PKKP scattering in the lower mantle resolved by small aperture arrays

Sebastian Rost
Paul Earle
Christine Thomas
Peter Shearer

University of Leeds
USGS
University of Liverpool
Scripps Institution of Oceanography
Why scattering?

- Sensitive to small-scale heterogeneities of velocity and density
- CMB topography (roughness)
- PKP; PcP; P_{diff}; PKKP

[Hedlin and Shearer, 2000]
Phonon-scattering synthetics
Phonon-scattering synthetics
• Distances < 70 deg

• Magnitudes m_b > 6.0

YKA: 697 events

GBA: 633 events

UNIVERSITY OF LEEDS
01-MAY-1990_16:12 ⇒ YKA

Lat: 58.82°
Lon: -156.86°
H: 211 km
M_b: 6.3
Δ: 20.58°
Θ: 278.82°

Energy Maximum

$u_{\text{max}} = 3.7$ s/°

$\Theta_{\text{max}} = 146°$
17-JUN-1996_11:22 ⇒ GBA

Lat: -7.14°
Lon: 122.59°
H: 587 km
M_b: 7.9
Δ: 49.35°
Θ: 111.95°

Energy Maxima

$u_{\text{max}} = 2.7 \text{ s/}^\circ \text{ and } 2.4 \text{ s/}^\circ$

$\Theta_{\text{max}} = 218^\circ \text{ and } 28^\circ$
YKA: 65 scattering events
GBA: 28 scattering events
Homogeneous heterogeneities

Heterogeneities At Edges

CMB Topography

South Africa

CMB
Summary/Outlook

- PK•KP originates from scattering at or above PKPK PKP CMB bounce point
- PK•KP can be observed undisturbed in a large distance range
- No cross-over phases
- Only sensitive to CMB topography and D” heterogeneity
- Small-aperture arrays are able to detect PK•KP
- Strong scattering beneath:
 - African anomaly
 - Central America
 - Patagonia (previously undetected)
- Synthetic modeling to constrain scattering parameters
END
PK•KP scattering facts:

- High frequency arrivals ⇒ Best observed between 0.9 and 2.1 Hz
- Characteristic slowness pattern ⇒ outer core slowness peaks
- Large observation distance ⇒ 0° to ~70°
Dataset

• Distances < 70 deg

• Magnitudes m_b > 6.0

• Depth h > 100 km

YKA: 697 events (from 1990 to 2005)

GBA: 633 events (from 1985 to 1996)