

Targeted Marketing and Response Modelling

Roger Beecham www.roger-beecham.com

Targeted Marketing and Response Modelling

Roger Beecham www.roger-beecham.com

Targeted Marketing

Examples

- Recommender systems
- Loyalty cards
- Microtargeting
- Segmentation RFM, geodemographics

Practice

- Select variables (demographic and behavioural)
- Select "outcomes"
- Generate target

Targeted Marketing df.

Use of data and analytics to

characterise customer populations, such that groups of customers likely to respond best to a message can be targeted

and marketing **messages** can be **personalised** according to customer group

Linden, G., Smith, B. and York, J. (2003) Amazon.com Recommendations: Item-to-Item Collaborative Filtering, IEEE Internet Computing, 7(1): 76-80

Linden, G., Smith, B. and York, J. (2003) Amazon.com Recommendations: Item-to-Item Collaborative Filtering, IEEE Internet Computing, 7(1): 76-80

Linden, G., Smith, B. and York, J. (2003) Amazon.com Recommendations: Item-to-Item Collaborative Filtering, IEEE Internet Computing, 7(1): 76-80

content based

generate probabilities that a user will like a particular product based on past likes — e.g. spotify recommending tracks

demographic based recommend based on similar users and past behaviour

A/B testing and personalisation

A/B testing and personalisation

EXPERIMENTATION

The Surprising Power of Online Experiments

by Ron Kohavi and Stefan Thomke From the September-October 2017 Issue

The Growth of Experimentation at Bing

FROM "THE SURPRISING POWER OF ONLINE EXPERIMENTS," SEPTEMBER-OCTOBER 2017, BY RON KOHAVI AND STEFAN THOMKE

© HBR.ORG

Micro-targeting and personalisation

Micro-targeting and personalisation

micro-targeting is a marketing strategy that capitalizes on the consumer's demographic, psychographic, geographic, and behavioral data to predict his buying behavior, interests, opinions, and influence that behavior with the help of a hyper-targeted advertising strategy

Pawha, 2018

Micro-targeting and personalisation

micro-targeting is a marketing strategy that capitalizes on the consumer's demographic, psychographic, geographic, and behavioral data to predict his buying behavior, interests, opinions, and influence that behavior with the help of a hyper-targeted advertising strategy

Pawha, 2018

Targeting and personalisation in 1990s

data mining techniques on 12million transactions per week for:

tailored campaigns/promotions targeted to certain groups

pricing strategies for target groups

new products new ranges (e.g. Finest)

products bought by loyal customers prioritised

Segmentation

Segmentation *df.*

Partition objects — places, businesses, **customers** — into groups according to shared characteristics

age income occupation geographic location

often indirect measures clearly defined and generally static

purchase behaviour brand awareness ad response direct measures defined analytically and can change

Segmentation : techniques

Recency-Frequency Monetary Value (RFM) — quantile-based

4 min read : https://bit.ly/2KrVUia

Clustering —

k-means, density-based, hierarchical

11 min read : https://bit.ly/355i01K

Decision Trees —

chaid, cart, id3

17 min read : https://bit.ly/35aCXbG

Segmentation : techniques

Recency-Frequency Monetary Value (RFM) — quantile-based

4 min read : https://bit.ly/2KrVUia

Clustering —

k-means, density-based, hierarchical 11 min read : https://bit.ly/355i01K

Decision Trees —

chaid, cart, id3

17 min read : https://bit.ly/35aCXbG

Beecham, R. & Wood, J. Exploring gendered cycling behaviours *Transport Planning & Technology* doi: 10.1080/03081060.2013.844903

Radburn, R., Dykes, J. & Wood, J. vizLib: Using The Seven Stages of Visualization to Explore Population Trends and Processes in Local Authority Research

Recency - Frequency Segmentation

Recency

count

Frequency

Beecham, R. & Wood, J. Exploring gendered cycling behaviours *Transport Planning & Technology* doi: 10.1080/03081060.2013.844903

Radburn, R., Dykes, J. & Wood, J. vizLib: Using The Seven Stages of Visualization to Explore Population Trends and Processes in Local Authority Research

Recency - Frequency Segmentation

Segmentation : techniques

Recency-Frequency Monetary Value (RFM) quantile-based 4 min read : https://bit.ly/2KrVUia

Clustering —

k-means, density-based, hierarchical 11 min read : https://bit.ly/355i01K

Decision Trees —

chaid, cart, id3

17 min read : https://bit.ly/35aCXbG

Segmentation — clustering df.

Partition objects — places, businesses, people — into groups according to shared characteristics

such that objects **within** groups are similar AND objects **between** groups are different

Width : Income

big income

Width : Income

small income

Height : novels read

read little

Colour : Father's occupation

Income I neight : noveis read I colour : Tather's OCC. read little l trades

width : income | height : novels read | colour : father's occ.

Segmentation : techniques

Recency-Frequency Monetary Value (RFM) quantile-based 4 min read : https://bit.ly/2KrVUia

Clustering —

k-means, density-based, hierarchical 11 min read : https://bit.ly/355i01K

Decision Trees —

chaid, cart, id3

17 min read : https://bit.ly/35aCXbG

Think critically

About characteristics on which we choose to group. They should be semantically unique and context appropriate.

About how coherent and stable groupings are.

Within-group similarity and between-group difference.

Remember that groupings are relative. Groupings will change as new data arrive.

They are persuasive: they hide uncertainty. YouGov profiles. Geodemographics Output Area Classification

Geodemographics Output Area Classification

Exploring Uncertainty in Geodemographics with Interactive Graphics

Aidan Slingsby, Member, IEEE, Jason Dykes, and Jo Wood, Member, IEEE

SYLLABUS SCHEDULE R

PRACTICAL 2 : TARGETED MARKETING

The aim of this practical is to perform a data analysis on the synthetic dataset you generated las week in order to identify a group (or groups) of customers at whom a marketing strategy could t targeted. You will generate summary statistics and data graphics that will characterise what ma your customer groups distinctive from the Leeds population as a whole.

SYLLABUS SCHEDULE R

PRACTICAL 2 : TARGETED MARKETING

The aim of this practical is to perform a data analysis on the synthetic dataset you generated las week in order to identify a group (or groups) of customers at whom a marketing strategy could t targeted. You will generate summary statistics and data graphics that will characterise what ma your customer groups distinctive from the Leeds population as a whole.

Assignment #1

You will take on the role of a customer segmentation expert for a travel company. Your task is to identify a **specific segment** of customers who could be targeted with a marking strategy. You will use the 'synthetic' population produced through microsimulation during practical sessions 1 and 2 to identify the target customers. The **type of holiday destination** and **choice of customer sub-group(s)** to target is up to you. Note that your job is to identify the sub-population(s) to be targeted, explain your methods and clearly present your results. There is **no need** to discuss how you would reach the customers you identify. You are expected to incorporate at least some appropriate academic literature in to your report.

An indicative structure for your report is below.

- 1. **Introduction:** Identify and justify the scope of your study -- the destinations, holiday type and customer groups of focus and why they are of interest.
- 2. **Data and methods:** Describe the data on which your study is based, the variables you have selected and any derived variables you have created. Be sure to justify these decisions with reference to your study's scope.
- 3. **Results and analysis:** A combination of charts, maps and tables judiciously designed to address the area of focus outlined in the introduction.
- 4. **Conclusions:** Synthesise over the findings to identify the customers to which a marketing campaign could be targeted. Be sure to do so with reference to the evidence presented in your data analysis (section 3).

Assignment #1

GEOG5927M

<student-id>

Please use this document to complete assignment 1. DELETE all of the blue boxes that contain instructions – they are just for guidance. Use 'Styles' in Word to remove this formatting – revert paragraphs to 'Normal' style to remove boxes!

TITLE

INTRODUCTION

Use this section to identify and justify the scope of your study -- the destinations, holiday type and customer groups of focus and why they are of interest.

Approx length: 200 words.

DATA AND METHODS

Describe the data on which your study is based, the variables you have selected and any derived variables you have created. Be sure to justify these decisions with reference to your study's scope.

Approx length: 300 words.

RESULTS

Profile your target market using a combination of charts, maps and tables – judiciously designed to address the area of focus outlined in the introduction.

Approx length: 300 words

CONCLUSIONS

Synthesise over the findings to identify the customers to which a marketing campaign could be targeted. Be sure to do so with reference to the evidence presented in your data analysis.

Approx length: 200 words

microdata.csv 15,189 records

Person_ID OA_GRP	Sex	Ageband	NumberCh CombinedH	OverSe	easAi UKAirport	OverallHo	li _' AgeSex	Supergroup
11603 8c	F	a35to49	2 26-30K	LEI	MAN	Excellent	F35to49	Hard-Presse
11285 8c	F	a25to34	0 0-10K	IBZ	MAN	Fair	F25to34	Hard-Presse
13938 8c	Μ	a50to64	6-20K	LCA	BHX	Fair	M50to64	Hard-Presse
10255 8c	F	a25to34	I 26-30K	ALC	LBA	Poor	F25to34	Hard-Presse
831 8c	Μ	a50to64	0 26-30K	AGA	MAN	Good	M50to64	Hard-Presse
1754 8c	Μ	a65over	0 Not Answe	DLM	MAN	Good	M65over	Hard-Presse
2330 8c	F	a65over	0 Not Answe	DLM	MAN	Excellent	F65over	Hard-Presse
10818 8c	Μ	a25to34	0 36-40K	KGS	MAN	Fair	M25to34	Hard-Presse
8237 8c	Μ	a65over	2 6-20K	FUE	MAN	Good	M65over	Hard-Presse
11508 8c	F	a35to49	2 71-80K	ZTH	LBA	Poor	F35to49	Hard-Presse

ageBand	demographics
incomeBand	demographics
oac	geodemographics
originAirport	preference
destinationAirport	preference/attitude
satisfactionScore	preference/attitude

microdata.csv 15,189 records

Person_ID	OA_GRP	Sex	Ageband Numbe	erCh Combinedł	- OverSeasA	i UKAirport	OverallHoli	AgeSex	Supergroup
11603	8c	F	a35to49	2 26-30K	LEI	MAN	Excellent	F35to49	Hard-Presse
11285	8c	F	a25to34	0 0-10K	IBZ	MAN	Fair	F25to34	Hard-Presse
13938	8c	Μ	a50to64	6-20K	LCA	BHX	Fair	M50to64	Hard-Presse
10255	8c	F	a25to34	I 26-30K	ALC	LBA	Poor	F25to34	Hard-Presse
831	8c	Μ	a50to64	0 26-30K	AGA	MAN	Good	M50to64	Hard-Presse
1754	8c	Μ	a65over	0 Not Answe	DLM	MAN	Good	M65over	Hard-Presse
2330	8c	F	a65over	0 Not Answe	DLM	MAN	Excellent	F65over	Hard-Presse
10818	8c	Μ	a25to34	0 36-40K	KGS	MAN	Fair	M25to34	Hard-Presse
8237	8c	Μ	a65over	2 16-20K	FUE	MAN	Good	M65over	Hard-Presse
11508	8c	F	a35to49	2 71-80K	ZTH	LBA	Poor	F35to49	Hard-Presse

Dataset

Person_ID	OA_GRP	Sex	Ageband Num	berC	h Combined	H OverSeas	Ai UKAirport	OverallHol	AgeSex	Supergroup
11603	8c	F	a35to49		2 26-30K	LEI	MAN	Excellent	F35to49	Hard-Presse
11285	8c	F	a25to34	(0 0-10K	IBZ	MAN	Fair	F25to34	Hard-Presse
13938	8c	М	a50to64		6-20K	LCA	BHX	Fair	M50to64	Hard-Presse
10255	8c	F	a25to34		l 26-30K	ALC	LBA	Poor	F25to34	Hard-Presse
831	8c	Μ	a50to64	(0 26-30K	AGA	MAN	Good	M50to64	Hard-Presse
1754	8c	М	a65over	(0 Not Answ	/e DLM	MAN	Good	M65over	Hard-Presse
2330	8c	F	a65over	(0 Not Answ	/e DLM	MAN	Excellent	F65over	Hard-Presse
10818	8c	М	a25to34	(0 36-40K	KGS	MAN	Fair	M25to34	Hard-Presse
8237	8c	М	a65over		2 16-20K	FUE	MAN	Good	M65over	Hard-Presse
11508	8c	F	a35to49		271-80K	ZTH	LBA	Poor	F35to49	Hard-Presse

microdata.csv 15,189 records

ZonelD	Person_ID OA	_GRP	Sex	Ageband	NumberCh	CombinedF	OverSeasAi	UKAirport	OverallHoli	AgeSex	Supergroup
E00056750	603 8c		F	a35to49	2	26-30K	LEI	MAN	Excellent	F35to49	Hard-Pressed Living
E00056750	11285 8c		F	a25to34	0	0-10K	IBZ	MAN	Fair	F25to34	Hard-Pressed Living
E00056750	3938 8c		М	a50to64		16-20K	LCA	BHX	Fair	M50to64	Hard-Pressed Living
E00056750	10255 8c		F	a25to34		26-30K	ALC	LBA	Poor	F25to34	Hard-Pressed Living
E00056750	831 8c		М	a50to64	0	26-30K	AGA	MAN	Good	M50to64	Hard-Pressed Living
E00056750	1754 8c		М	a65over	0	Not Answei	DLM	MAN	Good	M65over	Hard-Pressed Living
E00056750	2330 8c		F	a65over	0	Not Answei	DLM	MAN	Excellent	F65over	Hard-Pressed Living
E00056750	10818 8c		М	a25to34	0	36-40K	KGS	MAN	Fair	M25to34	Hard-Pressed Living
E00056750	8237 8c		М	a65over	2	16-20K	FUE	MAN	Good	M65over	Hard-Pressed Living
E00056750	11508 8c		F	a35to49	2	71-80K	ZTH	LBA	Poor	F35to49	Hard-Pressed Living

simulated_population.csv
320,596 records

Identify and profile a target market using:

Demographics – income, age, household structure

Geography – where and what types of areas they tend to live in

Psychographics –

their motivations and preferences

microdata.csv

ageBand	demographics
incomeBand	demographics
numChildren	demographics
oac	geodemographics
originAirport	preference
destinationAirport	preference/attitude
satisfactionScore	preference/attitude

What makes your target market distinct when compared to the population as a whole?

ageBand	demographics
incomeBand	demographics
numChildren	demographics
oac	geodemographics
originAirport	preference
destinationAirport	preference/attitude
satisfactionScore	preference/attitude

Deviation from **Expectation** evidence model

(a) Per capita event rate map.

(b) Signed Surprise Map.

Correll & Heer (2017) Surprise! Bayesian Weighting for De-Biasing Thematic Maps, IEEE TVCG

Beecham and Wood, 2014

YouGovProfiles

UK Independence Party supporters

Welcome Roger!

Q

LOGOUT

×

YOU ARE CURRENIELY USING THE REDUCED FREE VERSION OF PROFILES - UPGRADE TO THE PROFESSIONAL TOOL TO EXPLORE ANY GROUP!

Now showing: Shows what is particularly true of UK Independence Party supporters compared to other groups of the same type. | Sample size: 13728 | Oct 12, 2016 | @ YouGov | What is this data?

YouGovProfiles^{u™}

NU2 7

YouGovProfiles^{ume}

О

О

LONDON

People who own an iPhone 6

Welcome Roger!

Q

LOGOUT

YOU ARE CURRENTLY USING THE REDUCED FREE VERSION OF PROFILES - UPGRADE TO THE PROFESSIONAL TOOL TO EXPLORE ANY GROUP!

Now showing: Shows what is particularly true of people who own an iPhone 6 compared to other groups of the same type. | Sample size 3/8 | Oct 12, 2016 | @ YouGov | What is this data?

SYLLABUS SCHEDULE R

PRACTICAL 2 : TARGETED MARKETING

The aim of this practical is to perform a data analysis on the synthetic dataset you generated las week in order to identify a group (or groups) of customers at whom a marketing strategy could t targeted. You will generate summary statistics and data graphics that will characterise what ma your customer groups distinctive from the Leeds population as a whole.

