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ABSTRACT

KeJ’WOTdS;" o Aggregate measures that capture multiple aspects of socio-ecological vulnerability in a single or small
‘P/g/l\“erab“‘ty indices number of vulnerability indices can produce vulnerability maps that act as powerful visual tools to

Climate change identify those areas most susceptible to future environmental changes. Such indices are easily
SADC communicable and offer valuable guidance to policymakers and investors, providing insights as to where
Trade-offs more targeted research or policy interventions can address current challenges and reduce future risks.
Mapping However, such aggregation inevitably reduces the richness of information provided by the suites of
individual vulnerability indicators on which the maps are based. This trade-off between information
richness and information communicability is a challenge in the quantification and communication of
complex phenomena such as socio-ecological vulnerability. This paper investigates the use of Principal
Component Analysis (PCA) techniques as a means of creating information-rich spatially-explicit aggre-
gate indices of socio-ecological vulnerability.

We present a ‘proof of concept’ analysis of socio-ecological vulnerability for the Southern Africa
Development Community (SADC) region using both PCA and traditional normalization based techniques
for generating spatially explicit, aggregated socio-ecological vulnerability indices. The vulnerability
indices are based on published biophysical and socio-economic data and mapped at a 10 arc minute
resolution. The resulting PCA based vulnerability maps indicate the regional spatial variability of four
statistically independent, unique components of socio-ecological vulnerability, providing more infor-
mation than the single index produced using a normalization/summation approach. Such uncorrelated,
information-rich vulnerability indices represent a potentially useful policy tool for identifying areas of
greatest concern in terms of both the relative level, and the underlying causes and impacts of, socio-

ecological vulnerability to environmental changes across broad spatial scales.
© 2012 Elsevier Ltd. All rights reserved.

Introduction & White, 2001). Adaptive capacity is defined as the ability of

a system to adjust its behaviour and characteristics in order to

This paper examines spatial mapping techniques for assessing
vulnerability of human well-being in dynamic, integrated and
complex socio-ecological systems. We conceptualize socio-
ecological vulnerability as a function of exposure, sensitivity and
adaptive capacity (e.g. Eakin & Luers, 2006; Gallopin, 2006; Yohe &
Tol, 2002). Where exposure is defined as the degree to which
a system experiences internal or external system perturbations.
Sensitivity is defined as the degree to which a system is affected by
those system perturbations (McCarthy, Canziani, Leary, Dokken,
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enhance its ability to cope with external stress (Brooks, 2003).
Vulnerability is a highly complex phenomenon with both
biophysical and socio-economic factors affecting exposure and
sensitivity (Adger, 2006). The literature on socio-ecological
systems, therefore, provides a useful theoretical framing to
underpin the development of vulnerability maps, in that it ties
together both the socio-economic and biophysical components of
vulnerability, allowing a more comprehensive approach to
vulnerability assessment (Berkes & Folke, 2000; Eakin & Luers,
2006). Such holistic approaches have been applied to vulnera-
bility assessments across a range of socio-ecological systems at
a variety of scales (e.g. Antwi-Agyei, Fraser, Dougill, Stringer,
& Simelton, 2012; Fraser & Stringer, 2009; Simelton, Fraser,
Termansen, Forster, & Dougill, 2009). Using data on multiple

Please cite this article in press as: Abson, D. ]., et al., Using Principal Component Analysis for information-rich socio-ecological vulnerability
mapping in Southern Africa, Applied Geography (2012), http://dx.doi.org/10.1016/j.apgeog.2012.08.004



Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:abson@uni-leuphana.de
www.sciencedirect.com/science/journal/01436228
http://www.elsevier.com/locate/apgeog
http://dx.doi.org/10.1016/j.apgeog.2012.08.004
http://dx.doi.org/10.1016/j.apgeog.2012.08.004
http://dx.doi.org/10.1016/j.apgeog.2012.08.004

2 D.J. Abson et al. / Applied Geography xxx (2012) 1-10

socio-economic and biophysical indicators potentially results in
a richer more robust elucidation of vulnerability (Johnson,
Stanforth, Lulla, & Luber, 2012).

Spatially-explicit vulnerability assessments are increasingly
important instruments in environmental policy formulation and in
informing environmental and development debates (Metzger &
Schréter, 2006; Stelzenmiiller, Ellis, & Rogers, 2010), because
vulnerability maps can act as powerful visual tools. Such maps can
help identify those groups and areas most susceptible to harm at
a particular point in time, allowing more targeted policy and
investments that both mitigate current challenges and reduce
future risks (e.g. Davies & Midgley, 2010; Ericksen et al., 2011).
Recently institutions such as the United Nations Environmental
Programme (UNEP, 2006) and the UK’s Department of International
Development (Thornton et al., 2008) have undertaking broad-scale
(multinational to continental scale) vulnerability mapping exer-
cises. Nevertheless, quantifying and communicating the multiple
drivers of socio-ecological vulnerability is problematic, particularly
when seeking to explicitly map vulnerability across broad spatial
scales (Eakin & Luers, 2006; Fiissel, 2009; Van Velthuizen et al,,
2007).

Many spatially explicit indicators of sensitivity, exposure and
adaptive capacity are available, encompassing a wide range of
biophysical and socio-economic aspects of vulnerability. These
indicators are not necessarily directly comparable when attempting
to represent multiple sources of vulnerability (Adger, 2006). While
each individual indicator may be of interest to policymakers, in
isolation they do not provide a clear understanding of composite
(or aggregate) socio-ecological vulnerability. For example, pop-
ulation density in agrarian communities may either increase or
decrease vulnerability (Meyer et al., 1998). High population density
may result in a dependence on degraded or marginal land for food
production. These lands can rapidly become unproductive and
therefore increase vulnerability to food insecurity (Reycraft &
Bawden, 2000). Conversely, high population density in locations
with high quality agricultural land may allow intensified produc-
tion and investment in infrastructure to increase food supplies
(Boserup, 1965). If population density alone is considered as the key
vulnerability indicator, the interaction with the environmental
system and its capacity for agricultural production could lead to the
development of inappropriate policy. Therefore, to gain a more
holistic insight requires an understanding of how multiple, often
interdependent indicators of vulnerability vary in relation to each
other.

A common approach to holistic vulnerability mapping is to
aggregate the multiple biophysical and socio-ecological indicators
of vulnerability is to produce spatially explicit vulnerability
indices—where the term index is taken to mean a unitless aggre-
gation of multiple indicators of related phenomena. Such indices
reduce the amount and complexity of the information that must be
communicated while simultaneously providing an indication of the
interaction of multiple, spatially homogenous indicators through
a single aggregated vulnerability ‘score’.

Aggregation of vulnerability indicators

Combining suites of often interdependent indicators into
aggregate vulnerability indices can provide a useful overview of
aggregate socio-ecological vulnerability (Fiissel, 2009; Norman
et al,, 2012). However, there is an unavoidable trade-off between
richness of information and usefulness of that information in policy
formulation in moving from a large suite of individual indicators to
a small number of composite, unitless indices (Braat, 1991;
Campbell, 1996). The choice of the trade-offs between communi-
cability and comprehensiveness largely depends on whether the

priority is to guide policy in a particular direction or to present
results that utilise indicators strictly and yield results that are more
comprehensively correct and complex but are less straightforward
to communicate (see Fig. 1).

In the context of broad scale vulnerability mapping, we argue
that it is difficult for policymakers to act on the basis of large
numbers of discrete indicators that may be mutually contradictory
in terms of the areas in which they indicate that vulnerability
occurs. Despite complexities that include the large number of
possible drivers of vulnerability in complex socio-ecological
systems and the imperfect data related to the indicators of
vulnerability, there is still considerably utility in generating
spatially-explicit measures that capture multiple aspects of socio-
ecological vulnerability in a smaller number of aggregate indices.
Such aggregate indices can offer valuable guidance to policymakers
and donor agencies, and provide insights as to where more detailed
vulnerability assessments should be undertaken.

The combination of multiple indicators of vulnerability into
aggregate vulnerability indices must overcome the incommensu-
rability of the units in which the individual indicators are measured
(Sullivan & Meigh, 2005). For example, it is impossible to directly
compare infant mortality and soil degradation as these two indi-
cators have different units of measurement, although both provide
indications of vulnerability in agrarian societies.

Normalization of data to a common (comparable) unitless scale
and subsequent summation of the normalized data is generally
used to overcome issues of incommensurability when combining
multiple indicators. Normalization of individual variables provides
a linear transformation that preserves the ranking and correlation
structure of the original data and allows for variables with different
scales to be summed (Tran, O’'Neill, & Smith, 2010).

Aggregate indices based on normalized and summed indicators
of socio-ecological vulnerability are useful in identifying hotspots
where multiple aspects of vulnerability occur. However, the
generation of a single composite vulnerability index using
a normalization/summation approach, is problematic because
potentially important information regarding the relations between
the original variables are obscured in the resulting unitless,
aggregated index (from many indicators to a single index). More-
over, when mapping socio-ecological vulnerability across large
spatial extents (and therefore across diverse socio-ecological
systems) it is likely that drivers of vulnerability will vary consid-
erably across space (Eakin & Luers, 2006). Vulnerability assess-
ments are therefore highly context specific (Fiissel, 2009; Yohe &
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Fig. 1. Trade-offs between communicability, and information richness in the descrip-
tion of complex systems (adapted from Braat (1991)).
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Tol, 2002). A normalization based vulnerability index may return
similar scores in two locations where vulnerability is driven by very
different processes (for example, forest loss or drought). Therefore
policymakers viewing aggregate vulnerability maps have to rapidly
return to the original indicators to understand and interpret the
aggregate vulnerability indices. From a policy perspective it is
therefore questionable as to whether a single aggregate vulnera-
bility index conveys information in a more useful way than the
multiple indicators of vulnerability on which it is based.

The potential for confusion linked to lack of clarity in the
communication of information regarding the underlying relations
between different drivers of vulnerability is important. We suggest
that when multiple indicators are used to generate aggregated
indices of socio-ecological vulnerability at broad spatial scales it
would be useful if the relations between the original indicators (for
example, how they co-vary across space) could be communicated
in the resulting vulnerability indices, thus striking a balance
between information richness and communicability. Retention of
clearly communicable information regarding the relations of the
underlying variables to the resultant aggregate vulnerability
indices provides vital contextual information regarding the specific
sources of vulnerability for a given point in space. The con-
textualization of spatially explicit, aggregate vulnerability indices
should increase their interpretability and usefulness for
policymakers.

This paper proposes the use of Principal Component Analysis
(PCA) as a means of creating spatially-explicit aggregate indices of
socio-ecological vulnerability across broad spatial scales. After
discussing the potential advantages of PCA over the dominant
normalization approach to indices production, we present a “proof
of concept” analysis by producing and comparing spatially-explicit
aggregate indices of socio-ecological vulnerability for the Southern
Africa Development Community (SADC) region using both PCA and
normalization approaches.

PCA

PCA is an ordination based statistic data exploration tool that
converts a number of potentially correlated variables (with some
shared attribute, such as points in space or time) into a set of
uncorrelated variables that capture the variability in the underlying
data. As such, PCA can be used to highlight patterns within multi-
variable data. PCA is a non-parametric analysis and is independent
of any hypothesis about data probability distribution (Abdi &
Williams, 2010).

PCA uses orthogonal linear transformation to identify a vector in
N-dimensional space that accounts for as much of the total vari-
ability in a set of N variables as possible—the first principal
component (PC)—where the total variability within the data is the
sum of the variances of the observed variables, when each variable
has been transformed so that it has a mean of zero and a variance of
one (Hatcher, 1997). A second vector (second PC), orthogonal to the
first, is then sought that accounts for as much of the remaining
variability as possible in the original variables. Each succeeding PC
is linearly uncorrelated to the others and accounts for as much of
the remaining variability as possible (Jolliffe, 2002).

PCA can therefore be used as descriptive, statistical approach to
data transformation as a means of overcoming variable incom-
mensurability. The ranking of the PCs in order of their significance
(based on how much of the variability in the data they capture) is
denoted by the eigenvalues associated with the vector for each PC.
In the case of a spatially explicit analysis each data point for each
variable is related to a specific point in space and the PCs derived
from a PCA can be assigned scores (synthetic variable values) for
each of these points in space.

A PCA approach provides several potential advantages in the
aggregation of spatially explicit, potentially incommensurable
variables. When the original variables are correlated then the
higher order PCs will capture more of the total variability in the
data than any individual original variable. Excluding the lower
order PCs reduces the dimensionality (number of variables) of the
data while minimising the loss of information (Smith, 2002). As
such PCA provides an approach to move from a large suite of
individual indicators to a small number of composite, unitless
indices (PCs) while reducing the trade-off between richness of
information and is communicability. Here it should be noted that
the choice of the number of dimensions (PCs) to be retained is
subjective and is generally based on the interpretability of the
retained components (Srivastava, 2002), the proportion of the
variation in the original variables explained by the retained
components and the shape of the scree and loading plots (Griffith,
Martinko, & Price, 2000). PCA provides flexibility in the data
reduction process through the subjective choice of the number of
PCs, and therefore indices, that are retained. As many indices as
usefully express important patterns in the multivariate data can be
retained. In contrast, a normalization approach to data aggregation
collapses all indicators into a single index. Finally, and perhaps
most importantly, each PC can be related to the original variables
that the PC is most influenced by through the reported principal
component loading factors. The PCA loading factors associated with
each retained PC allow the original variables to be readily associ-
ated with the resulting ‘indices’, thus retaining important infor-
mation regarding the underlying drivers of the retained indices.

PCA and socio-ecological vulnerability indices

In this paper we conceptualise the PC scores associated with the
multiple variables of vulnerability as a vulnerability indices. By
retaining only those PCs that account for a substantial proportion of
the variability in the original data a smaller number of independent
indices of socio-ecological vulnerability can be generated. The
factor loadings of the original vulnerability indicators on the
retained principal components shed light on the aspects of socio-
ecological vulnerability each PC index represents. The indices
produced by the PCA highlight spatial patterns of different aspects
of socio-ecological vulnerability across space and are used to map
these multiple aspects of socio-ecological vulnerability across
broad spatial extents. Rather than assigning arithmetic relation-
ships between multiple indicators of sensitivity, adaptive capacity
and exposure in order to develop aggregate vulnerability indices
the PCA is used to identify correlations or spatial discontinuities
between these different components of socio-ecological
vulnerability.

There are likely to be multiple types of vulnerability occurring
simultaneously within a complex socio-ecological system. In
response to this complexity it is often argued that in order to
provide policy relevant research one should quantify vulnerability
in relation to a single, clearly identified issue (e.g. Preston, Yuen, &
Westawa, 2011). However, such a ‘focused’ approach to assessment
(“vulnerability to...”) presupposes that the most important sources
of socio-ecological vulnerability within the system are already
known. In the absence of such a priori knowledge there is a danger
that important, but unacknowledged, aspects of vulnerability will
go unassessed. We argue that the mapping of an ‘unfocused’ notion
of socio-ecological vulnerability—aggregate vulnerability resulting
from multiple interconnected perturbations and socio-ecological
conditions—is valuable because it can provide clear empirical
evidence to answer the question “vulnerability to what?”. Once the
key types of vulnerability are identified more focused vulnerability
assessment can be undertaken. While in this paper we undertake
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an ‘unfocused’ vulnerability assessment we would nevertheless
argue that the novel methods presented here are equally applicable
to any form of vulnerability mapping based on multivariate data.

Application of PCA to the mapping of socio-ecological
vulnerability indices for the SADC

We analyse and compare the resulting socio-ecological vulner-
ability indices produced through PCA and normalization
approaches for the SADC. The SADC region contains a wide range of
agro-ecological zones and socio-economic conditions (Stringer
et al., 2012) allowing us to test the utility of using a PCA approach
to vulnerability mapping across diverse socio-ecological systems.
We aim to show that the use of PCA based vulnerability indices
across broad spatial extents can guide more detailed and context
specific research efforts, at finer spatial resolutions, as well as
informing more targeted policy development and donor invest-
ments that can inform transitions towards reduced vulnerability
(Foxon, Reed, & Stringer, 2009).

It is important to note that the quality of vulnerability indices is
ultimately dependent on the choice and quality of the indicators on
which the index is based. We do not claim to produce a definitive
map of socio-ecological vulnerability for the SADC region; rather
we seek to assess the utility of a PCA approach to data aggregation
for vulnerability mapping.

The SADC study region

The SADC study area includes: Angola, Botswana, Democratic
Republic of Congo (DRC), Lesotho, Madagascar, Malawi, Mozambi-
que, Namibia, South Africa, Swaziland, United Republic of Tanzania,
Zambia and Zimbabwe (see Fig. 1). Mauritius and the Seychelles
were excluded from the analysis due to their small size and the lack
of availability of good quality spatially explicit data.

The SADC region covers four broadly defined ecoregions (Fig. 2).
An ecoregion is defined as a large area of land or water that
contains a geographically distinct assemblage of natural commu-
nities that share a large majority of their species and ecological
dynamics, similar environmental conditions, and interact ecologi-
cally in ways that are critical for their long-term persistence (Olson
et al., 2001). Our ecoregions are, based on Olson et al.’s (2001)

Simplified SADC ecoregions

Tropical and sub tropical moist
broadleaf forest

Tropical and subtropical grassland
savannah and dry forest

Montane grassland and shrubland

Desert, xeric shrubland and
Mediterranean woodland and shrub

Cites with population > 200,000

National boundaries

Fig. 2. SADC study area (ecoregions based on Olson et al. (2001)).

classification: 1) tropical and sub-tropical moist broadleaf forests,
2) tropical and subtropical grassland savannah and dry forests, 3)
montane grasslands and shrubland and 4) drylands—desert, xeric
shrubland and Mediterranean woodland and shrubland. In addition
to a SADC-wide analysis, a separate PCA analysis was conducted for
the drylands ecoregion covering much of eastern South Africa,
southern Namibia, Botswana and Madagascar (Fig. 2). Undertaking
SADC region-wide and ecoregion specific PCAs allows comparison
of the relative vulnerability indices that are produced when
comparing vulnerability both across several different ecoregions
and within a single ecoregion. The same indicators of vulnerability
used in the PCA were aggregated using a simple normalization
approach to allow a comparison between the two approaches.

Data and methods

The data used here is mapped at a spatial resolution of 10 arc
minutes (approximately 18.5 km at the equator). The majority of
data covers a time period of 2000—2009, with the exceptions of the
land degradation data (1990), the aridity index (average from 1960
to 1990) and precipitation indicator (average from 1950 to 2000).
Given the large temporal frame of the data used, that the resultant
indices should not be considered as authoritative measures of the
current socio-ecological vulnerability in the SADC region.

As noted previously, the choice of indicators of vulnerability is
the primary determinant of the outcomes of any aggregate indices
of vulnerability. However, issues related to the quality, and spatial
scale at which the individual vulnerability indicators also influence
the resulting indices. To avoid introducing bias into the analysis
(other than unavoidable bias related to data availability and
selection), we required that the data should be of high quality, from
a reputable source, and should have a relatively fine spatial reso-
lution. Much of the available biophysical data (e.g. disaster events,
water withdrawals) and socioeconomic data (e.g. educational and
health indexes) are only reported at the national scale, hiding
considerable spatial variability within nations. The use of such
national scale data will have distorted previous attempts at regional
vulnerability mapping for the region (Davies & Midgley, 2010).
Inclusion of variables reported at a national scale is particularly
problematic in a PCA approach as it introduces spatial autocorre-
lation into the statistical analysis based on artificially constructed
features (national boundaries). For these reasons, national reports
of vulnerability indicators were excluded from the analysis.

A further issue is that many of the spatially-explicit variables
available represent different aspects of the same indicator. For
example, there are high quality, spatially-explicit datasets for
length of growing season, soil quality and intra-annual climate
variability and topographic factors such as slope. All these variables
influence the suitability (or potential productivity) of land for
agricultural production, which in turn is an important potential
source of vulnerability in the largely agrarian societies of the SADC.
However, these variables interact with each other, often in
complicated ways, influencing vulnerability in such a manner that
cannot be captured through a simple arithmetic combination of
individual factors. Rather than treat these variables as individual
indicators, an aggregate indicator of agricultural constraints/suit-
ability provided by Van Velthuizen et al. (2007) was included
instead (see Environmental and Biophysical indicators section).

Two aspects of socio-ecological vulnerability were considered in
our analysis. First, environmental indicators of vulnerability were
selected that represented biophysical resource scarcity or pressures
on natural resources utilised in maintaining the well-being of
populations. Second, socio-economic indicators of vulnerability
based on monetary and infrastructure poverty and health were
considered important as these act as both indicators of the current
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vulnerability of SADC populations to resource scarcity and disease,
and as indicators of the socio-economic capacity of SADC pop-
ulations to cope with future perturbations or shocks to socio-
ecological systems. In both cases, focus was largely on rural
vulnerability and do not differentiate between exposure, sensitivity
and adaptive capacity. The indicators of vulnerability included in
the analysis are detailed below and summarised in Table 1.

Environmental and biophysical indicators

Agricultural constraints

This dataset combines terrain slope constraints, global agro-
ecological zones, and other biophysical factors that influence agri-
cultural production such as soil quality, length of growing period,
soil type, climate variability (Van Velthuizen et al., 2007). It
represents an important source of vulnerability for the agriculture
dominated ecoregions under investigation. While this aggregate
indicator includes aspects of climate variability the climate vari-
ables only account for a small proportion of the calculation of
agricultural constrains and we believe the importance of including
this indicator outweighs any potential double counting with the
climate variables detailed below.

Soil degradation

The Global Assessment of Human-induced Soil Degradation
(GLASOD, 1990) dataset was used as an indicator of soil degradation
based on multiple measures of degradation severity (combining the
degree and extent of degradation) within four categories: 1 = light,
2 = moderate, 3 = strong, 4 = extreme. The status of soil degra-
dation was mapped within loosely defined physiographic units
based on expert judgement.

HANPP (human appropriation of net primary production)

HANPP is an indicator of the pressure of human activity on
ecosystems and reports the percentage of primary vegetative
production within an ecosystem that is appropriated by humans.
These data were obtained from a recent and comprehensive assess-
ment of global appropriation conducted by Haberl et al. (2007). The
authors used the Lund—Potsdam—]Jena (LPJ) dynamic global vegeta-
tion model (Gerten et al., 2005; Sitch et al., 2003) to calculate NPPO
(potential net primary production), and a combination of vegetation
modelling, agriculture and forestry statistics, alongside GIS data on
land use, land cover and soil degradation, to calculate HANPP.

Available NPP per capita (POPNPP)

This dataset was based on NPPact (Haberl et al., 2007) and the
Gridded Population of the World (GPWv3). A proportional alloca-
tion gridding algorithm, utilizing more than 3,00,000 national and
sub-national administrative units, is used to assign population

Table 1
Summary of spatially explicit datasets used in PCA of socio-ecological vulnerability.

values to grid cells (CIESIN, FAO, & CIAT, 2005). NPPact was divided
by population density to give an indicator of the available NPP per
capita for the year 2000. As such, POPNPP differs from HANPP as it
is an indicator of one aspect of the per capita carrying capacity of
ecosystems (the productivity of the system) rather than an indi-
cator of the current pressure on that aspect of carrying capacity.

Aridity

This uses the global aridity map produced by Zomer, Trabucco,
Bossio, van Straaten, and Verchot (2008). These data represent
deficit over atmospheric water demand through a standardized
Aridity Index of mean annual precipitation divided by mean annual
evapotranspiration. Water availability was seen as a key limitation
to agricultural production and areas of water scarcity are likely to
be disproportionally vulnerable to climate changes.

Precipitation CV

The coefficient of variation of annual rainfall was taken from the
Global Historical Climatology Network (GHCN), the FAO, and CIAT
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). This dataset
provides an indicator of the annual variability in rainfall and is an
important indicator of the vulnerability in the largely subsistence
farming agro-ecosystems of southern Africa.

Socio-economic indicators

Infant mortality

Global Sub-national Infant Mortality Rates consist of estimates
of infant mortality rates, where infant mortality rate is defined as
the number of children who die before their first birthday for every
1000 live births. This dataset is produced by the Columbia
University Center for International Earth Science Information
Network (CIESIN, 2005a).

Malnutrition

The Global Sub-national Prevalence of Child Malnutrition dataset
consists of estimates of the percentage of children under the age of 5,
who are underweight based on weight-for-age z-scores that are
more than two standard deviations below the median of the NCHS/
CDC/WHO International Reference Population (CIESIN, 2005b).

Irrigation

This dataset is developed in the framework of the AQUASTAT
programme of the Land and Water Development Division of the
Food and Agriculture Organization of the United Nations and the
Johann Wolfgang Goethe Universitdt, Frankfurt am Main, Germany
(Siebert, Doll, Feick, Hoogeveen, & Frenken, 2007). Values were
transformed so that high values represent areas that are not
equipped for irrigation.

Dataset name Data description

Year dataset represents Data source

INFANT MORTALITY Infant mortality rate 2000 CIESIN (2005a)

POVERTY Percentage of the population living in poverty 2005 Wood et al. (2010)
AGRICULTURAL CONSTRAINTS Constraints on agricultural production 2000 Van Velthuizen et al. (2007)
HANPP Human appropriation of net primary production 2000 Haberl et al. (2007)

SOIL DEGRADATION Severity of soil degradation 1987—-1990 GLASOD (1990)
IRRIGATION Percentage of land not equipped for irrigation 1990—-2002 Siebert et al. (2007)
POPNPP Available net primary production per capita 2000 CIESIN et al. (2005) and Haberl et al. (2007)
INFRASTRUCTURE POVERTY Infrastructure poverty, based on night-time lights per capita 2000 Elvidge et al. (2009)
TRAVELTIME Travel time to nearest city with a population greater than 50,000 2000 World Bank (2009)
PRECIPITATION CV Annual coefficient of variation in precipitation 1950—2000 Hijmans et al. (2005)
MALNOURISH Percentage of children under 5 suffering from malnutrition 2000 CIESIN (2005b)

ARIDITY Index of aridity 2000 Zomer et al. (2008)
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Infrastructure poverty

This dataset combines the LandScan 2004 population dataset
(Oakridge National Laboratory, 2004) and the Night Time Lights
dataset (Elvidge, Baugh, Kihn, Kroehl, & Davis, 1997) to present
a high resolution poverty map (Elvidge et al., 2009). The infra-
structure poverty index is calculated by dividing the LandScan 2004
population count by the average visible band digital number from
the lights. In areas where population is present but no lights were
detected the full population count is passed to the index. High
poverty index values occur in areas with high LandScan population
count and dim (or no) lighting (Elvidge et al., 2009).

Poverty

This dataset was developed as a part of the “Geographic Domain
Analysis to Support the Targeting, Prioritization, and Design of
a CGIAR Mega-Project (MP) Portfolio”. It was constructed by the
Center for Tropical Agriculture (CIAT), the Center for International
Earth Science Information Network (CIESIN), the International Food
Policy Research Institute (IFPRI), and the World Bank. The global
poverty map was constructed using more than 24,000 sub-national
data points, creating the first ever sub-national poverty map of the
developing world, spatially depicting the percentage of people with
incomes of less than $2.00 (PPP) per day (Wood et al., 2010).

Travel time

Travel Time to Major Cities is a dataset developed by the Euro-
pean Commission and the World Bank. It creates an urban/rural
population gradient around large cities and provides and indicator
of the remoteness/connectivity to markets and infrastructure based
on minutes of land based travel necessary to reach cites of greater
than 50,000 inhabitants for the year 2000 (World Bank, 2009).

Methods

Where necessary, all spatially-explicit datasets were re-
projected in ArcGIS (ESRI, 2006) from their original coordinate
systems to World Geodetic System (WGS) 1984 global coordinate
system. Vector/polygon data was converted to raster data at the
same spatial resolution as the original datasets (all the original
data, with the exception of country boundaries and ecoregions
were, provided as gridded datasets). Hawth’s tools (Beyer, 2004)
was used in ArcGIS to create 10 arc minute vector grid squares
across the entire SADC study area. A 10 arc minute spatial resolu-
tion for the PCA analysis was chosen as it represented the
maximum spatial resolution of datasets utilised in the analysis. A
finer spatial resolution would have resulted in relative vulnerability
indices implying a greater resolution than could be provided from
the original spatial data. A coarser resolution (to match the 20 arc
minute resolution of the coarsest dataset utilised in the analysis)
would have resulted in a loss of spatial detail provided by many of
the datasets that had a finer spatial resolution.

The Zonal Statistic Tool within ArcGIS’s Spatial Analyst was then
used to calculate the mean values for each spatially-explicit
vulnerability indicator for each analysis grid square. When the
original resolution of the vulnerability indicator is finer than 10 arc
minutes and a PCA analysis grid square falls on the border between
terrestrial land masses and water bodies, the zonal statistics tool
can distort the reported value of vulnerability by averaging the
value from the terrestrial and water based cells. This “edge effect”
reduces the indicator scores returned for costal grid squares. To
avoid this, edge analysis grid squares that crossed coastal bound-
aries and large water bodies were removed from the analysis,
reducing the number of grid squares analysed from 30,942 to
30,677.

PCA analysis

All PCAs were undertaken using the Minitab statistical program
(Minitab, 2010) Pairwise correlation tests were applied in an
attempt to reduce the initial set of metrics to a smaller subset of
non-highly correlated metrics (Lausch & Herzog, 2002; Schindler,
Poirazidis, & Wrbka, 2008). As none of the twelve vulnerability
metrics were highly correlated (for all pairwise Spearman’s corre-
lations p < 0.80) all twelve vulnerability metrics were retained in
the PCA analysis. The Kaiser—Mayer—Olkin (KMO) sampling
adequacy test values were >0.5 and Bartlett’s sphericity tests
returned p < 0.05 for all PCA analyses, suggesting that the variables
were suitable for PCA analysis (Hair, Black, Babin, Anderson, &
Tatham, 2006). A correlation matrix was used for the PCA anal-
yses as this standardizes the data and avoids potential bias result-
ing from the inclusion of data with different scales and data ranges.

The choice of PCs to be retained from the PCAs was in part based
on subjective judgement and interpretability of the components
(Srivastava, 2002). Additional retention criteria were based on
Kaiser’s rule of thumb that the Eigenvalues of the component
should be >1.0, the proportion of the variation in the original
variables explained by the component and the shape of the scree
and loading plots (Griffith et al., 2000). The aspect of socio-
ecological vulnerability represented by each PC was defined by
the relative loadings of each individual vulnerability indicator on
that component. For example, if a principal component was heavily
positively loaded on indicators of infrastructure poverty (irrigation,
travel time night time lights) then the resulting vulnerability index
based on the scores associated with that principal component
would be regarded as an indicator of infrastructure poverty. For
ease of comparison, the principal component scores (and therefore
vulnerability indices) were standardised to values between 0 and 1,
where 0 represents the least vulnerable and 1 the most vulnerable
grid square.

Normalization analysis

The same data, projections and spatial extents were uses as
described in the previous sections. The 12 variables were normal-
ized to a scale of 0—1 using the following formula: 6 = (¥ — Xmin)/
(Xmax — Xmin) Where 6 is the normalized value, y the original value
and xmin and xmax the minimum and maximum values in the
dataset. The normalized variables were then summed and the
results normalized again to provide a final vulnerability index with
a range of 0—1 to allow direct comparison with the PCA based
vulnerability indices.

Results
SADC PCA analysis

Four principal components were retained in PCA for the whole
SADC regional analysis. Together these first four principal compo-
nents accounted for 63.5% of the variation in the original 12 vari-
ables included in the analysis. The 5th principal component
captured only an additional 5.6% of the total data variability and the
factor loading was dominated by Precipitation CV and POPNPP. The
loading of each variable for the retained principal components are
detailed in Table 2, with the heaviest loadings shaded in grey.

The first PC was heavily loaded on INFANT MORTALITY,
POVERTY, AGRICULTURAL CONSTRAINTS and MALNUTRITION. The
second component was loaded heavily on HANPP (human appro-
priated net primary productivity), SOIL DEGRADATION and IRRI-
GATION. The third component was loaded on POPNPP,
INFRASTRUCTURE POVERTY and TRAVEL TIME and the fourth
component on PRECIPITATION CV, MALNUTRITION AND ARIDITY.
(Note, MALNUTRITION is mentioned twice as one variable can load
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Table 2
Retained principal components for the spatial analysis of socio-ecological vulnera-
bility in SADC .

region are shown in Fig. 3. The Normalized vulnerability index
(Fig. 3) reflects some of the patterns found in the PCA indices, but
the ‘trade-offs’ between different components of vulnerability

PC1 PC2 PC3 PC4 appear to have evened out the extremes. For example, the poverty
INFANT MORTALITY 0409  -0.178 0.041 0.257 and health vulnerability in the Democratic Republic of Congo
POVERTY 0.341 0243 -0.143 0.187 (north west region in Fig. 3) indicated in PC1 is hidden in the
ﬁil;:l%]LTURAL CONSTRAINTS 8:327 781;3 P _g:g}gg 78:%(8) 4 normalized vulnerability index by relatively low levels of vulnera-
SOIL DEGRADATION 0164 0388 _0.266 0.062 bility in the other 3 PCA based indices.
IRRIGATION -0.077 0321 —0.088 0.102 Fig. 3 indicates that there are strong regional differences in the
POPNPP -0.044 0.192 0.667 0.093 sources of socio-ecological vulnerability across the SADC region.
INFRASTRUCTURE POVERTY  —0.012 0248 0.632 0.161 Poverty and health vulnerability (PC1) dominate in the DRC,
TRAVELTIME 0038 -045 ppomm O Angola, Mozambique and Tanzania, while biophysical pressures
PRECIPITATION CV -0.167  -0.168  —0.077 0.754 ’ ’
MALNOURISH 0382  _0072  —0067 0.388 (PC2) are highest in the eastern and southern coastal regions of
ARIDITY -0.448  -0.183 0.005 0.155 South Africa and the afforested eastern side of Madagascar.
lEigeHVft{lue g;;? (2)11’2:5 8%56 (])'(1)391 Infrastructure poverty and carrying capacity vulnerability (PC3) is

roportion .. . . R B s B s

Curgulative 0285 0.424 0.546 0.635 highest in the urbanized area of South Africa and the desert

on several principal components.) The loadings of the 12 indicators
allowed identification of four spatially discrete aspects of socio-
ecological vulnerability based on the way in which the indicators
co-varied across space. For ease of interpretability we termed these
spatially-discrete aspects of socio-ecological vulnerability “Poverty
and health vulnerability” (PC1), “biophysical pressure vulnera-
bility” (PC2), “infrastructure poverty and population pressure
vulnerability” (PC3) and “climate and malnourishment vulnera-
bility” (PC4).

It should be noted that these do not represent precise cate-
gories; rather they show the dominant indicators that define each
of the four retained principal components and therefore the 4
discrete indices of relative socio-ecological vulnerability. The
spatial distributions of these vulnerability indices for the SADC

PC1 (poverty and
health vulnerability)

PC2 (biophysical

regions of Namibia and Botswana, where relatively high pop-
ulations in areas with low net primary production dominate.
Climate and malnourishment vulnerability (PC4) dominates in the
eastern states of Malawi, Mozambique, and Tanzania as well as the
dryland regions of western Angola and the dry western side of
Madagascar. PC4 also indicates high climate and malnourishment
vulnerability in the densely populated region of South Africa
encompassing Johannesburg and Pretoria. In contrast the
Normalized vulnerability index provides a less spatially hetero-
geneous picture of vulnerability, with Namibia, Botswana and
western South Africa all having low vulnerability index scores and
only the eastern coast of Madagascar indicated as having high
levels of vulnerability.

Looking at the vulnerability indices in terms of ecoregions rather
than nations provides interesting insights. The normalized index
indicates low relative vulnerability in dryland ecoregion (desert,

Normalized vulnerability

pressure vulnerability) index

PC3 (infrastructure poverty and
carrying capacity vulnerability)

PC4 (climate and
malnourishment vulnerability)

Relative
vulnerability

I 0.00 -0.10
B 0.10-0.20
0.20 - 0.30
0.30 - 0.40
0.40 - 0.50
0.50 - 0.60
0.60 - 0.70
0.70 - 0.80
I 0.80 - 0.90
v Il 0.90 - 1.00

Increasing relative vulnerability

Fig. 3. PCA based and normalized maps of relative socio-ecological vulnerability for the SADC region.
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xeric shrubland and Mediterranean woodland) average levels of
vulnerability in the montane and tropical grasslands ecoregions and
highest vulnerability in the tropical and sub-tropical broadleaf forest
ecoregion. The normalized index shows little variation in vulnera-
bility within each ecoregion. In contrast, the different PCA indices
indicate both differences within and between ecoregions. For
example, the poverty and human health index (PC1) is high in the
tropical forest ecoregion and low in the drylands regions. Whereas
the climate and malnourishment index PC4 shows significant vari-
ation within ecoregions, with montane grassland in Angola and
northern Mozambique indicated as having high relative vulnera-
bility and the same ecoregion in South Africa and indicated as having
only average vulnerability. Where the normalized vulnerability
index identifies different relative levels of aggregate vulnerability
between ecoregions, the PCA based indices highlights both the
aspects of vulnerability most associated with different ecoregions
and differences in aspects of vulnerability within ecoregions.

SADC drylands ecoregion analysis

For the PCA limited to the SADC drylands ecoregion four principal
components were also retained. The retained components accoun-
ted for 64% of the variation in the original 12 variables included in
the analysis. The loading of each variable for the retained principal
components for the SADC drylands ecoregion is detailed in Table 3,
with the heaviest loadings highlighted in grey, the loading on each
of the four retained PCAs for the drylands analysis differed from
those found for the SADC analysis (Table 2).

The four retained principal components can broadly be described
as: poverty and primary productivity vulnerability (PC1); health,
malnourishment and climate vulnerability (PC2); infrastructure
poverty and soil degradation vulnerability (PC3) and biophysical
pressure vulnerability (PC4). In the SADC drylands ecoregion,
poverty and primary productivity vulnerability was highest on the
western coast of South Africa and southern Botswana (Fig. 4). Health,
malnourishment and climate vulnerability was highest in Mada-
gascar and Botswana. While infrastructure poverty and soil degra-
dation (PC3) and biophysical pressure (PC4) vulnerability was
highest in the central regions of South Africa and Namibia, only the
coastal Cape region of South Africa had consistently low measures
across all four aspects of relative vulnerability. The normalized
vulnerability index for the dryland ecoregion can be more easily
related to the vulnerability indices from the PCA than for the SADC
wide analysis, with the normalized index looking like a combination
of PC1 and PC2, with relatively little influence form the more evenly
distributed PC3 and PC4 scores.

Table 3
Retained principal components for the spatial analysis of socio-ecological vulnera-
bility in the SADC drylands ecoregion .

PC1 PC2 PC3 PC4
ARIDITY 0.452 —-0.03 0.127 0.124
POVERTY 0.406 —0.047 0.066 0.094
TRAVELTIME 0.277 0.212 —0.231 —0.286
AGRICULTURAL CONSTRAINTS 0.049 —0.039 —0.484 —0.658
INFANT MORTALITY —0.054 0.52 —0.025 —0.049
MALNOURISH -0.174 0.513 0.067 0.127
PRECIPITATION CV 0.095 0.477 0.003 0.121
IRRIGATION 0.204 0.284 0.151 0.137
INFRASTRUCTURE POVERTY —0.086 0.076 0.531 —0.444
SOIL DEGRADATION —-0.24 —0.252 0.31 0.083
POPNPP 0.043 —0.047 —0.529 0.444
HANPP -0.438 —0.026 0.008 0.014
Eigenvalue 3.5378 2.3911 1.3949 1.032
Proportion 0.272 0.184 0.107 0.079
Cumulative 0.272 0.456 0.563 0.643

Discussion

All spatially-explicit vulnerability assessment maps Yyield
outputs that reflect the datasets and methods underpinning the
analysis, and are contingent upon considerations such as the choice
of indicators retained, the aggregation of datasets, the spatial
resolution of the data and analysis, and any weighting of indicators
that is employed in the analysis. Moreover, there are significant
normative assumptions inherent in any attempt to identify aggre-
gate socio-ecological vulnerability, not least in the initial choice of
the suite of individual indicators of vulnerability that are selected
for aggregation and the interpretation of individual indicators
(Eakin & Luers, 2006; Fiissel, 2009).

The choice of indicators used in this exploratory research was
determined by the limited availability of high resolution, spatially
explicit datasets for southern Africa. There are important indicators
of socio-ecological vulnerability (such as civil unrest, inequality,
local governance issues) for which data were not available.
Vulnerability is a dynamic concept and spatial mapping provides
a static “snapshot” description of vulnerability at a particular point
in time. Therefore as socio-ecological conditions change, new
vulnerability maps will be required to reflect changes. For these
reasons, care must be taken when interpreting the maps presented
here and when comparing these maps to others created using
different data and methods.

Here it should also be noted that a potential disadvantage of
a PCA approach is that it is not possible to provide weightings
regarding the relative importance of individual indicators in the
resulting aggregate indices. Each indicator is treated as equally
important as a driver of vulnerability. As such a PCA based approach
to vulnerability mapping does not provide absolute measures of
vulnerability; rather it indicates the different spatial patterns of
relative vulnerability relating to spatially co-occurrences of indi-
vidual drivers of vulnerability. It could therefore be argued that in
systems where particular driver of vulnerability are known to be of
paramount importance the application of PCA may not be appro-
priate in creating aggregate vulnerability indices. However, given
that the individual drivers of vulnerability can be associated with
one or more of the retained vulnerability indices it is still possible for
the policymakers to subsequently weigh the resulting indices based
on their knowledge of which drivers or types of vulnerability are
most important. For example, in the SADC analysis climate and
malnourishment vulnerability (PC4) may be judged a more pressing
issue than biophysical pressure vulnerability (PC2) and funding and
support focused appropriately based on this assessment.

The results presented here do suggest that the use of PCA to
derive multiple independent indices of vulnerability from a suite of
biophysical and socio-economic indicators of sensitivity, exposure
and adaptive capacity will be of considerable use in the broad scale
mapping of socio-ecological vulnerability. Such PCA based maps
may provide a useful “first pass” in assessing broad scale socio-
ecological vulnerability, indicating not just which areas are
vulnerable, but also to what is driving that vulnerability. Both the
normalization and PCA approaches to vulnerability mapping could
be useful to policymakers and development aid donors, particularly
when it comes to identifying hotspots of high vulnerability at
a glance (Liu et al., 2008). Our analysis suggests that a PCA approach
provides a smaller trade-off between communicability and the
information richness than is provided by the normalization
approach to index development. The utility of a PCA approach to
vulnerability mapping is not limited to mapping of broadly defined
‘unfocused’ socio-ecological vulnerability. PCA can also be applied
to enhance understanding of focused aspects of vulnerability.

PCA based vulnerability maps can illuminate those locations
where there is a need for further, urgent, in-depth case study based
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PC1 (poverty and primary
productivity vulnerability )

PC2 (health, malnourishment
climate vulnerability)

Normalized vulnerability
index

PC3 (infrastructure poverty and
soil degradation vulnerability)

PC4 (biophysical
pressure vulnerability)

Relative
vulnerability

I 0.00 - 0.10
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Fig. 4. PCA based and normalized maps of relative socio-ecological vulnerability for the SADC desert ecoregion.

research to supplement and understand the detail of relationships
between different indicators of vulnerability at smaller scales.
Regional PCA based vulnerability maps should be considered
a starting point for further analysis as they can contribute towards
and inform policy. Nevertheless, challenges remain, in the initial
choices of indicators, the best spatial scale at which to undertake
such assessments. Here too a PCA approach has some potential
advantages. With a more traditional normalization approach the
use of context specific indicators of vulnerability at broad spatial
scales can prove problematic. For example, inclusion of data on
forest loss in a study area that contains both forest and non-forest
ecosystems will tend to result in higher vulnerability scores in
forest ecosystems simply because only these areas are affected by
this driver of vulnerability. In a PCA based assessment the PC the
factor loadings would indicate in which areas the context specific
drivers are important factors in the aggregate vulnerability indices.
This allows ‘unfocused’ vulnerability assessment to be carried out
across large spatial extents without resulting in potentially
misleading aggregated indicators across different socio-ecological
systems. A PCA approach that provides a small number of inde-
pendent, easily interpreted and spatially explicit indices may help
regional or national institutions and organisations to define context
specific aspects of socio-ecological vulnerability that are of concern
in specific geographical locations or socio-ecological systems.

Conclusions

Using a Principal Components Analysis technique based on
high resolution spatial datasets helps to highlight the spatial
arrangement of different aspects of socio-ecological vulnerability.
Our PCA based assessment of the socio-ecological vulnerability of
the SADC region demonstrates that different aspects of

vulnerability are spatially discrete, with different regions charac-
terised by different types of vulnerability. From a policy
perspective such contextualised, “information rich” vulnerability
indices will prove useful as they provide a compromise between
the rich and difficult to interpret detailed information provided by
a large suite of individual vulnerability indicators and easy to
visualize, but potentially “information poor”, aggregate vulnera-
bility indices. Our analysis suggests that there is a need to carefully
consider scale when using PCA to generate aggregate vulnerability
indices. Analyses at multiple spatial scales will reveal different
patterns of vulnerability. Multiple scale PCA analyses of socio-
ecological vulnerability represent a useful policy tool for identi-
fying areas of concern in terms of both the relative level, and
underlying causes and impacts of, socio-ecological vulnerability
across broad spatial scales.

References

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisci-
plinary Reviews: Computational Statistics, 2, 433—459.

Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268—281.

Antwi-Agyei, P., Fraser, E. D. G., Dougill, A. ]., Stringer, L. C., & Simelton, E. (2012).
Mapping the vulnerability of crop production to drought in Ghana using rain-
fall, yield and socioeconomic data. Applied Geography, 32(2), 324—334.

Berkes, F., & Folke, C. (2000). Linking social and ecological systems: Management
practices and social mechanisms for building resilience. Cambridge: Cambridge
University Press.

Beyer, H. L. (2004). Hawth’s analysis tools for ArcGIS.

Boserup, E. (1965). The conditions of agricultural growth: The economics of agrarian
change under population pressure. Chicago: Aldine.

Braat, L. (1991). The predictive meaning of sustainability indicators. In O. Kuik, &
H. Verbrugen (Eds.), In search of indicators of sustainable development (pp. 57—
70). Dordrecht: Kluwer Academic Publishers.

Brooks, N. (2003). Vulnerability, risk and adaptation: A conceptual framework.
Working paper 38. Norwich: Tyndall Centre for Climate Change Research,
University of East Anglia.

Please cite this article in press as: Abson, D. ]., et al., Using Principal Component Analysis for information-rich socio-ecological vulnerability
mapping in Southern Africa, Applied Geography (2012), http://dx.doi.org/10.1016/j.apgeog.2012.08.004




10 D.J. Abson et al. / Applied Geography xxx (2012) 1-10

Campbell, N. A. (1996). Biology (4th ed.). Melno Park: The Benjamin/Cummings
Publishing Company.

CIESIN. (2005a). Global subnational infant mortality rates [dataset]. Palisades, NY:
Columbia University.

CIESIN. (2005b). Global subnational rates of child underweight status [dataset]. Pali-
sades, NY: Columbia University.

CIESIN, FAO, & CIAT. (2005). Gridded population of the world [dataset] (23/07/2011
ed.). Socioeconomic Data and Applications Center (SEDAC), Columbia University.

Davies, R. A. G., & Midgley, S. J. E. (2010). Risk and vulnerability mapping in Southern
Africa: a hotspot analysis, OneWorld Sustainable Investments.

Eakin, H., & Luers, A. L. (2006). Assessing the vulnerability of social-environmental
systems. Annual Review of Environment and Resources, 31, 365—394.

Elvidge, C. D., Baugh, K. E., Kihn, E. A,, Kroehl, H. W., & Davis, E. R. (1997). Mapping
city lights with nighttime data from the DMSP operational linescan system.
Photogrammetric Engineering and Remote Sensing, 63, 727—734.

Elvidge, C. D., Sutton, P. C,, Ghosh, T., Tuttle, B. T,, Baugh, K. E., Bhaduri, B., et al.
(2009). A global poverty map derived from satellite data. Computers & Geo-
sciences, 35(8), 1652—1660.

Ericksen, P.,, Thornton, P., Notenbaert, A., Cramer, L., Jones, P., & Herrero, M. (2011).
Mapping hotspots of climate change and food insecurity in the global tropics.
CCAFS Report no. 5. Copenhagen: CGIAR.

ESRL (2006). ArcGIS 9.2 (9.2 ed.). Redlands SA: Environmental Systems Research
Institute, Inc.

Foxon, T. ., Reed, M. S., & Stringer, L. C. (2009). Governing long-term social-ecological
change: what can the adaptive management and transition management
approaches learn from each other? Environmental Policy and Governance, 19, 3—20.

Fraser, E. D. G., & Stringer, L. C. (2009). Explaining agricultural collapse: macro-forces,
micro-crises and the emergence of land use vulnerability in southern Romania.
Global Environmental Change: Human and Policy Dimensions, 19(1), 45—53.

Fiissel, H. (2009). Review and quantitative analysis of indices of climate change
exposure, adaptive capacity, sensitivity and impacts. In World Bank development
report 2010: Development and climate change. Potsdam: World Bank.

Gallopin, G. C. (2006). Linkages between vulnerability, resilience, and adaptive
capacity. Global Environmental Change, 16(3), 293—303.

Gerten, D., Hoff, H., Bondeau, A., Lucht, W., Smith, P., & Zaehle, S. (2005). Contem-
porary “green” water flows: simulations with a dynamic global vegetation and
water balance model. Physics and Chemistry of the Earth, 30(6—7), 334—338.

GLASOD. (1990). Global assessment of human-induced soil degradation (GLASOD)
[dataset]. International Soil Reference and Information Centre (ISRIC).

Griffith, J. A., Martinko, E. A., & Price, K. P. (2000). Landscape structure analysis of
Kansas at three scales. Landscape and Urban Planning, 52(1), 45—61.

Haberl, H., Erb, K., Krausmann, F,, Gaube, V., Bondeau, A., Plutzar, C,, et al. (2007).
Quantifying and mapping the global human appropriation of net primary
production in earth’s terrestrial ecosystem. Proceedings of the National Academy
of Sciences of the United States of America, 104, 12942—12947.

Hair, J. F, Black, W. C,, Babin, B. ], Anderson, R. E., & Tatham, R. L. (2006). Multi-
variate data analysis (6th ed.). New Jersey: Pearson International.

Hatcher, L. (1997). A step by step approach to using SAS for factor analysis and
structural equation modeling. Cary, NC: SAS Institute Inc.

Hijmans, R. J., Cameron, S. E., Parra, ]. L, Jones, P. G., & Jarvis, A. (2005). Very high
resolution interpolated climate surfaces for global land areas. International
Journal of Climatology, 25, 1965—1978.

Johnson, D. P, Stanforth, A., Lulla, V., & Luber, G. (2012). Developing an applied
extreme heat vulnerability index utilizing socioeconomic and environmental
data. Applied Geography, 35(1), 23—31.

Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer.

Lausch, A., & Herzog, F. (2002). Applicability of landscape metrics for the moni-
toring of landscape change: issues of scale, resolution and interpretability.
Ecological Indicators, 2(1-2), 3—15.

Liu, J., Fritz, S., van Wesenbeeck, C. F. A., Fuchs, M., You, L., Obersteiner, M., et al.
(2008). A spatially explicit assessment of current and future hotspots of hunger
in Sub-Saharan Africa in the context of global change. Global and Planetary
Change, 64(3—4), 222—235.

McCarthy, ]. J., Canziani, O. F, Leary, N. A., Dokken, D. J., & White, K. S. (2001).
Climate change 2001: Impacts, adaptation, and vulnerability. Cambridge: Cam-
bridge University Press.

Metzger, M. ]., & Schroter, D. (2006). Towards a spatially explicit and quantitative
vulnerability assessment of environmental change in Europe. Regional Envi-
ronmental Change, 6(4), 201-216.

Meyer, W. B., Butzer, K. W.,, Downing, T. E., Turner, B. L, II, Wenzek, G. W,, &
Wescoat, ]. L. (1998). Reasoning by analogy. In S. Rayner, & E. L. Malone (Eds.),

Human choice and climate change: Volume three, the tools for policy analysis (pp.
217-289). Columbus: Battelle Press.

Minitab. (2010). Minitab 16 statistical software. State College, PA: Minitab, Inc.

Norman, L. M., Villarreal, M. L., Lara-Valencia, F, Yuan, Y., Nie, W., Wilson, S., et al.
(2012). Mapping socio-environmentally vulnerable populations access and
exposure to ecosystem services at the U.S.—Mexico borderlands. Applied
Geography, 34(4), 413—424.

Oakridge National Laboratory. (2004). LandScan 2004 global population database
[dataset]. Oakridge National Laboratory.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
Underwood, E. C,, et al. (2001). Terrestrial ecoregions of the worlds: a new map
of life on earth. Bioscience, 51(11), 933—938.

Preston, B. J., Yuen, E. ], & Westawa, R. M. (2011). Putting vulnerability to climate
change on the map: a review of approaches, benefits, and risks. Sustainability
Science, 6(2), 177—202.

Reycraft, R. M., & Bawden, G. (2000). Introduction: environmental disaster and the
archaeology of human response. In G. Bawden, & R. M. Reycraft (Eds.), Intro-
duction: Environmental disaster and the archaeology of human response (pp. 1—
10). Alburquerque: University of New Mexico Press.

Schindler, S., Poirazidis, K., & Wrbka, T. (2008). Towards a core set of landscape
metrics for biodiversity assessments: a case study from Dadia National Park,
Greece. Ecological Indicators, 8(5), 502—514.

Siebert, S., Doll, P, Feick, S., Hoogeveen, ]., & Frenken, K. (2007). Global map of
irrigation areas version 4.0.1. [dataset]. Food and Agriculture Organization of the
United Nations.

Simelton, E., Fraser, E. D. G., Termansen, M., Forster, P. M., & Dougill, A. ]. (2009).
Typologies of crop-drought vulnerability: an empirical analysis of the socio-
economic factors that influence the sensitivity and resilience to drought of
three major food crops in China (1961—2001). Environmental Science & Policy,
12(4), 438—452.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003).
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
cycling in the LP] dynamic global vegetation model. Global Change Biology, 9(2),
161-185.

Smith, L. . (2002). A tutorial on principal component analysis, Vol. 2012.

Srivastava, M. S. (2002). Methods of multivariate statistics. New York: Wiley-
Interscience.

Stelzenmiiller, V., Ellis, ]J. R., & Rogers, S. I. (2010). Towards a spatially explicit risk
assessment for marine management: assessing the vulnerability of fish to
aggregate extraction. Biological Conservation, 143(1), 230—238.

Stringer, L. C,, Dougill, A. ], Thomas, A. D., Spracklen, D. V., Chesterman, S.,
Speranza, C. I, et al. (2012). Challenges and opportunities in linking carbon
sequestration, livelihoods and ecosystem service provision in drylands. Envi-
ronmental Science & Policy, 19—20, 121—135.

Sullivan, C., & Meigh, J. (2005). Targeting attention on local vulnerabilities using an
integrated index approach: the example of the climate vulnerability index.
Water Science Technology, 51(5), 69—78.

Tran, L. T., O'Neill, R. V., & Smith, E. R. (2010). Spatial pattern of environmental
vulnerability in the Mid-Atlantic region, USA. Applied Geography, 30(2), 191—
202.

Thornton, P. K., Jones, P. G., Owiyo, T., Kruska, R. L., Herrero, M., Orindi, V., et al.
(2008). Climate change and poverty in Africa: mapping hotspots of vulnera-
bility. The African Journal of Agricultural and Resource Economics, 2(1).

UNEP. (2006). State of food insecurity and vulnerability in Southern Africa: regional
synthesis — November 2006. In UNEP. (Ed.), National Vulnerability Assessment
Committee (NVAC) reports. Garborone, Botswana: UNEP.

Van Velthuizen, V., Huddelston, B., Fischer, G., Salvatore, M., Ataman, E.,
Nachtergaele, F., et al. (2007). Mapping biophysical factors that influence agri-
cultural production and rural vulnerability. Rome: FAO.

Wood, S., Hyman, G., Deichmann, U., Barona, E., Tenorio, R., Guo, Z., et al. (2010).
Sub-national poverty maps for the developing world using international poverty
lines [dataset].

World Bank. (2009). Development report 2009 reshaping economic geography.
Washington, DC: World Bank.

Yohe, G., & Tol, R. S. J. (2002). Indicators for social and economic coping capaci-
ty—moving toward a working definition of adaptive capacity. Global Environ-
mental Change, 12(1), 25—40.

Zomer, R. J., Trabucco, A., Bossio, D. A., van Straaten, O., & Verchot, L. V. (2008).
Climate change mitigation: a spatial analysis of global land suitability for clean
development mechanism afforestation and reforestation. Agriculture Ecosystems
and Environment, 126, 67—80.

Please cite this article in press as: Abson, D. ]., et al., Using Principal Component Analysis for information-rich socio-ecological vulnerability
mapping in Southern Africa, Applied Geography (2012), http://dx.doi.org/10.1016/j.apgeog.2012.08.004




	Using Principal Component Analysis for information-rich socio-ecological vulnerability mapping in Southern Africa
	Introduction
	Aggregation of vulnerability indicators
	PCA
	PCA and socio-ecological vulnerability indices

	Application of PCA to the mapping of socio-ecological vulnerability indices for the SADC
	The SADC study region

	Data and methods
	Environmental and biophysical indicators
	Agricultural constraints
	Soil degradation
	HANPP (human appropriation of net primary production)
	Available NPP per capita (POPNPP)
	Aridity
	Precipitation CV

	Socio-economic indicators
	Infant mortality
	Malnutrition
	Irrigation
	Infrastructure poverty
	Poverty
	Travel time

	Methods
	PCA analysis
	Normalization analysis


	Results
	SADC PCA analysis
	SADC drylands ecoregion analysis

	Discussion
	Conclusions
	References


