Introductory UNIX/Linux for Scientific Researchers

© Dr J. Steven Dobbie, Oct 22, 2007

Workshop: Feb 28, 2014
Overview

A full day hands-on workshop for researchers that will instruct as to how to use a UNIX/LINUX computer. The workshop begins with basic UNIX/LINUX commands and how to understand the organization of files and directories/folders on a UNIX/LINUX system. Students then learn how to deal with data: how to find it, extract key information, and compare with data of other files. Then you learn how to compress and package up data files and directories. Then how to make these data files accessible to other users on the system or through the network. How to log into other systems and

transfer data to other computers. The workshop ends with learning how to monitor, kill, and balance the cpu usage of programs running on your UNIX/LINUX computer.

Students will learn hands-on at a computer and will be instructed through a combination of tutorial style lectures and multiple practice sessions where the student will undertake practice tasks to reinforce their learning.

Prerequisites

This workshop is designed for students with no prior experience in UNIX/LINUX; however, we do expect students to have some experience with computers, e.g. Microsoft windows.

Syllabus

1) Basic commands (ls, cp, mv, mkdir, rm, help, more,

clear, ps, pwd, etc) and file structure (tree diagram).

2) Dealing with data using cat, paste, diff, basic regular

expressions, grep, find, redirection.

3) Data compression and extraction using gzip/gunzip and tar.

4) File exchange between users using file permissions (chmod)

and ownership (chown). Logging into other systems and transferring

files using ssh/putty and scp.

5) Monitoring your programs using ps and top, and an introduction to shell scripts.

1. Logging in

We will log in as follows:

Login:
Password:

Once you log in you will be in a unix/linux window and the commands will be running on the unix/linux host computer. When you first log in, you are in your home directory. Your home directory will contain various files and directories. To view the contents of your directory, type: (hit return after each)
ls – This command will list the contents of the directory you are currently in.

clear – This will clear the screen.

cd storage – this will allow you to go into the storage directory.
cd .. – takes you back up one directory.
mkdir name – makes a new directory with the name you choose in place of name.
pwd – tells you the directory that you are currently in.
cd – this takes you back to your home directory from wherever you are.

Tree structure:

[image: image1]
2. Basic unix/linux commands:
cd – change directory

ls – list contents of directory

clear – clear the screen

cp file1 file2 – makes a copy of file1 and calls it file2

mv file1 file2 – renames a file from file1 to file2

cp file1 directory1 – makes a copy of file1 and puts it in directory1

mv file1 directory1 – moves file1 into directory1

rm file1 – removes or deletes the file called file1

mkdir name1 – make a new directory called name1

rmdir name1 – remove a directory called name1 (name1 must be empty)

more file1 – show the contents of file1 (spacebar to show pages)

Task 1

Part A

1) Make a new directory with your name as the name. For example, I have a directory called ‘steve’. Please make a directory now. I want you to download the files.tar file from the internet using a browser from the site: www.env.leeds.ac.uk/~lecsjed/unixtraining. I then want you to copy the file called files.tar from the home directory into your new directory.

2) Go into your directory and type: tar –xvf files.tar

Part B

In this part, I want you to copy files that are in the home directory to you new directory. I want you to do it two different ways:
First, copy files.tar into the home directory and type tar –xvf files.tar

1) go to the home directory and make copies of file1 and file2 and call them something with your name on it, like for me file1steve and file2steve.

2) For ‘file1steve’ I want you to be in the home directory and copy the file to your directory.

3) For ‘file2steve’ I want you to go into your directory and copy the ‘file2steve’ from the home directory into your directory.

2.1 Help pages, the manual pages command (man)
Some manuals exist for unix/linux commands. It depends on each system and what the system administrator has made available. To get more information about ls then type:

man ls – this will list a summary of what the command does and what options are available. For example, you may find the option –l which gives a long listing. Try this option by typing:

ls -1 – this will give a long listing with information about permissions, ownership, size and dates modified for the file or directory.

The man pages should be available for all commands ideally. Ask your administrator if you do not have access to man pages.
2.2 Introduction to two editors
An editor is a way of creating or modifying a file. In MS windows, most people have experience creating or modifying files using MS Word. The editors in the unix environment that we will use to do the equivalent job are vi and emacs.

2.2.1 vi editor

You open a new file called filename (any file name you like) using vi by typing

vi filename

In vi you need to be aware that you are in either the command mode or the writing mode. When you first open a new or existing file then you will be in command mode. To do writing you need to get into writing mode. To do this, you type either a, i, or o. o opens a new line and puts you in writing mode and you can type your document. i puts you in writing mode right where the cursor is and a puts you in writing mode just after where the cursor is. You usually enter writing mode using i but if you want to add more to the end of the line then use a to append more writing to the end. It takes a bit of getting used to.
Once you have finished modifying the document then to get to command mode you type the Esc button at the top left on the keyboard. Now you can save the document by typing

:wq (save and exit) or

:q (exit if you haven’t made any changes) or

:q! (exit and ignore the changes).

i,a,o ((esc
2.2.2 Emacs editor

Only a very basic introduction to emacs is given. To open a new file then type

emacs filename

and a new file called filename (or whatever you decide to call it) will be made. If filename already exists then emacs will open that existing file so you can look at it or further modify it.

Once open in the editor then just type and use the arrows to get around. When you are ready to save the file then type:

ctrl-x then ctrl-c

where ctrl is the control button on the computer keyboard usually near the alt and shift buttons. Emacs will ask you if you want to save it or discard it. Type y for yes and n for no.
3. Introduction to regular expressions or wildcards
Many unix/linux commands accept the use of regular expressions. Listed below are a selection of the most commonly used expressions.

* - to represent unknown content or common content. For example, if you have files called file1, file2, file3, letter1, letter2, letter10, letter11, then you can do the following to list just the ones beginning with file.
ls file* - this will list file1, file2, and file3

You can list all the files that end in 2 by typing:

ls *2 – lists file2, letter2

Special characters used in vi, grep, etc.

^ - represents the start of a line.

$ - represents the end of the line.

We will see examples of ^ and $ later when we use grep. If you know the vi editor then you can use these to search for certain things. For example, in vi / is used to search and so /a will find the first a in the file. Type / again and it will find the next a. Now, using vi and typing /^1 will search for lines that start with 1 and /3$ will search for lines that end with a 3. These commands will locate the second line in the following vi file:

2345

1444353

324333222

34599905

[Oo] – will search for upper or lower case of o. See the example in the find command section below.

4. Finding missing files or directories, the Find command

If you need to find a file that you have not used recently and have forgotten where it is, then you can use the find command. Say the file you are looking for is called lost.doc and you have no idea what directory it is in or if you even still have the file, then type:

find . –name ‘lost.txt’ –print
This will locate the lost.txt file if it exists in your directory. Pretend now that you didn’t remember the ending was txt. You can use the regular expressions in find to locate the file:

find . –name ‘lost*’ –print

Or perhaps you would like to see all of your files that end in txt. Type:

find . –name ‘*.txt’ –print

Or perhaps you would like to see all files that have the letters os in them. Type:

find –name ‘*os*’ –print

Careful about the upper and lower case; however, it won’t find occurrences of lOst.txt. To search for lost.txt or lOst.txt files then use:
find –name ‘*[Oo]*’ –print
5. Finding strings of words in files, the grep command
Grep is a useful command for finding content in files. Say you have written a bit of text in one of your files in your directory and you cannot recall the name of the file. Say the bit of text included the words ‘The extinction parameter for radiation determines the amount of light that is scattered and absorbed’. The word extinction is a fairly unique word and so use it to search with grep. For example:

grep ‘extinction’ file1

This will search for the word extinction in the file named file1. This located it but are there other occurrences? So try searching in all the files in the directory:

grep ‘extinction’ *

We have used the regular expression * to represent all filenames. These are also called wildcards.
grep –r ‘extinction’ *

The –r option makes grep search all directories recursively.

Task 2

I have hidden a file with a name that is not fully known but you do know that the name of the file contains the letters ‘issi’. The file that I want you to find has the word ‘rugby’ contained inside the file.
1) I want you to use the unix/linux command ‘find’ to locate the file(s) and
2) grep to check for the word ‘rugby’.
3) Copy the file(s) into your directory.

6. Directing the output from a command, the Redirection command (>)
The redirection command redirects the output into a file. (It can also direct input into a command but we won’t use it for that in this workshop.) List the contents of the directory and store the result in a file called lsresults by typing:

ls > lsresults

Now ls the contents of the directory again (using ls) and you will see a new file name lsresults. To view this file, type:

more lsresults (or use the vi editor)

You can use this command with other commands like grep. For example:

grep –r ‘extinction’ * > output.extinction

This will create a file named output.extinction that will have the results of the grep command. View it with more using:

more output.extinction

7. Echoing results or statements, the Echo command
This can be used to echo comments into a file. Type:

echo ‘This was written using echo’ > outputecho

Now to see the result, type:

more outputecho

This is a very simple activity using echo. Its real strength is when used in conjunction with higher level unix/linux commands.

8. Appending files to one another, the Cat command

This is the concatenate command that will add files together. So if you have file1 and file2 in your home directory and you want to add them together than type:

cat file1 file2

You will see the results flash past on the screen. If you want to store the results in a new file called file20 then use the redirection:

cat file1 file2 > file20

Use more or vi to look at the resulting file20.

9. Checking differences between files, the Diff command

To interrogate the difference between two file, use:

diff file1 file2

Or store the results using redirection:

diff file1 file2 > file21

10. Pasting files together, the Paste command

If you have a set of data say with two columns of numbers stored in file5 and you have another three columns of data in file6 then you can make a new file with five columns of data by typing:

paste file5 file6 > file7

The paste command is especially useful when used in conjunction with shell scripts, treated in the advanced unix/linux workshop.
10.b Graphing data using gnuplot
Gnuplot is a very simple and free package to plot data that results from your unix/linux work. It is useful to know this package as it can be easily added (like many other unix based graphics) into unix shell scripts which we will introduce later.

To make a plot of data you will type the following once you have made the file named fileinst. This command below instructs unix to run the gnuplot using the commands listed in fileinst.

gnuplot fileinst

And in the fileinst you put the plotting instructions then it will produce the desired plot. The fileinst we will consider contains the following commands, so open a file using vi or emacs called fileinst and put the following in it:

set terminal png
set output "output.png"

set title "Energy vs. Time for Sample Data"

set xlabel "Time"

set ylabel "Energy"

plot "input.dat" with lines

pause -1 "Hit any key to continue"

You need the data to be in two columns in a file called input.dat. This will make a png graphics file output when you type gnuplot fileinst. I will show you the resulting graph. Since we are running through a windows machine to a unix computer, you won’t be able to view this file but I will show you an example. If you are running on a linux computer then I would suggest you use a ps format. Replace gif by ps in the above and then once you run gnuplot fileinst then you type either gv output.ps or gs output.ps to view it on a linux or unix computer. You can use gnuplot to make other formats such as gif or jpeg just by replacing png with the appropriate ending.

Task 3
1) There are two data files called datafileenergy and datafiletime. Copy them from the home directory into your directory if you haven’t already. I want you to check the data file using grep to see if there are any values of -999.99 in it which for this case represent no data. For plotting, you need to change this value to -1.0
2) Then you should use paste to put the two files into one file called input.dat and create an output.png file using gnuplot ready for viewing.
3) Then use WinSCP to transfer the file to your windows machine to view the plot.

11. File compression, gzip/gunzip command

If you want to store you unused files away to be used later and you want to decrease the file size for disk usage or if you are transferring files from one computer to another and you want to make it transfer faster, then type:

gzip file1

This will replace file1 by a compressed file called file1.gz. The gz ending indicates that the gzip command has been used to compress it. You can uncompress it by typing:

gunzip file1.gz

And this will reproduce the original file1 file (file1.gz will be gone).

If you want to see how much it has compressed in size then before you compress it, type:

ls –l file1

Then compress it,
gzip file1

Then view the new size by typing

ls –l file1.gz
Files that are made by vi or other similar editors make text files in ASCII format. These files usually compress significantly.
12. Collecting files into one file, the tar command

If you are going to transport a lot of files to another person or to another computer then it is easiest if you use the tar command to gather together all the files and put them into one file called a tar file. Then you can transfer the file and reverse the tar operation (untar) and it will reproduce all the files again in your directory.

tar –cvf name.tar file1 file2 file3

This command will gather up all three files (file1, file2, and file3) and put them in a new file called name.tar (you can change the name to whatever is a good name that you like to represent those files, but keep the .tar at the end).

You can use the regular expressions to collect these more easily:

tar –cvf name.tar file*

The tar command is not limited to just files. It will collect whole directory trees and all the files in them in one command. Try collecting everything in the directory (and subsequent directories) of directory ‘documents’:

tar –cvf documents.tar documents

To tar your whole account into one file,

tar –cvf account.tar *

To get your files and directories back, i.e. untar, type:

tar –xvf account.tar

This has to be in the directory that account.tar resides. Notice that there are two changes: 1) the x is used as the option instead of c; 2) you only give the tar file name and nothing else.

13. Changing the permissions on files and directories
When you type ls –l you will get something like:

-rw-r—r--
1 dobbie dobbie
7
Oct
20 09:09
file1

-rwxr-xr-x
1 dobbie dobbie 80493
May
14 20:40
a.out

drwxr-xr-x
2 dobbie dobbie
0
May
14 20:49
testdir

The first section has lots of r, w, x, d’s. That section is segregated in the following way. The first column will have a ‘–‘ if it is a file and a ‘d’ if it is a directory. So files1 and a.out are files and testdir is a directory.

13.1 Permissions for files

The next three columns indicate your permissions for the files. For file1, it has rw- and this indicates that you are able to ‘r’ Read, ‘w’ Write the file. This means that you can read the file using an editor and save changes to it (write). The ‘-‘ means you don’t have access to run the file like a program.

Consider the a.out file, it has ‘rwx’ and so you can Read the file, save changes to it using and editor (Write permission) and you can run it as a program (‘x’ is for eXecute the file as a program).

testdir is a directory because of the ‘d’ in column 1. The next three columns have ‘rwx’ and so you can read the contents of the directory, you can make changes, and you can go into the directory.

Columns 5, 6, and 7 are permissions for other users in your group and columns 8, 9, 10 are for anyone else (potentially people on the internet depending on if your directory is viewable).

If you want another user to copy your file called file1 then you need to allow them to do this. If they are in your group then use

chmod g+rw file1

This provides anyone in your group permission to read and copy the file. The ‘g’ is for group, the ‘+’ is for adding permissions, and the ‘rw’ gives read and write permission.

Type ls –l file1 before and after doing this to see the changes.

If you are giving permission to someone to view and copy your file1 from outside your group then type: (‘o’ means others)
chmod o+rw file1

Once the person has copied the file, you should take away the permission to write to the file since you don’t want them modifying files of yours. Use the ‘-‘ to take away permissions:

chmod o-w file1
Check your permissions again with ls –l. If you want to keep a copy of this work safe for (from) yourself then type:
chmod u-w file1
If you try to remove this file using

rm file1

Then it won’t work because of the permissions. Keep in mind that just because you give someone else permission to use the file that does not mean then can get to the file. The directory that it is in (including your home directory) would have to allow permission for group or others to go into the directory.

13.2 Permissions for directories

drwx
If the first four columns have drwx then you can go into the directory, look at the contents of the directory, and save files to that directory.

d--x
You can go into the directory and you can copy files out of the directory, but you cannot copy files into the directory, nor can you view the contents of the directory.
dr--
You can list the directory from another directory but you cannot go into it or copy files to or from it.

dr-x
You can go into the directory and view the contents, but you cannot copy files into it or save files there.

d-wx
Go into the directory and save or copy files to the directory, but you cannot view the file.
14. Connecting to other computers with encryption, the ssh command

When on a unix/linux computer and you want to connect to another computer to work on it, type:

ssh –l username computername
In username, you specify the login name that you have for that other computer called computername. If you have the same login name on both then just type:

ssh computername
So, for example, if you want to log onto feeble.leeds.ac.uk and you have a username on that called seetemp05 then you type:

ssh –l seetemp05 feeble.leeds.ac.uk

15. Transfer of files between computers, scp command
If you have a file called file.tar on your computer and you want to transfer it to feeble (you could be on any unix/linux computer in the world) then you type:

scp file.tar earv047@feeble.leeds.ac.uk:

You will be asked for a password to check that you have the right to transfer files. Note also, the file called file.tar must be in the directory that you issue this command from (or give the path) and it will place the file in the home directory of feeble.

If there is a file called file50 on feeble in the home directory and you want to transfer it to your computer then type:

scp earv047@feeble.leeds.ac.uk:file50 .

This will place it in your current directory on your linux/unix computer, indicated by the ‘.’ at the end of the line. You will be asked again for a password for feeble in order to get the file.

17. Monitoring your jobs, the ps and top commands
If you have written a fortran code and have set it running on your system then you can check various attributes using top. I have placed a computer code in your home directory called runit. To set this code running, type

./runit
Now that code should run for a few minutes. If you now type:

top

You will see various attributes of the program that is running such as the unique PID identifier, the amount of RAM memory usage, how long it has been running, the % of CPU, and so on. In the advanced unix/linux workshop you will use functions of this. The ps command is just a single snapshot of the processes with far less detail as the default. To view, type

ps

The advanced unix/linux workshop will show you how to kill jobs, alter the cpu usage, run jobs in the background, more powerful data analysis techniques, and will provide a basic level of unix/linux programming using shell scripts (files of commands that can be run as a program).
18. Introduction to shell scripts
A shell script is a file that contains a set of unix commands. In more complex shell scripts, you can even invoke programming in the shell script. As an introduction, create a file and put some unix commands in it. For example a file named steve:

ls

pwd

Now you can run this by typing

sh steve

at the unix prompt. You can make the shell script do many different sorts of things such as running programs, for example. Update steve to be

date > out.date1

runit

date > out.date2

Shells and shell programming will be treated in the advanced linux/unix workshop.

Task 4
Copy the programs called research1 and research2 into your directory if you haven’t already.

1) I want you to create a shell script that will automatically run a code called ‘research1’ which outputs the file called research1out.dat and I would like you to have gnuplot run using this file and create a png graphics file. Call the resulting graphics file research1plot.png. You can assume that the program research1 outputs time in column 1 and energy in column 2 in research1out.dat. Run the shell script.

2) Update the shell script to also run the program called research2. The program called research2 outputs a data file called research2out.dat. I want you to plot the resulting data using gnuplot to create a png graphics file called research2plot.png. Run the shell script. You should now have created two graphics files called research1plot.png and research2plot.png.
3) Update the script to make a directory called plots and have the shell script automatically copy the png files to this new directory.
4) Transfer the files to the windows machine using WinSCP and view the plots.

 steve

storage1

programs

phdwork

storage2

data

system directories

home directory

4

