6*lambda[2,1]^2*lambda[1,2]^2-38880*lambda[2,2]*n^7*lambda[1,2]+8773380*lambda[1,2]*n^3*lambda[1,1]-1995840*n^4*lambda[2,1]*lambda[1,2]-8773380*n^3*lambda[2,1]*lambda[1,2]-15717240*n^2*lambda[2,1]*lambda[1,2]-3908520*lambda[2,1]*lambda[1,2]*n-3908520*lambda[2,2]*lambda[1,1]*n+541980*lambda[2,2]^2*lambda[1,1]^2*n^2+140*n^11*lambda[2,2]^2*lambda[1,1]^2+423246*n^7*lambda[2,2]^2*lambda[1,1]^2+509550*n^6*lambda[2,2]^2*lambda[1,1]^2-3357090*n^4*lambda[2,2]*lambda[1,1]^2-11880*lambda[2,1]^2*n^7*lambda[1,2]-186120*lambda[2,1]^2*n^6*lambda[1,2]+166320*lambda[2,1]*n^5*lambda[2,2]-3357090*lambda[2,1]^2*n^4*lambda[1,2]+1995840*lambda[2,1]*n^4*lambda[2,2]-4075830*lambda[2,1]^2*n^3*lambda[1,2]+8773380*lambda[2,1]*n^3*lambda[2,2]+58464*n^8*lambda[2,1]*lambda[1,2]^2+2327400*lambda[2,1]*lambda[1,2]^2*n+166320*lambda[1,2]*n^5*lambda[1,1]+1995840*lambda[1,2]*n^4*lambda[1,1]-212567*n^5*lambda[2,1]^2*lambda[1,2]^2+798930*n^2*lambda[2,2]*lambda[1,1]^2+1725120*n^6*lambda[2,1]*lambda[1,2]^2+3024*n^9*lambda[2,1]*lambda[1,2]^2+451692*n^7*lambda[2,1]*lambda[1,2]^2-1209667*n^4*lambda[2,2]^2*lambda[1,1]^2-1995840*n^4*lambda[2,2]*lambda[1,1]-166320*n^5*lambda[2,2]*lambda[1,1]-8773380*n^3*lambda[2,2]*lambda[1,1]-15717240*n^2*lambda[2,2]*lambda[1,1]-166320*n^5*lambda[2,1]*lambda[1,2]-4851900*n^2*lambda[2,1]*lambda[1,2]^2+3036996*n^5*lambda[2,1]*lambda[1,2]^2-1209667*n^4*lambda[2,1]^2*lambda[1,2]^2-748440*lambda[2,1]*n^3*lambda[1,1]-756356*n^3*lambda[2,2]^2*lambda[1,1]^2-6237000*lambda[2,1]*n^2*lambda[1,1]+528156*n^4*lambda[2,1]*lambda[1,2]^2+140*n^11*lambda[2,1]^2*lambda[1,2]^2+3220*n^10*lambda[2,1]^2*lambda[1,2]^2-1145430*n^5*lambda[2,2]*lambda[1,1]^2-609120*lambda[2,2]*n^6*lambda[1,2]-1029600*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]-1019100*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+425134*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-309834*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-846492*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+1512712*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-6440*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-61474*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-280*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+1145430*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+4075830*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+4851900*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+11880*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]+186120*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]+4851900*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-5482620*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+5546952*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]-798930*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-58464*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]+798930*lambda[2,1]^2*n^2*lambda[1,2]+15717240*lambda[2,1]*n^2*lambda[2,2]+5482620*lambda[2,1]^2*n*lambda[1,2]+1798740*lambda[2,2]^2*n^5+3452760*lambda[2,2]^2*n^3+4676940*lambda[2,2]^2*n^4-7584300*lambda[2,2]^2*n-6070140*lambda[2,2]^2*n^2-6070140*lambda[1,2]^2*n^2+9760905*lambda[1,1]^2*n-7584300*lambda[1,2]^2*n+374220*lambda[1,1]^2*n^3+3118500*lambda[1,1]^2*n^2+374220*lambda[2,1]^2*n^3+3118500*lambda[2,1]^2*n^2+9760905*lambda[2,1]^2*n+19440*lambda[2,2]^2*n^7+304560*lambda[2,2]^2*n^6-21517650*lambda[1,1]*lambda[2,1]+304560*lambda[1,2]^2*n^6+4676940*lambda[1,2]^2*n^4+19440*lambda[1,2]^2*n^7+1798740*lambda[1,2]^2*n^5+3452760*lambda[1,2]^2*n^3-13097700*lambda[1,2]*lambda[1,1]-13097700*lambda[2,2]*lambda[2,1]-6804000*lambda[2,2]*lambda[1,2]+2494800*lambda[2,1]^2*lambda[1,2]+2494800*lambda[2,2]*lambda[1,1]^2+2268000*lambda[2,2]^2*lambda[1,1]+2268000*lambda[2,1]*lambda[1,2]^2+5482620*lambda[2,2]*lambda[1,1]^2*n+514800*lambda[2,2]^2*lambda[1,1]^2*n+3036996*lambda[2,2]^2*n^5*lambda[1,1]-5546952*lambda[2,2]^2*n^3*lambda[1,1]-11880*n^7*lambda[2,2]*lambda[1,1]^2-3597480*lambda[2,2]*n^5*lambda[1,2]-9353880*lambda[2,2]*n^4*lambda[1,2]+528156*lambda[2,2]^2*n^4*lambda[1,1]+30737*n^9*lambda[2,1]^2*lambda[1,2]^2-186120*n^6*lambda[2,2]*lambda[1,1]^2+12140280*lambda[2,2]*n^2*lambda[1,2]-4851900*lambda[2,2]^2*n^2*lambda[1,1]-6905520*lambda[2,2]*n^3*lambda[1,2]+15168600*lambda[2,2]*n*lambda[1,2]+2327400*lambda[2,2]^2*n*lambda[1,1]+514800*lambda[2,1]^2*lambda[1,2]^2*n+10758825*lambda[2,1]^2+10758825*lambda[1,1]^2+3402000*lambda[2,2]^2+3402000*lambda[1,2]^2+3357090*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+3908520*lambda[2,1]*n*lambda[2,2]+451692*lambda[2,2]^2*n^7*lambda[1,1]+58464*lambda[2,2]^2*n^8*lambda[1,1])*n*(n+1);  
 
c[3]:=6*(2*n+3)*(4689030*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+13097700*lambda[2,1]*lambda[1,2]+13097700*lambda[2,2]*lambda[1,1]+205920*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]+8762490*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+12816540*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-7108452*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+2702700*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+11880*lambda[2,1]*n^8*lambda[2,2]*lambda[1,1]+1438470*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]-2651940*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-2738340*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-583740*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-2651940*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-3024*lambda[2,2]*n^10*lambda[2,1]*lambda[1,2]-65520*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]+3878280*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+8261100*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+5231160*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]-9335520*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-7108452*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-65520*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]-2738340*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-3024*n^10*lambda[2,2]*lambda[1,1]*lambda[1,2]-9335520*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+10743480*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]+3878280*lambda[2,2]*n*lambda[2,1]*lambda[1,2]+1142856*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-12816540*n^3*lambda[2,2]*lambda[1,1]^2-37297260*lambda[2,1]*n*lambda[1,1]+3024*lambda[2,2]^2*n^10*lambda[1,1]+65520*lambda[2,2]^2*n^9*lambda[1,1]+7108452*lambda[2,2]^2*n^6*lambda[1,1]-18670*n^5*lambda[2,2]^2*lambda[1,1]^2+140*n^12*lambda[2,2]^2*lambda[1,1]^2+889215*n^8*lambda[2,2]^2*lambda[1,1]^2+245490*n^9*lambda[2,2]^2*lambda[1,1]^2-5231160*lambda[2,1]^2*n^5*lambda[1,2]+9355500*lambda[1,2]*n*lambda[1,1]-2161800*n^3*lambda[2,1]^2*lambda[1,2]^2-571428*n^2*lambda[2,1]^2*lambda[1,2]^2+40257*n^10*lambda[2,2]^2*lambda[1,1]^2+28773360*lambda[1,2]*n^2*lambda[1,1]-8261100*n^3*lambda[2,1]*lambda[1,2]^2-38880*n^8*lambda[2,2]*lambda[1,2]+889215*n^8*lambda[2,1]^2*lambda[1,2]^2+1885980*n^7*lambda[2,1]^2*lambda[1,2]^2+1986331*n^6*lambda[2,1]^2*lambda[1,2]^2-673920*lambda[2,2]*n^7*lambda[1,2]+24906420*lambda[1,2]*n^3*lambda[1,1]-10602900*n^4*lambda[2,1]*lambda[1,2]-24906420*n^3*lambda[2,1]*lambda[1,2]-28773360*n^2*lambda[2,1]*lambda[1,2]-9355500*lambda[2,1]*lambda[1,2]*n-9355500*lambda[2,2]*lambda[1,1]*n-571428*lambda[2,2]^2*lambda[1,1]^2*n^2+166320*n^6*lambda[1,2]*lambda[1,1]+3640*n^11*lambda[2,2]^2*lambda[1,1]^2+1885980*n^7*lambda[2,2]^2*lambda[1,1]^2+1986331*n^6*lambda[2,2]^2*lambda[1,1]^2-10743480*n^4*lambda[2,2]*lambda[1,1]^2-748440*n^4*lambda[1,1]*lambda[2,1]-11880*lambda[2,1]^2*n^8*lambda[1,2]-205920*lambda[2,1]^2*n^7*lambda[1,2]-1438470*lambda[2,1]^2*n^6*lambda[1,2]+2162160*lambda[2,1]*n^5*lambda[2,2]-10743480*lambda[2,1]^2*n^4*lambda[1,2]+10602900*lambda[2,1]*n^4*lambda[2,2]-12816540*lambda[2,1]^2*n^3*lambda[1,2]+24906420*lambda[2,1]*n^3*lambda[2,2]+583740*n^8*lambda[2,1]*lambda[1,2]^2-3878280*lambda[2,1]*lambda[1,2]^2*n+2162160*lambda[1,2]*n^5*lambda[1,1]+10602900*lambda[1,2]*n^4*lambda[1,1]-18670*n^5*lambda[2,1]^2*lambda[1,2]^2-8762490*n^2*lambda[2,2]*lambda[1,1]^2+7108452*n^6*lambda[2,1]*lambda[1,2]^2+65520*n^9*lambda[2,1]*lambda[1,2]^2+2738340*n^7*lambda[2,1]*lambda[1,2]^2-2344515*n^4*lambda[2,2]^2*lambda[1,1]^2-10602900*n^4*lambda[2,2]*lambda[1,1]-2162160*n^5*lambda[2,2]*lambda[1,1]-166320*n^6*lambda[2,2]*lambda[1,1]-24906420*n^3*lambda[2,2]*lambda[1,1]-28773360*n^2*lambda[2,2]*lambda[1,1]-166320*n^6*lambda[2,1]*lambda[1,2]-2162160*n^5*lambda[2,1]*lambda[1,2]-10347156*n^2*lambda[2,1]*lambda[1,2]^2+3024*n^10*lambda[2,1]*lambda[1,2]^2+9335520*n^5*lambda[2,1]*lambda[1,2]^2-2344515*n^4*lambda[2,1]^2*lambda[1,2]^2+166320*n^6*lambda[2,2]*lambda[2,1]-6486480*lambda[2,1]*n^3*lambda[1,1]-2161800*n^3*lambda[2,2]^2*lambda[1,1]^2-21517650*lambda[2,1]*n^2*lambda[1,1]+2651940*n^4*lambda[2,1]*lambda[1,2]^2+3640*n^11*lambda[2,1]^2*lambda[1,2]^2+140*n^12*lambda[2,1]^2*lambda[1,2]^2+40257*n^10*lambda[2,1]^2*lambda[1,2]^2-5231160*n^5*lambda[2,2]*lambda[1,1]^2-11880*n^8*lambda[2,2]*lambda[1,1]^2-4556520*lambda[2,2]*n^6*lambda[1,2]-90720*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]-3972662*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+37340*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-1778430*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-3771960*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+4323600*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-280*n^12*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-80514*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-490980*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-7280*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+5231160*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+11880*n^8*lambda[2,1]*lambda[1,2]*lambda[1,1]+12816540*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+10347156*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+205920*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]+1438470*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]+10347156*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]+2702700*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+8261100*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]+8762490*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-583740*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]-8762490*lambda[2,1]^2*n^2*lambda[1,2]+28773360*lambda[2,1]*n^2*lambda[2,2]-2702700*lambda[2,1]^2*n*lambda[1,2]+7486560*lambda[2,2]^2*n^5+4140180*lambda[2,2]^2*n^3+11626740*lambda[2,2]^2*n^4-14231700*lambda[2,2]^2*n-11656440*lambda[2,2]^2*n^2-11656440*lambda[1,2]^2*n^2+18648630*lambda[1,1]^2*n-14231700*lambda[1,2]^2*n+3243240*lambda[1,1]^2*n^3+10758825*lambda[1,1]^2*n^2+19440*n^8*lambda[1,2]^2+3243240*lambda[2,1]^2*n^3+10758825*lambda[2,1]^2*n^2+18648630*lambda[2,1]^2*n+336960*lambda[2,2]^2*n^7+2278260*lambda[2,2]^2*n^6+19440*n^8*lambda[2,2]^2+374220*n^4*lambda[1,1]^2-32744250*lambda[1,1]*lambda[2,1]+374220*n^4*lambda[2,1]^2+2278260*lambda[1,2]^2*n^6+11626740*lambda[1,2]^2*n^4+336960*lambda[1,2]^2*n^7+7486560*lambda[1,2]^2*n^5+4140180*lambda[1,2]^2*n^3-13097700*lambda[1,2]*lambda[1,1]-13097700*lambda[2,2]*lambda[2,1]-2702700*lambda[2,2]*lambda[1,1]^2*n+45360*lambda[2,2]^2*lambda[1,1]^2*n+9335520*lambda[2,2]^2*n^5*lambda[1,1]-8261100*lambda[2,2]^2*n^3*lambda[1,1]-205920*n^7*lambda[2,2]*lambda[1,1]^2-14973120*lambda[2,2]*n^5*lambda[1,2]-23253480*lambda[2,2]*n^4*lambda[1,2]+2651940*lambda[2,2]^2*n^4*lambda[1,1]+245490*n^9*lambda[2,1]^2*lambda[1,2]^2-1438470*n^6*lambda[2,2]*lambda[1,1]^2+23312880*lambda[2,2]*n^2*lambda[1,2]-10347156*lambda[2,2]^2*n^2*lambda[1,1]-8280360*lambda[2,2]*n^3*lambda[1,2]+28463400*lambda[2,2]*n*lambda[1,2]-3878280*lambda[2,2]^2*n*lambda[1,1]+45360*lambda[2,1]^2*lambda[1,2]^2*n+16372125*lambda[2,1]^2+16372125*lambda[1,1]^2+10743480*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+9355500*lambda[2,1]*n*lambda[2,2]+2738340*lambda[2,2]^2*n^7*lambda[1,1]+583740*lambda[2,2]^2*n^8*lambda[1,1]);  
 
c[4]:=26897914*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-8672400*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]+27101250*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]-75779550*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]+171555624*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+31185000*lambda[2,1]*n*lambda[2,2]*lambda[1,1]-997920*lambda[2,1]*n^8*lambda[2,2]*lambda[1,1]-40035600*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+99965664*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]+78021684*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]+21301056*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+99965664*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]+314496*lambda[2,2]*n^10*lambda[2,1]*lambda[1,2]+3481056*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]-2268000*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+12096*n^11*lambda[2,2]*lambda[1,1]*lambda[1,2]-36919260*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]-103857930*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+12096*n^11*lambda[2,2]*lambda[2,1]*lambda[1,2]+209148264*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+171555624*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]+3481056*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]+78021684*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]+314496*n^10*lambda[2,2]*lambda[1,1]*lambda[1,2]+209148264*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]-143240130*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-2268000*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-47520*lambda[2,1]*n^9*lambda[2,2]*lambda[1,1]-19611000*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+75779550*n^3*lambda[2,2]*lambda[1,1]^2+47520*lambda[2,1]^2*n^9*lambda[1,2]-560*lambda[2,1]^2*n^13*lambda[1,2]^2+57068550*lambda[2,1]*n*lambda[1,1]-314496*lambda[2,2]^2*n^10*lambda[1,1]-3481056*lambda[2,2]^2*n^9*lambda[1,1]-171555624*lambda[2,2]^2*n^6*lambda[1,1]-67339907*n^5*lambda[2,2]^2*lambda[1,1]^2-17360*n^12*lambda[2,2]^2*lambda[1,1]^2-30475893*n^8*lambda[2,2]^2*lambda[1,1]^2-9271443*n^9*lambda[2,2]^2*lambda[1,1]^2+103857930*lambda[2,1]^2*n^5*lambda[1,2]+109147500*lambda[1,2]*n*lambda[1,1]+47520*n^9*lambda[2,2]*lambda[1,1]^2+15860880*n^3*lambda[2,1]^2*lambda[1,2]^2+9805500*n^2*lambda[2,1]^2*lambda[1,2]^2-1857688*n^10*lambda[2,2]^2*lambda[1,1]^2-41580000*lambda[1,2]*n^2*lambda[1,1]+36919260*n^3*lambda[2,1]*lambda[1,2]^2+3265920*n^8*lambda[2,2]*lambda[1,2]-30475893*n^8*lambda[2,1]^2*lambda[1,2]^2-65884402*n^7*lambda[2,1]^2*lambda[1,2]^2-89743522*n^6*lambda[2,1]^2*lambda[1,2]^2+27777600*lambda[2,2]*n^7*lambda[1,2]-12096*lambda[2,2]^2*n^11*lambda[1,1]-560*n^13*lambda[2,2]^2*lambda[1,1]^2-240540300*lambda[1,2]*n^3*lambda[1,1]-665280*n^7*lambda[1,2]*lambda[1,1]+2993760*n^5*lambda[1,1]*lambda[2,1]+190270080*n^4*lambda[2,1]*lambda[1,2]+240540300*n^3*lambda[2,1]*lambda[1,2]+41580000*n^2*lambda[2,1]*lambda[1,2]-109147500*lambda[2,1]*lambda[1,2]*n-109147500*lambda[2,2]*lambda[1,1]*n+9805500*lambda[2,2]^2*lambda[1,1]^2*n^2-10644480*n^6*lambda[1,2]*lambda[1,1]-236488*n^11*lambda[2,2]^2*lambda[1,1]^2-65884402*n^7*lambda[2,2]^2*lambda[1,1]^2-89743522*n^6*lambda[2,2]^2*lambda[1,1]^2+143240130*n^4*lambda[2,2]*lambda[1,1]^2+32931360*n^4*lambda[1,1]*lambda[2,1]+997920*lambda[2,1]^2*n^8*lambda[1,2]+8672400*lambda[2,1]^2*n^7*lambda[1,2]+40035600*lambda[2,1]^2*n^6*lambda[1,2]-65530080*lambda[2,1]*n^5*lambda[2,2]+143240130*lambda[2,1]^2*n^4*lambda[1,2]-190270080*lambda[2,1]*n^4*lambda[2,2]+75779550*lambda[2,1]^2*n^3*lambda[1,2]-240540300*lambda[2,1]*n^3*lambda[2,2]-12096*lambda[2,1]*n^11*lambda[1,2]^2-21301056*n^8*lambda[2,1]*lambda[1,2]^2-665280*n^7*lambda[2,2]*lambda[2,1]+2268000*lambda[2,1]*lambda[1,2]^2*n-65530080*lambda[1,2]*n^5*lambda[1,1]-190270080*lambda[1,2]*n^4*lambda[1,1]-67339907*n^5*lambda[2,1]^2*lambda[1,2]^2-27101250*n^2*lambda[2,2]*lambda[1,1]^2-171555624*n^6*lambda[2,1]*lambda[1,2]^2-3481056*n^9*lambda[2,1]*lambda[1,2]^2-78021684*n^7*lambda[2,1]*lambda[1,2]^2-13448957*n^4*lambda[2,2]^2*lambda[1,1]^2+665280*n^7*lambda[2,1]*lambda[1,2]+190270080*n^4*lambda[2,2]*lambda[1,1]+65530080*n^5*lambda[2,2]*lambda[1,1]+10644480*n^6*lambda[2,2]*lambda[1,1]+665280*n^7*lambda[2,2]*lambda[1,1]+240540300*n^3*lambda[2,2]*lambda[1,1]+41580000*n^2*lambda[2,2]*lambda[1,1]+10644480*n^6*lambda[2,1]*lambda[1,2]+65530080*n^5*lambda[2,1]*lambda[1,2]+41661000*n^2*lambda[2,1]*lambda[1,2]^2-314496*n^10*lambda[2,1]*lambda[1,2]^2-209148264*n^5*lambda[2,1]*lambda[1,2]^2-13448957*n^4*lambda[2,1]^2*lambda[1,2]^2-10644480*n^6*lambda[2,2]*lambda[2,1]+130228560*lambda[2,1]*n^3*lambda[1,1]+15860880*n^3*lambda[2,2]^2*lambda[1,1]^2+205072560*lambda[2,1]*n^2*lambda[1,1]-99965664*n^4*lambda[2,1]*lambda[1,2]^2-236488*n^11*lambda[2,1]^2*lambda[1,2]^2-17360*n^12*lambda[2,1]^2*lambda[1,2]^2-1857688*n^10*lambda[2,1]^2*lambda[1,2]^2+103857930*n^5*lambda[2,2]*lambda[1,1]^2+997920*n^8*lambda[2,2]*lambda[1,1]^2+121348800*lambda[2,2]*n^6*lambda[1,2]-2268000*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]+179487044*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+134679814*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+60951786*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+131768804*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-31721760*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+34720*n^12*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+3715376*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+18542886*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+472976*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+1120*lambda[2,1]*n^13*lambda[2,2]*lambda[1,1]*lambda[1,2]-103857930*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]-997920*n^8*lambda[2,1]*lambda[1,2]*lambda[1,1]-75779550*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-41661000*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]-8672400*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]-40035600*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]-41661000*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]+31185000*lambda[2,1]*lambda[1,2]*n*lambda[1,1]-47520*lambda[2,1]*n^9*lambda[1,2]*lambda[1,1]-36919260*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]+27101250*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+21301056*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]-27101250*lambda[2,1]^2*n^2*lambda[1,2]-41580000*lambda[2,1]*n^2*lambda[2,2]-31185000*lambda[2,1]^2*n*lambda[1,2]-140162940*lambda[2,2]^2*n^5-14666400*lambda[2,2]^2*n^3-147906540*lambda[2,2]^2*n^4+1417500*lambda[2,2]^2*n+63247500*lambda[2,2]^2*n^2+63247500*lambda[1,2]^2*n^2-28534275*lambda[1,1]^2*n+1417500*lambda[1,2]^2*n-65114280*lambda[1,1]^2*n^3-102536280*lambda[1,1]^2*n^2-1632960*n^8*lambda[1,2]^2-65114280*lambda[2,1]^2*n^3-102536280*lambda[2,1]^2*n^2-28534275*lambda[2,1]^2*n-13888800*lambda[2,2]^2*n^7-60674400*lambda[2,2]^2*n^6-77760*n^9*lambda[1,2]^2-77760*n^9*lambda[2,2]^2-1632960*n^8*lambda[2,2]^2-16465680*n^4*lambda[1,1]^2-1496880*n^5*lambda[1,1]^2-98232750*lambda[1,1]*lambda[2,1]-16465680*n^4*lambda[2,1]^2-1496880*n^5*lambda[2,1]^2-60674400*lambda[1,2]^2*n^6-147906540*lambda[1,2]^2*n^4-13888800*lambda[1,2]^2*n^7-140162940*lambda[1,2]^2*n^5-14666400*lambda[1,2]^2*n^3-31185000*lambda[2,2]*lambda[1,1]^2*n+1134000*lambda[2,2]^2*lambda[1,1]^2*n-209148264*lambda[2,2]^2*n^5*lambda[1,1]+36919260*lambda[2,2]^2*n^3*lambda[1,1]+8672400*n^7*lambda[2,2]*lambda[1,1]^2+280325880*lambda[2,2]*n^5*lambda[1,2]+295813080*lambda[2,2]*n^4*lambda[1,2]-99965664*lambda[2,2]^2*n^4*lambda[1,1]-9271443*n^9*lambda[2,1]^2*lambda[1,2]^2+40035600*n^6*lambda[2,2]*lambda[1,1]^2-126495000*lambda[2,2]*n^2*lambda[1,2]+41661000*lambda[2,2]^2*n^2*lambda[1,1]+29332800*lambda[2,2]*n^3*lambda[1,2]-2835000*lambda[2,2]*n*lambda[1,2]+2268000*lambda[2,2]^2*n*lambda[1,1]+155520*n^9*lambda[2,2]*lambda[1,2]+1134000*lambda[2,1]^2*lambda[1,2]^2*n+49116375*lambda[2,1]^2+49116375*lambda[1,1]^2-143240130*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+109147500*lambda[2,1]*n*lambda[2,2]-78021684*lambda[2,2]^2*n^7*lambda[1,1]-21301056*lambda[2,2]^2*n^8*lambda[1,1];  

Case(iii) α = β = 0

The ‘starting’ functions are given by

Ψ1 = -15λ1,1 - 30λ1,2 + 15λ2,1 - 30λ2,1λ1,2 + 30λ2,2 + 30λ2,2λ1,1 + 30λ1,1x - 30λ2,2x - 30λ2,1x + 30λ1,2x - 15λ1,1x2 + 15λ 2,1x2

c[1] = (n2 + 2n + 1)(2n + 1)n(1200n4λ 2,2λ1,1λ2,1λ1,2 + 23040λ2,1λ1,2 + 23040λ2,2λ1,1 - 320n2λ 2,1λ1,2λ1,1 + 2720n3λ 2,1λ1,2λ1,1 - 480λ2,2n6λ 2,1λ1,2 - 3840λ2,12,2λ1,1 - 384λ2,2n4λ 2,1λ1,2 - 48λ2,2n7λ 2,1λ1,2 - 384n4λ 2,2λ1,1λ1,2 - 3456λ2,2λ1,11,2 + 3792λ2,2n3λ 2,1λ1,2 + 160λ2,1n5λ 2,2λ1,1 - 1440λ2,2n5λ 2,1λ1,2 - 480n6λ 2,2λ1,1λ1,2 - 48n7λ 2,2λ1,1λ1,2 - 1440n5λ 2,2λ1,1λ1,2 + 1280n4λ 2,1λ1,2λ1,1 - 3456λ2,22,1λ1,2 - 864n2λ 2,2λ1,1λ2,1λ1,2 - 2720n3λ 2,2λ1,12 - 7680λ 2,11,1 + 480λ2,22n6λ 1,1 - 189n5λ 2,22λ 1,12 + 36n8λ 2,22λ 1,12 + 3n9λ 2,22λ 1,12 - 160λ 2,12n5λ 1,2 + 9600λ1,21,1 - 36n3λ 2,12λ 1,22 + 432n2λ 2,12λ 1,22 + 11520λ 1,2n2λ 1,1 - 3792n3λ 2,1λ1,22 + 36n8λ 2,12λ 1,22 + 150n7λ 2,12λ 1,22 + 204n6λ 2,12λ 1,22 + 1920λ 1,2n3λ 1,1 - 1920n3λ 2,1λ1,2 - 11520n2λ 2,1λ1,2 - 9600λ2,1λ1,2n - 9600λ2,2λ1,1n + 432λ2,22λ 1,12n2 + 150n7λ 2,22λ 1,12 + 204n6λ 2,22λ 1,12 - 1280n4λ 2,2λ1,12 - 1280λ 2,12n4λ 1,2 - 2720λ2,12n3λ 1,2 + 1920λ2,1n3λ 2,2 + 3456λ2,1λ1,22n - 189n5λ 2,12λ 1,22 + 320n2λ 2,2λ1,12 + 480n6λ 2,1λ1,22 + 48n7λ 2,1λ1,22 - 600n4λ 2,22λ 1,12 - 1920n3λ 2,2λ1,1 - 11520n2λ 2,2λ1,1 - 2016n2λ 2,1λ1,22 + 1440n5λ 2,1λ1,22 - 600n4λ 2,12λ 1,22
- 36n3λ 2,22λ 1,12 + 384n4λ 2,1λ1,22 - 160n5λ 2,2λ1,12 - 408n6λ 2,2λ1,1λ2,1λ1,2 + 378n5λ 2,2λ1,1λ2,1λ1,2 - 72n8λ 2,2λ1,1λ2,1λ1,2 - 300n7λ 2,2λ1,1λ2,1λ1,2 + 72n3λ 2,2λ1,1λ2,1λ1,2 - 6n9λ 2,2λ1,1λ2,1λ1,2 + 160n5λ 2,1λ1,2λ1,1 + 2720λ2,1n3λ 2,2λ1,1 + 2016n2λ 2,2λ1,1λ1,2 + 2016λ2,2n2λ 2,1λ1,2 - 3840λ2,1λ1,21,1 + 3792n3λ 2,2λ1,1λ1,2 - 320λ2,1n2λ 2,2λ1,1 + 320λ2,12n2λ 1,2 + 11520λ2,1n2λ 2,2 + 3840λ2,12 1,2 + 256λ2,22n5 + 3584λ 2,22n3 + 2048λ 2,22n4 - 9984λ 2,22n - 5120λ 2,22n2 - 5120λ 1,22n2 + 3840λ 1,12n - 9984λ 1,22n + 3840λ 2,12n - 30720λ 1,1λ2,1 + 2048λ1,22n4 + 256λ 1,22n5 + 3584λ 1,22n3 - 23040λ 1,2λ1,1 - 23040λ2,2λ2,1 - 18432λ2,2λ1,2 + 3840λ2,2λ1,12n + 1440λ 2,22n5λ 1,1 - 3792λ2,22n3λ 1,1 - 512λ2,2n5λ 1,2 - 4096λ2,2n4λ 1,2 + 384λ2,22n4λ 1,1 + 3n9λ 2,12λ 1,22 + 10240λ 2,2n2λ 1,2 - 2016λ2,22n2λ 1,1 - 7168λ2,2n3λ 1,2 + 19968λ2,21,2 + 3456λ2,22 1,1 + 15360λ2,12 + 15360λ 1,12 + 9216λ 2,22 + 9216λ 1,22 + 1280λ 2,1n4λ 2,2λ1,1 + 9600λ2,12,2 + 48λ2,22n7λ 1,1)
c[2] = -3(2n + 1)n(9980n4λ 2,2λ1,1λ2,1λ1,2 + 56320λ2,1λ1,2 + 56320λ2,2λ1,1 + 160λ2,1n7λ 2,2λ1,1 - 11520n2λ 2,1λ1,2λ1,1 + 14240n3λ 2,1λ1,2λ1,1 - 10816λ2,2n6λ 2,1λ1,2 - 23360λ2,12,2λ1,1 + 1920λ2,1n6λ 2,2λ1,1 + 9344λ2,2n4λ 2,1λ1,2 - 4032λ2,2n7λ 2,1λ1,2 - 704λ2,2n8λ 2,1λ1,2 + 9344n4λ 2,2λ1,1λ1,2 - 48λ2,2n9λ 2,1λ1,2 - 12160λ2,2λ1,11,2 + 26912λ2,2n3λ 2,1λ1,2 + 8960λ2,1n5λ 2,2λ1,1 - 10672λ2,2n5λ 2,1λ1,2 - 10816n6λ 2,2λ1,1λ1,2 - 48n9λ 2,2λ1,1λ1,2 - 4032n7λ 2,2λ1,1λ1,2 - 10672n5λ 2,2λ1,1λ1,2 + 19200n4λ 2,1λ1,2λ1,1 - 12160λ2,22,1λ1,2 - 6384n2λ 2,2λ1,1λ2,1λ1,2 - 14240n3λ 2,2λ1,12 - 130560λ 2,11,1 - 7680λ2,2λ1,1λ1,2 - 7680λ2,2λ2,1λ1,2 - 9600λ2,1λ2,2λ1,1 - 9600λ2,1λ1,2λ1,1 + 48λ2,22n9λ 1,1 + 10816λ2,22n6λ 1,1 - 4005n5λ 2,22λ 1,12 + 1290n8λ 2,22λ 1,12 + 365n9λ 2,22λ 1,12 - 8960λ 2,12n5λ 1,2 + 2560λ1,21,1 + 28n3λ 2,12λ 1,22 + 3192n2λ 2,12λ 1,22 + 52n10λ 2,22λ 1,12 + 80640λ 1,2n2λ 1,1 - 26912n3λ 2,1λ1,22 + 1290n8λ 2,12λ 1,22 + 2169n7λ 2,12λ 1,22 + 456n6λ 2,12λ 1,22 - 512λ 2,2n7λ 1,2 + 60800λ1,2n3λ 1,1 - 17920n4λ 2,1λ1,2 - 60800n3λ 2,1λ1,2 - 80640n2λ 2,1λ1,2 - 2560λ2,1λ1,2n - 2560λ2,2λ1,1n + 3192λ2,22λ 1,12n2 + 3n11λ 2,22λ 1,12 + 2169n7λ 2,22λ 1,12 + 456n6λ 2,22λ 1,12 - 19200n4λ 2,2λ1,12 - 160λ 2,12n7λ 1,2 - 1920λ2,12n6λ 1,2 + 1920λ2,1n5λ 2,2 - 19200λ2,12n4λ 1,2 + 17920λ2,1n4λ 2,2 - 14240λ2,12n3λ 1,2 + 60800λ2,1n3λ 2,2 + 704n8λ 2,1λ1,22 + 12160λ 2,1λ1,22n + 1920λ 1,2n5λ 1,1 + 17920λ1,2n4λ 1,1 - 4005n5λ 2,12λ 1,22 + 11520n2λ 2,2λ1,12 + 10816n6λ 2,1λ1,22 + 48n9λ 2,1λ1,22 + 4032n7λ 2,1λ1,22
- 4990n4λ 2,22λ 1,12 - 17920n4λ 2,2λ1,1 - 1920n5λ 2,2λ1,1 - 60800n3λ 2,2λ1,1 - 80640n2λ 2,2λ1,1 - 1920n5λ 2,1λ1,2 - 9856n2λ 2,1λ1,22 + 10672n5λ 2,1λ1,22 - 4990n4λ 2,12λ 1,22 - 7680λ 2,1n3λ 1,1 + 28n3λ 2,22λ 1,12 - 51200λ 2,1n2λ 1,1 - 9344n4λ 2,1λ1,22 + 3n11λ 2,12λ 1,22 + 52n10λ 2,12λ 1,22 - 8960n5λ 2,2λ1,12 - 6144λ 2,2n6λ 1,2 - 2880λ2,2λ1,12,1λ1,2 - 912n6λ 2,2λ1,1λ2,1λ1,2 + 8010n5λ 2,2λ1,1λ2,1λ1,2 - 2580n8λ 2,2λ1,1λ2,1λ1,2 - 4338n7λ 2,2λ1,1λ2,1λ1,2 - 56n3λ 2,2λ1,1λ2,1λ1,2 - 104n10λ 2,2λ1,1λ2,1λ1,2 - 730n9λ 2,2λ1,1λ2,1λ1,2 - 6n11λ 2,2λ1,1λ2,1λ1,2 + 8960n5λ 2,1λ1,2λ1,1 + 14240λ2,1n3λ 2,2λ1,1 + 9856n2λ 2,2λ1,1λ1,2 + 160n7λ 2,1λ1,2λ1,1 + 1920n6λ 2,1λ1,2λ1,1 + 9856λ2,2n2λ 2,1λ1,2 - 23360λ2,1λ1,21,1 + 26912n3λ 2,2λ1,1λ1,2 - 11520λ2,1n2λ 2,2λ1,1 - 704n8λ 2,2λ1,1λ1,2 + 11520λ2,12n2λ 1,2 + 80640λ2,1n2λ 2,2 + 23360λ2,12 1,2 + 13568λ2,22n5 + 5120λ 2,22n3 + 24576λ 2,22n4 - 23552λ 2,22n - 35328λ 2,22n2 - 35328λ 1,22n2 + 65280λ 1,12n - 23552λ 1,22n + 3840λ 1,12n3 + 25600λ 1,12n2 + 3840λ 2,12n3 + 25600λ 2,12n2 + 65280λ 2,12n + 256λ 2,22n7 + 3072λ 2,22n6 - 117760λ 1,1λ2,1 + 3072λ1,22n6 + 24576λ 1,22n4 + 256λ 1,22n7 + 13568λ 1,22n5 + 5120λ 1,22n3 - 56320λ 1,2λ1,1 - 56320λ2,2λ2,1 - 24576λ2,2λ1,2 + 9600λ2,12λ 1,2 + 9600λ2,2λ1,12 + 7680λ 2,22λ 1,1 + 7680λ2,1λ1,22 + 23360λ 2,2λ1,12n + 1440λ 2,22λ 1,12n + 10672λ 2,22n5λ 1,1 - 26912λ2,22n3λ 1,1 - 160n7λ 2,2λ1,12 - 27136λ 2,2n5λ 1,2 - 49152λ2,2n4λ 1,2 - 9344λ2,22n4λ 1,1 + 365n9λ 2,12λ 1,22 - 1920n6λ 2,2λ1,12 + 70656λ 2,2n2λ 1,2 - 9856λ2,22n2λ 1,1 - 10240λ2,2n3λ 1,2 + 47104λ2,21,2 + 12160λ2,22 1,1 + 1440λ2,12λ 1,22n + 58880λ 2,12 + 58880λ 1,12 + 12288λ 2,22 + 12288λ 1,22 + 19200λ 2,1n4λ 2,2λ1,1 + 2560λ2,12,2 + 4032λ2,22n7λ 1,1 + 704λ2,22n8λ 1,1)
c[3] = 3(n + 1)(34040n4λ 2,2λ1,1λ2,1λ1,2 + 76800λ2,1λ1,2 + 76800λ2,2λ1,1 + 4320λ2,1n7λ 2,2λ1,1 + 76160n2λ 2,1λ1,2λ1,1 + 97920n3λ 2,1λ1,2λ1,1 - 67616λ2,2n6λ 2,1λ1,2 + 38400λ2,12,2λ1,1 + 320λ2,1n8λ 2,2λ1,1 + 23200λ2,1n6λ 2,2λ1,1 + 30640λ2,2n4λ 2,1λ1,2 - 38080λ2,2n7λ 2,1λ1,2 - 10992λ2,2n8λ 2,1λ1,2 + 30640n4λ 2,2λ1,1λ1,2 - 96λ2,2n10λ 2,1λ1,2 - 1616λ2,2n9λ 2,1λ1,2 + 19200λ2,2λ1,11,2 + 68032λ2,2n3λ 2,1λ1,2 + 63840λ2,1n5λ 2,2λ1,1 - 45232λ2,2n5λ 2,1λ1,2 - 67616n6λ 2,2λ1,1λ1,2 - 1616n9λ 2,2λ1,1λ1,2 - 38080n7λ 2,2λ1,1λ1,2 - 96n10λ 2,2λ1,1λ1,2 - 45232n5λ 2,2λ1,1λ1,2 + 99040n4λ 2,1λ1,2λ1,1 + 19200λ2,22,1λ1,2 - 5760n2λ 2,2λ1,1λ2,1λ1,2 - 97920n3λ 2,2λ1,12 - 378880λ 2,11,1 + 96λ2,22n10λ 1,1 + 1616λ2,22n9λ 1,1 + 67616λ2,22n6λ 1,1 - 18064n5λ 2,22λ 1,12 + 6n12λ 2,22λ 1,12 + 11664n8λ 2,22λ 1,12 + 4614n9λ 2,22λ 1,12 - 63840λ 2,12n5λ 1,2 + 58880λ1,21,1 - 1248n3λ 2,12λ 1,22 + 2880n2λ 2,12λ 1,22 + 1021n10λ 2,22λ 1,12 + 218240λ 1,2n2λ 1,1 - 68032n3λ 2,1λ1,22 - 1024n8λ 2,2λ1,2 + 11664n8λ 2,12λ 1,22 + 14577n7λ 2,12λ 1,22 + 1449n6λ 2,12λ 1,22 - 13824λ 2,2n7λ 1,2 + 255360λ1,2n3λ 1,1 - 146560n4λ 2,1λ1,2 - 255360n3λ 2,1λ1,2 - 218240n2λ 2,1λ1,2 - 58880λ2,1λ1,2n - 58880λ2,2λ1,1n + 2880λ2,22λ 1,12n2
+ 3840n6λ 1,2λ1,1 + 121n11λ 2,22λ 1,12 + 14577n7λ 2,22λ 1,12 + 1449n6λ 2,22λ 1,12 - 99040n4λ 2,2λ1,12 - 15360n4λ 1,1λ2,1 - 320λ2,12n8λ 1,2 - 4320λ2,12n7λ 1,2 - 23200λ2,12n6λ 1,2 + 39040λ2,1n5λ 2,2 - 99040λ2,12n4λ 1,2 + 146560λ2,1n4λ 2,2 - 97920λ2,12n3λ 1,2 + 255360λ2,1n3λ 2,2 + 10992n8λ 2,1λ1,22 - 19200λ 2,1λ1,22n + 39040λ 1,2n5λ 1,1 + 146560λ1,2n4λ 1,1 - 18064n5λ 2,12λ 1,22 - 76160n2λ 2,2λ1,12 + 67616n6λ 2,1λ1,22 + 1616n9λ 2,1λ1,22 + 38080n7λ 2,1λ1,22 - 17020n4λ 2,22λ 1,12 - 146560n4λ 2,2λ1,1 - 39040n5λ 2,2λ1,1 - 3840n6λ 2,2λ1,1 - 255360n3λ 2,2λ1,1 - 218240n2λ 2,2λ1,1 - 3840n6λ 2,1λ1,2 - 39040n5λ 2,1λ1,2 - 45760n2λ 2,1λ1,22 + 96n10λ 2,1λ1,22 + 45232n5λ 2,1λ1,22 - 17020n4λ 2,12λ 1,22 + 3840n6λ 2,2λ2,1 - 104960λ2,1n3λ 1,1 - 1248n3λ 2,22λ 1,12 - 268800λ 2,1n2λ 1,1 - 30640n4λ 2,1λ1,22 + 121n11λ 2,12λ 1,22 + 6n12λ 2,12λ 1,22 + 1021n10λ 2,12λ 1,22 - 63840n5λ 2,2λ1,12 - 320n8λ 2,2λ1,12 - 71168λ 2,2n6λ 1,2 - 2898n6λ 2,2λ1,1λ2,1λ1,2 + 36128n5λ 2,2λ1,1λ2,1λ1,2 - 23328n8λ 2,2λ1,1λ2,1λ1,2 - 29154n7λ 2,2λ1,1λ2,1λ1,2 + 2496n3λ 2,2λ1,1λ2,1λ1,2 - 12n12λ 2,2λ1,1λ2,1λ1,2 - 2042n10λ 2,2λ1,1λ2,1λ1,2 - 9228n9λ 2,2λ1,1λ2,1λ1,2 - 242n11λ 2,2λ1,1λ2,1λ1,2 + 63840n5λ 2,1λ1,2λ1,1 + 320n8λ 2,1λ1,2λ1,1 + 97920λ2,1n3λ 2,2λ1,1 + 45760n2λ 2,2λ1,1λ1,2 + 4320n7λ 2,1λ1,2λ1,1 + 23200n6λ 2,1λ1,2λ1,1 + 45760λ2,2n2λ 2,1λ1,2 + 38400λ2,1λ1,21,1 + 68032n3λ 2,2λ1,1λ1,2 + 76160λ2,1n2λ 2,2λ1,1 - 10992n8λ 2,2λ1,1λ1,2 - 76160λ2,12n2λ 1,2 + 218240λ2,1n2λ 2,2 - 38400λ2,12 1,2 + 84480λ2,22n5 - 23808λ 2,22n3 + 79360λ 2,22n4 - 76800λ 2,22n - 106240λ 2,22n2 - 106240λ 1,22n2 + 189440λ 1,12n - 76800λ 1,22n + 52480λ 1,12n3 + 134400λ 1,12n2 + 512n8λ 1,22 + 52480λ 2,12n3 + 134400λ 2,12n2 + 189440λ 2,12n + 6912λ 2,22n7 + 35584λ 2,22n6 + 512n8λ 2,22 + 7680n4λ 1,12 - 307200λ 1,1λ2,1 + 7680n4λ 2,12 + 35584λ 1,22n6 + 79360λ 1,22n4 + 6912λ 1,22n7 + 84480λ 1,22n5 - 23808λ 1,22n3 - 76800λ 1,2λ1,1 - 76800λ2,2λ2,1 - 38400λ2,2λ1,12n + 45232λ 2,22n5λ 1,1 - 68032λ2,22n3λ 1,1 - 4320n7λ 2,2λ1,12 - 168960λ 2,2n5λ 1,2 - 158720λ2,2n4λ 1,2 - 30640λ2,22n4λ 1,1 + 4614n9λ 2,12λ 1,22 - 23200n6λ 2,2λ1,12 + 212480λ 2,2n2λ 1,2 - 45760λ2,22n2λ 1,1 + 47616λ2,2n3λ 1,2 + 153600λ2,21,2 - 19200λ2,22 1,1 + 153600λ2,12 + 153600λ 1,12 + 99040λ 2,1n4λ 2,2λ1,1 + 58880λ2,12,2 + 38080λ2,22n7λ 1,1 + 10992λ2,22n8λ 1,1)
c[4] = -287496n4λ 2,2λ1,1λ2,1λ1,2 - 35520λ2,1n7λ 2,2λ1,1 + 266880n2λ 2,1λ1,2λ1,1 + 139520n3λ 2,1λ1,2λ1,1 + 304272λ2,2n6λ 2,1λ1,2 + 115200λ2,12,2λ1,1 - 5280λ2,1n8λ 2,2λ1,1 - 122880λ2,1n6λ 2,2λ1,1 - 247488λ2,2n4λ 2,1λ1,2 + 213120λ2,2n7λ 2,1λ1,2 + 79488λ2,2n8λ 2,1λ1,2 - 247488n4λ 2,2λ1,1λ1,2 + 1968λ2,2n10λ 2,1λ1,2 + 16992λ2,2n9λ 2,1λ1,2 + 96n11λ 2,2λ1,1λ1,2 - 354816λ2,2n3λ 2,1λ1,2 - 218880λ2,1n5λ 2,2λ1,1 + 96n11λ 2,2λ2,1λ1,2 + 124608λ2,2n5λ 2,1λ1,2 + 304272n6λ 2,2λ1,1λ1,2 + 16992n9λ 2,2λ1,1λ1,2 + 213120n7λ 2,2λ1,1λ1,2 + 1968n10λ 2,2λ1,1λ1,2 + 124608n5λ 2,2λ1,1λ1,2 - 138720n4λ 2,1λ1,2λ1,1 - 320λ2,1n9λ 2,2λ1,1 - 51840n2λ 2,2λ1,1λ2,1λ1,2 - 139520n3λ 2,2λ1,12 + 320λ 2,12n9λ 1,2 - 6λ2,12n13λ 1,22 - 337920λ 2,11,1 - 1968λ2,22n10λ 1,1 - 16992λ2,22n9λ 1,1 - 304272λ2,22n6λ 1,1 + 60684n5λ 2,22λ 1,12 - 147n12λ 2,22λ 1,12 - 87201n8λ 2,22λ 1,12 - 36378n9λ 2,22λ 1,12 + 218880λ 2,12n5λ 1,2 + 460800λ1,21,1 + 320n9λ 2,2λ1,12 + 101088n3λ 2,12λ 1,22 + 25920n2λ 2,12λ 1,22 - 9585n10λ 2,22λ 1,12 + 453120λ 1,2n2λ 1,1 + 354816n3λ 2,1λ1,22 + 16896n8λ 2,2λ1,2 - 87201n8λ 2,12λ 1,22 - 123816n7λ 2,12λ 1,22 - 72735n6λ 2,12λ 1,22 + 110592λ 2,2n7λ 1,2 - 96λ2,22n11λ 1,1 - 6n13λ 2,22λ 1,12 - 199680λ 1,2n3λ 1,1 - 3840n7λ 1,2λ1,1 + 15360n5λ 1,1λ2,1 + 439680n4λ 2,1λ1,2 + 199680n3λ 2,1λ1,2 - 453120n2λ 2,1λ1,2 - 460800λ2,1λ1,2n - 460800λ2,2λ1,1n + 25920λ2,22λ 1,12n2 - 48000n6λ 1,2λ1,1 - 1572n11λ 2,22λ 1,12 - 123816n7λ 2,22λ 1,12 - 72735n6λ 2,22λ 1,12 + 138720n4λ 2,2λ1,12 + 130560n4λ 1,1λ2,1 + 5280λ2,12n8λ 1,2 + 35520λ2,12n7λ 1,2 + 122880λ2,12n6λ 1,2 - 222720λ2,1n5λ 2,2 + 138720λ2,12n4λ 1,2 - 439680λ2,1n4λ 2,2 - 139520λ2,12n3λ 1,2 - 199680λ2,1n3λ 2,2
- 96λ2,1n11λ 1,22 - 79488n8λ 2,1λ1,22 - 3840n7λ 2,2λ2,1 - 222720λ1,2n5λ 1,1 - 439680λ1,2n4λ 1,1 + 60684n5λ 2,12λ 1,22 - 266880n2λ 2,2λ1,12 - 304272n6λ 2,1λ1,22 - 16992n9λ 2,1λ1,22 - 213120n7λ 2,1λ1,22 + 143748n4λ 2,22λ 1,12 + 3840n7λ 2,1λ1,2 + 439680n4λ 2,2λ1,1 + 222720n5λ 2,2λ1,1 + 48000n6λ 2,2λ1,1 + 3840n7λ 2,2λ1,1 + 199680n3λ 2,2λ1,1 - 453120n2λ 2,2λ1,1 + 48000n6λ 2,1λ1,2 + 222720n5λ 2,1λ1,2 + 138240n2λ 2,1λ1,22 - 1968n10λ 2,1λ1,22 - 124608n5λ 2,1λ1,22 + 143748n4λ 2,12λ 1,22 - 48000n6λ 2,2λ2,1 + 368640λ2,1n3λ 1,1 + 101088n3λ 2,22λ 1,12 + 284160λ 2,1n2λ 1,1 + 247488n4λ 2,1λ1,22 - 1572n11λ 2,12λ 1,22 - 147n12λ 2,12λ 1,22 - 9585n10λ 2,12λ 1,22 + 218880n5λ 2,2λ1,12 + 5280n8λ 2,2λ1,12 + 354816λ 2,2n6λ 1,2 + 145470n6λ 2,2λ1,1λ2,1λ1,2 - 121368n5λ 2,2λ1,1λ2,1λ1,2 + 174402n8λ 2,2λ1,1λ2,1λ1,2 + 247632n7λ 2,2λ1,1λ2,1λ1,2 - 202176n3λ 2,2λ1,1λ2,1λ1,2 + 294n12λ 2,2λ1,1λ2,1λ1,2 + 19170n10λ 2,2λ1,1λ2,1λ1,2 + 72756n9λ 2,2λ1,1λ2,1λ1,2 + 3144n11λ 2,2λ1,1λ2,1λ1,2 + 12λ2,1n13λ 2,2λ1,1λ1,2 - 218880n5λ 2,1λ1,2λ1,1 - 5280n8λ 2,1λ1,2λ1,1 + 139520λ2,1n3λ 2,2λ1,1 - 138240n2λ 2,2λ1,1λ1,2 - 35520n7λ 2,1λ1,2λ1,1 - 122880n6λ 2,1λ1,2λ1,1 - 138240λ2,2n2λ 2,1λ1,2 + 115200λ2,1λ1,21,1 - 320λ2,1n9λ 1,2λ1,1 - 354816n3λ 2,2λ1,1λ1,2 + 266880λ2,1n2λ 2,2λ1,1 + 79488n8λ 2,2λ1,1λ1,2 - 266880λ2,12n2λ 1,2 + 453120λ2,1n2λ 2,2 - 115200λ2,12 1,2 - 261120λ2,22n5 + 303104λ 2,22n3 - 46080λ 2,22n4 + 245760λ 2,22n2 + 245760λ 1,22n2 + 168960λ 1,12n - 184320λ 1,12n3 - 142080λ 1,12n2 - 8448n8λ 1,22 - 184320λ 2,12n3 - 142080λ 2,12n2 + 168960λ 2,12n - 55296λ 2,22n7 - 177408λ 2,22n6 - 512n9λ 1,22 - 512n9λ 2,22 - 8448n8λ 2,22 - 65280n4λ 1,12 - 7680n5λ 1,12 - 460800λ 1,1λ2,1 - 65280n4λ 2,12 - 7680n5λ 2,12 - 177408λ 1,22n6 - 46080λ 1,22n4 - 55296λ 1,22n7 - 261120λ 1,22n5 + 303104λ 1,22n3 - 115200λ 2,2λ1,12n - 124608λ 2,22n5λ 1,1 + 354816λ2,22n3λ 1,1 + 35520n7λ 2,2λ1,12 + 522240λ 2,2n5λ 1,2 + 92160λ2,2n4λ 1,2 + 247488λ2,22n4λ 1,1 - 36378n9λ 2,12λ 1,22 + 122880n6λ 2,2λ1,12 - 491520λ 2,2n2λ 1,2 + 138240λ2,22n2λ 1,1 - 606208λ2,2n3λ 1,2 + 1024n9λ 2,2λ1,2 + 230400λ2,12 + 230400λ 1,12 - 138720λ 2,1n4λ 2,2λ1,1 + 460800λ2,12,2 - 213120λ2,22n7λ 1,1 - 79488λ2,22n8λ 1,1

Expressions for all quantities involved are provided below.

 
Psi_1:=-15*lambda[1,1]-30*lambda[1,2]+15*lambda[2,1]-30*lambda[2,1]*lambda[1,2]+30*lambda[2,2]+30*lambda[2,2]*lambda[1,1]+30*lambda[1,1]*x-30*lambda[2,2]*x-30*lambda[2,1]*x+30*lambda[1,2]*x-15*lambda[1,1]*x^2+15*lambda[2,1]*x^2;  
 
c[1]:=(n^2+2*n+1)*(2*n+1)*n*(1200*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+23040*lambda[2,1]*lambda[1,2]+23040*lambda[2,2]*lambda[1,1]-320*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+2720*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-480*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]-3840*lambda[2,1]*n*lambda[2,2]*lambda[1,1]-384*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-48*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-384*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-3456*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+3792*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+160*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]-1440*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-480*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-48*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-1440*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+1280*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-3456*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-864*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2720*n^3*lambda[2,2]*lambda[1,1]^2-7680*lambda[2,1]*n*lambda[1,1]+480*lambda[2,2]^2*n^6*lambda[1,1]-189*n^5*lambda[2,2]^2*lambda[1,1]^2+36*n^8*lambda[2,2]^2*lambda[1,1]^2+3*n^9*lambda[2,2]^2*lambda[1,1]^2-160*lambda[2,1]^2*n^5*lambda[1,2]+9600*lambda[1,2]*n*lambda[1,1]-36*n^3*lambda[2,1]^2*lambda[1,2]^2+432*n^2*lambda[2,1]^2*lambda[1,2]^2+11520*lambda[1,2]*n^2*lambda[1,1]-3792*n^3*lambda[2,1]*lambda[1,2]^2+36*n^8*lambda[2,1]^2*lambda[1,2]^2+150*n^7*lambda[2,1]^2*lambda[1,2]^2+204*n^6*lambda[2,1]^2*lambda[1,2]^2+1920*lambda[1,2]*n^3*lambda[1,1]-1920*n^3*lambda[2,1]*lambda[1,2]-11520*n^2*lambda[2,1]*lambda[1,2]-9600*lambda[2,1]*lambda[1,2]*n-9600*lambda[2,2]*lambda[1,1]*n+432*lambda[2,2]^2*lambda[1,1]^2*n^2+150*n^7*lambda[2,2]^2*lambda[1,1]^2+204*n^6*lambda[2,2]^2*lambda[1,1]^2-1280*n^4*lambda[2,2]*lambda[1,1]^2-1280*lambda[2,1]^2*n^4*lambda[1,2]-2720*lambda[2,1]^2*n^3*lambda[1,2]+1920*lambda[2,1]*n^3*lambda[2,2]+3456*lambda[2,1]*lambda[1,2]^2*n-189*n^5*lambda[2,1]^2*lambda[1,2]^2+320*n^2*lambda[2,2]*lambda[1,1]^2+480*n^6*lambda[2,1]*lambda[1,2]^2+48*n^7*lambda[2,1]*lambda[1,2]^2-600*n^4*lambda[2,2]^2*lambda[1,1]^2-1920*n^3*lambda[2,2]*lambda[1,1]-11520*n^2*lambda[2,2]*lambda[1,1]-2016*n^2*lambda[2,1]*lambda[1,2]^2+1440*n^5*lambda[2,1]*lambda[1,2]^2-600*n^4*lambda[2,1]^2*lambda[1,2]^2-36*n^3*lambda[2,2]^2*lambda[1,1]^2+384*n^4*lambda[2,1]*lambda[1,2]^2-160*n^5*lambda[2,2]*lambda[1,1]^2-408*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+378*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-72*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-300*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+72*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-6*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+160*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+2720*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+2016*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+2016*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-3840*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+3792*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]-320*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+320*lambda[2,1]^2*n^2*lambda[1,2]+11520*lambda[2,1]*n^2*lambda[2,2]+3840*lambda[2,1]^2*n*lambda[1,2]+256*lambda[2,2]^2*n^5+3584*lambda[2,2]^2*n^3+2048*lambda[2,2]^2*n^4-9984*lambda[2,2]^2*n-5120*lambda[2,2]^2*n^2-5120*lambda[1,2]^2*n^2+3840*lambda[1,1]^2*n-9984*lambda[1,2]^2*n+3840*lambda[2,1]^2*n-30720*lambda[1,1]*lambda[2,1]+2048*lambda[1,2]^2*n^4+256*lambda[1,2]^2*n^5+3584*lambda[1,2]^2*n^3-23040*lambda[1,2]*lambda[1,1]-23040*lambda[2,2]*lambda[2,1]-18432*lambda[2,2]*lambda[1,2]+3840*lambda[2,2]*lambda[1,1]^2*n+1440*lambda[2,2]^2*n^5*lambda[1,1]-3792*lambda[2,2]^2*n^3*lambda[1,1]-512*lambda[2,2]*n^5*lambda[1,2]-4096*lambda[2,2]*n^4*lambda[1,2]+384*lambda[2,2]^2*n^4*lambda[1,1]+3*n^9*lambda[2,1]^2*lambda[1,2]^2+10240*lambda[2,2]*n^2*lambda[1,2]-2016*lambda[2,2]^2*n^2*lambda[1,1]-7168*lambda[2,2]*n^3*lambda[1,2]+19968*lambda[2,2]*n*lambda[1,2]+3456*lambda[2,2]^2*n*lambda[1,1]+15360*lambda[2,1]^2+15360*lambda[1,1]^2+9216*lambda[2,2]^2+9216*lambda[1,2]^2+1280*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+9600*lambda[2,1]*n*lambda[2,2]+48*lambda[2,2]^2*n^7*lambda[1,1]);  
 
c[2]:=-3*(2*n+1)*n*(9980*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+56320*lambda[2,1]*lambda[1,2]+56320*lambda[2,2]*lambda[1,1]+160*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]-11520*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+14240*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-10816*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]-23360*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+1920*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+9344*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-4032*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-704*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+9344*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-48*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]-12160*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+26912*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+8960*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]-10672*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-10816*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-48*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]-4032*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-10672*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+19200*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-12160*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-6384*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-14240*n^3*lambda[2,2]*lambda[1,1]^2-130560*lambda[2,1]*n*lambda[1,1]-7680*lambda[2,2]*lambda[1,1]*lambda[1,2]-7680*lambda[2,2]*lambda[2,1]*lambda[1,2]-9600*lambda[2,1]*lambda[2,2]*lambda[1,1]-9600*lambda[2,1]*lambda[1,2]*lambda[1,1]+48*lambda[2,2]^2*n^9*lambda[1,1]+10816*lambda[2,2]^2*n^6*lambda[1,1]-4005*n^5*lambda[2,2]^2*lambda[1,1]^2+1290*n^8*lambda[2,2]^2*lambda[1,1]^2+365*n^9*lambda[2,2]^2*lambda[1,1]^2-8960*lambda[2,1]^2*n^5*lambda[1,2]+2560*lambda[1,2]*n*lambda[1,1]+28*n^3*lambda[2,1]^2*lambda[1,2]^2+3192*n^2*lambda[2,1]^2*lambda[1,2]^2+52*n^10*lambda[2,2]^2*lambda[1,1]^2+80640*lambda[1,2]*n^2*lambda[1,1]-26912*n^3*lambda[2,1]*lambda[1,2]^2+1290*n^8*lambda[2,1]^2*lambda[1,2]^2+2169*n^7*lambda[2,1]^2*lambda[1,2]^2+456*n^6*lambda[2,1]^2*lambda[1,2]^2-512*lambda[2,2]*n^7*lambda[1,2]+60800*lambda[1,2]*n^3*lambda[1,1]-17920*n^4*lambda[2,1]*lambda[1,2]-60800*n^3*lambda[2,1]*lambda[1,2]-80640*n^2*lambda[2,1]*lambda[1,2]-2560*lambda[2,1]*lambda[1,2]*n-2560*lambda[2,2]*lambda[1,1]*n+3192*lambda[2,2]^2*lambda[1,1]^2*n^2+3*n^11*lambda[2,2]^2*lambda[1,1]^2+2169*n^7*lambda[2,2]^2*lambda[1,1]^2+456*n^6*lambda[2,2]^2*lambda[1,1]^2-19200*n^4*lambda[2,2]*lambda[1,1]^2-160*lambda[2,1]^2*n^7*lambda[1,2]-1920*lambda[2,1]^2*n^6*lambda[1,2]+1920*lambda[2,1]*n^5*lambda[2,2]-19200*lambda[2,1]^2*n^4*lambda[1,2]+17920*lambda[2,1]*n^4*lambda[2,2]-14240*lambda[2,1]^2*n^3*lambda[1,2]+60800*lambda[2,1]*n^3*lambda[2,2]+704*n^8*lambda[2,1]*lambda[1,2]^2+12160*lambda[2,1]*lambda[1,2]^2*n+1920*lambda[1,2]*n^5*lambda[1,1]+17920*lambda[1,2]*n^4*lambda[1,1]-4005*n^5*lambda[2,1]^2*lambda[1,2]^2+11520*n^2*lambda[2,2]*lambda[1,1]^2+10816*n^6*lambda[2,1]*lambda[1,2]^2+48*n^9*lambda[2,1]*lambda[1,2]^2+4032*n^7*lambda[2,1]*lambda[1,2]^2-4990*n^4*lambda[2,2]^2*lambda[1,1]^2-17920*n^4*lambda[2,2]*lambda[1,1]-1920*n^5*lambda[2,2]*lambda[1,1]-60800*n^3*lambda[2,2]*lambda[1,1]-80640*n^2*lambda[2,2]*lambda[1,1]-1920*n^5*lambda[2,1]*lambda[1,2]-9856*n^2*lambda[2,1]*lambda[1,2]^2+10672*n^5*lambda[2,1]*lambda[1,2]^2-4990*n^4*lambda[2,1]^2*lambda[1,2]^2-7680*lambda[2,1]*n^3*lambda[1,1]+28*n^3*lambda[2,2]^2*lambda[1,1]^2-51200*lambda[2,1]*n^2*lambda[1,1]-9344*n^4*lambda[2,1]*lambda[1,2]^2+3*n^11*lambda[2,1]^2*lambda[1,2]^2+52*n^10*lambda[2,1]^2*lambda[1,2]^2-8960*n^5*lambda[2,2]*lambda[1,1]^2-6144*lambda[2,2]*n^6*lambda[1,2]-2880*lambda[2,2]*lambda[1,1]*n*lambda[2,1]*lambda[1,2]-912*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+8010*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2580*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-4338*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-56*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-104*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-730*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-6*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+8960*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+14240*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+9856*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+160*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]+1920*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]+9856*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]-23360*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+26912*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]-11520*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-704*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]+11520*lambda[2,1]^2*n^2*lambda[1,2]+80640*lambda[2,1]*n^2*lambda[2,2]+23360*lambda[2,1]^2*n*lambda[1,2]+13568*lambda[2,2]^2*n^5+5120*lambda[2,2]^2*n^3+24576*lambda[2,2]^2*n^4-23552*lambda[2,2]^2*n-35328*lambda[2,2]^2*n^2-35328*lambda[1,2]^2*n^2+65280*lambda[1,1]^2*n-23552*lambda[1,2]^2*n+3840*lambda[1,1]^2*n^3+25600*lambda[1,1]^2*n^2+3840*lambda[2,1]^2*n^3+25600*lambda[2,1]^2*n^2+65280*lambda[2,1]^2*n+256*lambda[2,2]^2*n^7+3072*lambda[2,2]^2*n^6-117760*lambda[1,1]*lambda[2,1]+3072*lambda[1,2]^2*n^6+24576*lambda[1,2]^2*n^4+256*lambda[1,2]^2*n^7+13568*lambda[1,2]^2*n^5+5120*lambda[1,2]^2*n^3-56320*lambda[1,2]*lambda[1,1]-56320*lambda[2,2]*lambda[2,1]-24576*lambda[2,2]*lambda[1,2]+9600*lambda[2,1]^2*lambda[1,2]+9600*lambda[2,2]*lambda[1,1]^2+7680*lambda[2,2]^2*lambda[1,1]+7680*lambda[2,1]*lambda[1,2]^2+23360*lambda[2,2]*lambda[1,1]^2*n+1440*lambda[2,2]^2*lambda[1,1]^2*n+10672*lambda[2,2]^2*n^5*lambda[1,1]-26912*lambda[2,2]^2*n^3*lambda[1,1]-160*n^7*lambda[2,2]*lambda[1,1]^2-27136*lambda[2,2]*n^5*lambda[1,2]-49152*lambda[2,2]*n^4*lambda[1,2]-9344*lambda[2,2]^2*n^4*lambda[1,1]+365*n^9*lambda[2,1]^2*lambda[1,2]^2-1920*n^6*lambda[2,2]*lambda[1,1]^2+70656*lambda[2,2]*n^2*lambda[1,2]-9856*lambda[2,2]^2*n^2*lambda[1,1]-10240*lambda[2,2]*n^3*lambda[1,2]+47104*lambda[2,2]*n*lambda[1,2]+12160*lambda[2,2]^2*n*lambda[1,1]+1440*lambda[2,1]^2*lambda[1,2]^2*n+58880*lambda[2,1]^2+58880*lambda[1,1]^2+12288*lambda[2,2]^2+12288*lambda[1,2]^2+19200*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+2560*lambda[2,1]*n*lambda[2,2]+4032*lambda[2,2]^2*n^7*lambda[1,1]+704*lambda[2,2]^2*n^8*lambda[1,1]);  
 
c[3]:=3*(n+1)*(34040*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+76800*lambda[2,1]*lambda[1,2]+76800*lambda[2,2]*lambda[1,1]+4320*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]+76160*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+97920*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]-67616*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+38400*lambda[2,1]*n*lambda[2,2]*lambda[1,1]+320*lambda[2,1]*n^8*lambda[2,2]*lambda[1,1]+23200*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]+30640*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]-38080*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]-10992*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]+30640*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]-96*lambda[2,2]*n^10*lambda[2,1]*lambda[1,2]-1616*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]+19200*lambda[2,2]*lambda[1,1]*n*lambda[1,2]+68032*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]+63840*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]-45232*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]-67616*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]-1616*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]-38080*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]-96*n^10*lambda[2,2]*lambda[1,1]*lambda[1,2]-45232*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]+99040*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]+19200*lambda[2,2]*n*lambda[2,1]*lambda[1,2]-5760*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-97920*n^3*lambda[2,2]*lambda[1,1]^2-378880*lambda[2,1]*n*lambda[1,1]+96*lambda[2,2]^2*n^10*lambda[1,1]+1616*lambda[2,2]^2*n^9*lambda[1,1]+67616*lambda[2,2]^2*n^6*lambda[1,1]-18064*n^5*lambda[2,2]^2*lambda[1,1]^2+6*n^12*lambda[2,2]^2*lambda[1,1]^2+11664*n^8*lambda[2,2]^2*lambda[1,1]^2+4614*n^9*lambda[2,2]^2*lambda[1,1]^2-63840*lambda[2,1]^2*n^5*lambda[1,2]+58880*lambda[1,2]*n*lambda[1,1]-1248*n^3*lambda[2,1]^2*lambda[1,2]^2+2880*n^2*lambda[2,1]^2*lambda[1,2]^2+1021*n^10*lambda[2,2]^2*lambda[1,1]^2+218240*lambda[1,2]*n^2*lambda[1,1]-68032*n^3*lambda[2,1]*lambda[1,2]^2-1024*n^8*lambda[2,2]*lambda[1,2]+11664*n^8*lambda[2,1]^2*lambda[1,2]^2+14577*n^7*lambda[2,1]^2*lambda[1,2]^2+1449*n^6*lambda[2,1]^2*lambda[1,2]^2-13824*lambda[2,2]*n^7*lambda[1,2]+255360*lambda[1,2]*n^3*lambda[1,1]-146560*n^4*lambda[2,1]*lambda[1,2]-255360*n^3*lambda[2,1]*lambda[1,2]-218240*n^2*lambda[2,1]*lambda[1,2]-58880*lambda[2,1]*lambda[1,2]*n-58880*lambda[2,2]*lambda[1,1]*n+2880*lambda[2,2]^2*lambda[1,1]^2*n^2+3840*n^6*lambda[1,2]*lambda[1,1]+121*n^11*lambda[2,2]^2*lambda[1,1]^2+14577*n^7*lambda[2,2]^2*lambda[1,1]^2+1449*n^6*lambda[2,2]^2*lambda[1,1]^2-99040*n^4*lambda[2,2]*lambda[1,1]^2-15360*n^4*lambda[1,1]*lambda[2,1]-320*lambda[2,1]^2*n^8*lambda[1,2]-4320*lambda[2,1]^2*n^7*lambda[1,2]-23200*lambda[2,1]^2*n^6*lambda[1,2]+39040*lambda[2,1]*n^5*lambda[2,2]-99040*lambda[2,1]^2*n^4*lambda[1,2]+146560*lambda[2,1]*n^4*lambda[2,2]-97920*lambda[2,1]^2*n^3*lambda[1,2]+255360*lambda[2,1]*n^3*lambda[2,2]+10992*n^8*lambda[2,1]*lambda[1,2]^2-19200*lambda[2,1]*lambda[1,2]^2*n+39040*lambda[1,2]*n^5*lambda[1,1]+146560*lambda[1,2]*n^4*lambda[1,1]-18064*n^5*lambda[2,1]^2*lambda[1,2]^2-76160*n^2*lambda[2,2]*lambda[1,1]^2+67616*n^6*lambda[2,1]*lambda[1,2]^2+1616*n^9*lambda[2,1]*lambda[1,2]^2+38080*n^7*lambda[2,1]*lambda[1,2]^2-17020*n^4*lambda[2,2]^2*lambda[1,1]^2-146560*n^4*lambda[2,2]*lambda[1,1]-39040*n^5*lambda[2,2]*lambda[1,1]-3840*n^6*lambda[2,2]*lambda[1,1]-255360*n^3*lambda[2,2]*lambda[1,1]-218240*n^2*lambda[2,2]*lambda[1,1]-3840*n^6*lambda[2,1]*lambda[1,2]-39040*n^5*lambda[2,1]*lambda[1,2]-45760*n^2*lambda[2,1]*lambda[1,2]^2+96*n^10*lambda[2,1]*lambda[1,2]^2+45232*n^5*lambda[2,1]*lambda[1,2]^2-17020*n^4*lambda[2,1]^2*lambda[1,2]^2+3840*n^6*lambda[2,2]*lambda[2,1]-104960*lambda[2,1]*n^3*lambda[1,1]-1248*n^3*lambda[2,2]^2*lambda[1,1]^2-268800*lambda[2,1]*n^2*lambda[1,1]-30640*n^4*lambda[2,1]*lambda[1,2]^2+121*n^11*lambda[2,1]^2*lambda[1,2]^2+6*n^12*lambda[2,1]^2*lambda[1,2]^2+1021*n^10*lambda[2,1]^2*lambda[1,2]^2-63840*n^5*lambda[2,2]*lambda[1,1]^2-320*n^8*lambda[2,2]*lambda[1,1]^2-71168*lambda[2,2]*n^6*lambda[1,2]-2898*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+36128*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-23328*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-29154*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+2496*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-12*n^12*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-2042*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-9228*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-242*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+63840*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]+320*n^8*lambda[2,1]*lambda[1,2]*lambda[1,1]+97920*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]+45760*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]+4320*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]+23200*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]+45760*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]+38400*lambda[2,1]*lambda[1,2]*n*lambda[1,1]+68032*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]+76160*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]-10992*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]-76160*lambda[2,1]^2*n^2*lambda[1,2]+218240*lambda[2,1]*n^2*lambda[2,2]-38400*lambda[2,1]^2*n*lambda[1,2]+84480*lambda[2,2]^2*n^5-23808*lambda[2,2]^2*n^3+79360*lambda[2,2]^2*n^4-76800*lambda[2,2]^2*n-106240*lambda[2,2]^2*n^2-106240*lambda[1,2]^2*n^2+189440*lambda[1,1]^2*n-76800*lambda[1,2]^2*n+52480*lambda[1,1]^2*n^3+134400*lambda[1,1]^2*n^2+512*n^8*lambda[1,2]^2+52480*lambda[2,1]^2*n^3+134400*lambda[2,1]^2*n^2+189440*lambda[2,1]^2*n+6912*lambda[2,2]^2*n^7+35584*lambda[2,2]^2*n^6+512*n^8*lambda[2,2]^2+7680*n^4*lambda[1,1]^2-307200*lambda[1,1]*lambda[2,1]+7680*n^4*lambda[2,1]^2+35584*lambda[1,2]^2*n^6+79360*lambda[1,2]^2*n^4+6912*lambda[1,2]^2*n^7+84480*lambda[1,2]^2*n^5-23808*lambda[1,2]^2*n^3-76800*lambda[1,2]*lambda[1,1]-76800*lambda[2,2]*lambda[2,1]-38400*lambda[2,2]*lambda[1,1]^2*n+45232*lambda[2,2]^2*n^5*lambda[1,1]-68032*lambda[2,2]^2*n^3*lambda[1,1]-4320*n^7*lambda[2,2]*lambda[1,1]^2-168960*lambda[2,2]*n^5*lambda[1,2]-158720*lambda[2,2]*n^4*lambda[1,2]-30640*lambda[2,2]^2*n^4*lambda[1,1]+4614*n^9*lambda[2,1]^2*lambda[1,2]^2-23200*n^6*lambda[2,2]*lambda[1,1]^2+212480*lambda[2,2]*n^2*lambda[1,2]-45760*lambda[2,2]^2*n^2*lambda[1,1]+47616*lambda[2,2]*n^3*lambda[1,2]+153600*lambda[2,2]*n*lambda[1,2]-19200*lambda[2,2]^2*n*lambda[1,1]+153600*lambda[2,1]^2+153600*lambda[1,1]^2+99040*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+58880*lambda[2,1]*n*lambda[2,2]+38080*lambda[2,2]^2*n^7*lambda[1,1]+10992*lambda[2,2]^2*n^8*lambda[1,1]);  
 
c[4]:=-287496*n^4*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-35520*lambda[2,1]*n^7*lambda[2,2]*lambda[1,1]+266880*n^2*lambda[2,1]*lambda[1,2]*lambda[1,1]+139520*n^3*lambda[2,1]*lambda[1,2]*lambda[1,1]+304272*lambda[2,2]*n^6*lambda[2,1]*lambda[1,2]+115200*lambda[2,1]*n*lambda[2,2]*lambda[1,1]-5280*lambda[2,1]*n^8*lambda[2,2]*lambda[1,1]-122880*lambda[2,1]*n^6*lambda[2,2]*lambda[1,1]-247488*lambda[2,2]*n^4*lambda[2,1]*lambda[1,2]+213120*lambda[2,2]*n^7*lambda[2,1]*lambda[1,2]+79488*lambda[2,2]*n^8*lambda[2,1]*lambda[1,2]-247488*n^4*lambda[2,2]*lambda[1,1]*lambda[1,2]+1968*lambda[2,2]*n^10*lambda[2,1]*lambda[1,2]+16992*lambda[2,2]*n^9*lambda[2,1]*lambda[1,2]+96*n^11*lambda[2,2]*lambda[1,1]*lambda[1,2]-354816*lambda[2,2]*n^3*lambda[2,1]*lambda[1,2]-218880*lambda[2,1]*n^5*lambda[2,2]*lambda[1,1]+96*n^11*lambda[2,2]*lambda[2,1]*lambda[1,2]+124608*lambda[2,2]*n^5*lambda[2,1]*lambda[1,2]+304272*n^6*lambda[2,2]*lambda[1,1]*lambda[1,2]+16992*n^9*lambda[2,2]*lambda[1,1]*lambda[1,2]+213120*n^7*lambda[2,2]*lambda[1,1]*lambda[1,2]+1968*n^10*lambda[2,2]*lambda[1,1]*lambda[1,2]+124608*n^5*lambda[2,2]*lambda[1,1]*lambda[1,2]-138720*n^4*lambda[2,1]*lambda[1,2]*lambda[1,1]-320*lambda[2,1]*n^9*lambda[2,2]*lambda[1,1]-51840*n^2*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-139520*n^3*lambda[2,2]*lambda[1,1]^2+320*lambda[2,1]^2*n^9*lambda[1,2]-6*lambda[2,1]^2*n^13*lambda[1,2]^2-337920*lambda[2,1]*n*lambda[1,1]-1968*lambda[2,2]^2*n^10*lambda[1,1]-16992*lambda[2,2]^2*n^9*lambda[1,1]-304272*lambda[2,2]^2*n^6*lambda[1,1]+60684*n^5*lambda[2,2]^2*lambda[1,1]^2-147*n^12*lambda[2,2]^2*lambda[1,1]^2-87201*n^8*lambda[2,2]^2*lambda[1,1]^2-36378*n^9*lambda[2,2]^2*lambda[1,1]^2+218880*lambda[2,1]^2*n^5*lambda[1,2]+460800*lambda[1,2]*n*lambda[1,1]+320*n^9*lambda[2,2]*lambda[1,1]^2+101088*n^3*lambda[2,1]^2*lambda[1,2]^2+25920*n^2*lambda[2,1]^2*lambda[1,2]^2-9585*n^10*lambda[2,2]^2*lambda[1,1]^2+453120*lambda[1,2]*n^2*lambda[1,1]+354816*n^3*lambda[2,1]*lambda[1,2]^2+16896*n^8*lambda[2,2]*lambda[1,2]-87201*n^8*lambda[2,1]^2*lambda[1,2]^2-123816*n^7*lambda[2,1]^2*lambda[1,2]^2-72735*n^6*lambda[2,1]^2*lambda[1,2]^2+110592*lambda[2,2]*n^7*lambda[1,2]-96*lambda[2,2]^2*n^11*lambda[1,1]-6*n^13*lambda[2,2]^2*lambda[1,1]^2-199680*lambda[1,2]*n^3*lambda[1,1]-3840*n^7*lambda[1,2]*lambda[1,1]+15360*n^5*lambda[1,1]*lambda[2,1]+439680*n^4*lambda[2,1]*lambda[1,2]+199680*n^3*lambda[2,1]*lambda[1,2]-453120*n^2*lambda[2,1]*lambda[1,2]-460800*lambda[2,1]*lambda[1,2]*n-460800*lambda[2,2]*lambda[1,1]*n+25920*lambda[2,2]^2*lambda[1,1]^2*n^2-48000*n^6*lambda[1,2]*lambda[1,1]-1572*n^11*lambda[2,2]^2*lambda[1,1]^2-123816*n^7*lambda[2,2]^2*lambda[1,1]^2-72735*n^6*lambda[2,2]^2*lambda[1,1]^2+138720*n^4*lambda[2,2]*lambda[1,1]^2+130560*n^4*lambda[1,1]*lambda[2,1]+5280*lambda[2,1]^2*n^8*lambda[1,2]+35520*lambda[2,1]^2*n^7*lambda[1,2]+122880*lambda[2,1]^2*n^6*lambda[1,2]-222720*lambda[2,1]*n^5*lambda[2,2]+138720*lambda[2,1]^2*n^4*lambda[1,2]-439680*lambda[2,1]*n^4*lambda[2,2]-139520*lambda[2,1]^2*n^3*lambda[1,2]-199680*lambda[2,1]*n^3*lambda[2,2]-96*lambda[2,1]*n^11*lambda[1,2]^2-79488*n^8*lambda[2,1]*lambda[1,2]^2-3840*n^7*lambda[2,2]*lambda[2,1]-222720*lambda[1,2]*n^5*lambda[1,1]-439680*lambda[1,2]*n^4*lambda[1,1]+60684*n^5*lambda[2,1]^2*lambda[1,2]^2-266880*n^2*lambda[2,2]*lambda[1,1]^2-304272*n^6*lambda[2,1]*lambda[1,2]^2-16992*n^9*lambda[2,1]*lambda[1,2]^2-213120*n^7*lambda[2,1]*lambda[1,2]^2+143748*n^4*lambda[2,2]^2*lambda[1,1]^2+3840*n^7*lambda[2,1]*lambda[1,2]+439680*n^4*lambda[2,2]*lambda[1,1]+222720*n^5*lambda[2,2]*lambda[1,1]+48000*n^6*lambda[2,2]*lambda[1,1]+3840*n^7*lambda[2,2]*lambda[1,1]+199680*n^3*lambda[2,2]*lambda[1,1]-453120*n^2*lambda[2,2]*lambda[1,1]+48000*n^6*lambda[2,1]*lambda[1,2]+222720*n^5*lambda[2,1]*lambda[1,2]+138240*n^2*lambda[2,1]*lambda[1,2]^2-1968*n^10*lambda[2,1]*lambda[1,2]^2-124608*n^5*lambda[2,1]*lambda[1,2]^2+143748*n^4*lambda[2,1]^2*lambda[1,2]^2-48000*n^6*lambda[2,2]*lambda[2,1]+368640*lambda[2,1]*n^3*lambda[1,1]+101088*n^3*lambda[2,2]^2*lambda[1,1]^2+284160*lambda[2,1]*n^2*lambda[1,1]+247488*n^4*lambda[2,1]*lambda[1,2]^2-1572*n^11*lambda[2,1]^2*lambda[1,2]^2-147*n^12*lambda[2,1]^2*lambda[1,2]^2-9585*n^10*lambda[2,1]^2*lambda[1,2]^2+218880*n^5*lambda[2,2]*lambda[1,1]^2+5280*n^8*lambda[2,2]*lambda[1,1]^2+354816*lambda[2,2]*n^6*lambda[1,2]+145470*n^6*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-121368*n^5*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+174402*n^8*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+247632*n^7*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]-202176*n^3*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+294*n^12*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+19170*n^10*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+72756*n^9*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+3144*n^11*lambda[2,2]*lambda[1,1]*lambda[2,1]*lambda[1,2]+12*lambda[2,1]*n^13*lambda[2,2]*lambda[1,1]*lambda[1,2]-218880*n^5*lambda[2,1]*lambda[1,2]*lambda[1,1]-5280*n^8*lambda[2,1]*lambda[1,2]*lambda[1,1]+139520*lambda[2,1]*n^3*lambda[2,2]*lambda[1,1]-138240*n^2*lambda[2,2]*lambda[1,1]*lambda[1,2]-35520*n^7*lambda[2,1]*lambda[1,2]*lambda[1,1]-122880*n^6*lambda[2,1]*lambda[1,2]*lambda[1,1]-138240*lambda[2,2]*n^2*lambda[2,1]*lambda[1,2]+115200*lambda[2,1]*lambda[1,2]*n*lambda[1,1]-320*lambda[2,1]*n^9*lambda[1,2]*lambda[1,1]-354816*n^3*lambda[2,2]*lambda[1,1]*lambda[1,2]+266880*lambda[2,1]*n^2*lambda[2,2]*lambda[1,1]+79488*n^8*lambda[2,2]*lambda[1,1]*lambda[1,2]-266880*lambda[2,1]^2*n^2*lambda[1,2]+453120*lambda[2,1]*n^2*lambda[2,2]-115200*lambda[2,1]^2*n*lambda[1,2]-261120*lambda[2,2]^2*n^5+303104*lambda[2,2]^2*n^3-46080*lambda[2,2]^2*n^4+245760*lambda[2,2]^2*n^2+245760*lambda[1,2]^2*n^2+168960*lambda[1,1]^2*n-184320*lambda[1,1]^2*n^3-142080*lambda[1,1]^2*n^2-8448*n^8*lambda[1,2]^2-184320*lambda[2,1]^2*n^3-142080*lambda[2,1]^2*n^2+168960*lambda[2,1]^2*n-55296*lambda[2,2]^2*n^7-177408*lambda[2,2]^2*n^6-512*n^9*lambda[1,2]^2-512*n^9*lambda[2,2]^2-8448*n^8*lambda[2,2]^2-65280*n^4*lambda[1,1]^2-7680*n^5*lambda[1,1]^2-460800*lambda[1,1]*lambda[2,1]-65280*n^4*lambda[2,1]^2-7680*n^5*lambda[2,1]^2-177408*lambda[1,2]^2*n^6-46080*lambda[1,2]^2*n^4-55296*lambda[1,2]^2*n^7-261120*lambda[1,2]^2*n^5+303104*lambda[1,2]^2*n^3-115200*lambda[2,2]*lambda[1,1]^2*n-124608*lambda[2,2]^2*n^5*lambda[1,1]+354816*lambda[2,2]^2*n^3*lambda[1,1]+35520*n^7*lambda[2,2]*lambda[1,1]^2+522240*lambda[2,2]*n^5*lambda[1,2]+92160*lambda[2,2]*n^4*lambda[1,2]+247488*lambda[2,2]^2*n^4*lambda[1,1]-36378*n^9*lambda[2,1]^2*lambda[1,2]^2+122880*n^6*lambda[2,2]*lambda[1,1]^2-491520*lambda[2,2]*n^2*lambda[1,2]+138240*lambda[2,2]^2*n^2*lambda[1,1]-606208*lambda[2,2]*n^3*lambda[1,2]+1024*n^9*lambda[2,2]*lambda[1,2]+230400*lambda[2,1]^2+230400*lambda[1,1]^2-138720*lambda[2,1]*n^4*lambda[2,2]*lambda[1,1]+460800*lambda[2,1]*n*lambda[2,2]-213120*lambda[2,2]^2*n^7*lambda[1,1]-79488*lambda[2,2]^2*n^8*lambda[1,1];