

Biomass Burning Combustion of N containing Species

Tom Speak, Lavinia Onel, Mark Blitz, Diogo Medeiros, Leanne James, Paul Seakins

> School of Chemistry p.w.seakins@leeds.ac.uk

Outline

1. Introduction

- 1. Natural/anthropogenic crop/forest burning
- 2. Controlled biomass burning for heat and power
- 2. Pollutant formation Amines RNH₂
- Contrast between carbon only and carbon/nitrogen combustion mechanisms – Amides – R –C(O)NH₂
- 4. Conclusions and Outlook

1. Introduction

Plant or forest burning

- Natural or manmade
- Flaming or smouldering
- Air Quality Issues
- Climate Change Issues

Biomass Burning for Power

 Good or bad for climate and air quality?

1. Controlled Biomass Burning for

The UK is the largest wood pellet

importer

Power

IOI UNIVERSITY OF LEEDS

Drax says 80% of its wood pellets come from these sources

Sawmill residues

Forest residues

Sources: FAOSTAT, Ofgem, Drax

Italy 2013 data

Drax is the largest power station user of wood pellets in the UK

1. Good or Bad for Climate?

- Primarily depends on the origin of the wood
- Waste wood and 'forest residue' low emission or even negative (decay in forest environment leads to methane)
- Mature wood is a better sink for carbon
- Land use change can impose a huge carbon debt that can take decades to repay.
- As with biofuels, it may be worth working with lower efficiency to encourage development and infrastructure for the future. CCS?
- Talk from Drax 4 pm 12th June.

1. Wildfires – Flaming vs Smouldering

Flaming vs Smouldering

Emissions Relative to CO₂

Emission	Flaming	Smouldering	Emission	Flaming	Smouldering
CO ₂	63	37	CO ₂	100	100
СО	16	84	СО	6.7	12.1
CH ₄	27	73	CH ₄	0.64	1.2
VOCs	33	67	VOCs	0.66	1.08

Typically smouldering phase lasts longer

1. Distribution and Role of Biomass Burning

- 18% of CO₂ Emissions
- 6- 15% of CH₄
- ~30% CO
- ~20% NOx
- 24% NMHC (ex isoprene)
- 86% elemental carbon
- N₂O
- 5 10% of worldwide Air Quality mortalities

2. AMINE CHEMISTRY AND POLLUTANT FORMATION

Methylamine – CH_3NH_2

2. Principles of CCS

- In the atmosphere amines will be removed by reaction with the OH radical
 - $OH + HOCH_2CH_2NH_2 \rightarrow H_2O + product$
- Do amines react preferentially in the gas phase with OH or via uptake into water?
- What is the mechanism of amine oxidation?
- What is the potential for formation of toxic products? Requires knowledge of initial OH abstraction site.

2. Oxidation of dimethylamine (DMA)

adapted from Nielsen, Herrmann and Weller Chem. Soc. Rev 2012

2. OH + MEA (monoethanolamine)

2. Dimethylamine (DMA) + OH + O_2 + NO

HO₂ Yield =
$$\frac{k_1}{k_1 + k_2} = (73 \pm 5)\%$$

2. $DMA/MA + OH + O_2 + NO$

2.Pollutants downwind from a power plant

2. Summary

- Amines react rapidly in the gas phase. Gas phase processing will compete with heterogeneous uptake.
- For simple amines, abstraction at the C-H grouping dominates. Needs to be studied as a function of temperature.
- Despite not being the dominant route, sufficient N-H abstraction occurs for nitramine levels to be significant.

3. COMBUSTION CHEMISTRY OF AMIDES

3. Introduction – Chain Branching

- Some stabilised QOOH species have been observed.
- Stable QOOH tend to be less reactive towards O₂ addition.

 $\begin{array}{ll} \mathrm{RH} + \mathrm{OH} \ \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{R} & \text{towards } \mathrm{O}_2 \text{ additi} \\ \mathrm{R} + \mathrm{O}_2 \ \rightarrow \mathrm{RO}_2 \\ \mathrm{RO}_2 \ \rightarrow \mathrm{QOOH} \ \rightarrow \mathrm{OH} \ (\mathrm{Propagation}) \\ \end{array}$ $\begin{array}{l} \mathrm{QOOH} + \mathrm{O}_2 \ \rightarrow \mathrm{OOQOOH} \ \rightarrow \mathrm{OH} \ (\mathrm{Propagation}) + \mathrm{Product} \rightarrow \\ \mathrm{OH} \ (\mathrm{Branching}) \end{array}$

3. Standard PES

- QOOH higher in energy than RO₂
- Barrier to Isomerisation and barrier to OH bellow entrance energy.
- Low population of QOOH well.
- Competition between QOOH fragmenting to give OH and being intercepted by O₂ to form OOQOOH.

3. DMF PES

 QOOH lower in energy than RO2

UNIVERSITY OF LEEDS

- Barrier to isomerisation below entrance energy.
- Allows for QOOH well to be readily populated at elevated temperatures.
- Barrier to OH well above entrance energy - not a route out to OH.
- Competition between R fragmentation and oxygen interception.

3. DMF PES

Implications for DMF OH oxidation are:

- At low temperatures RO₂ chemistry will dominate.
- At low temperatures we will generate single exponential traces for the loss of OH.
- At elevated temperatures OH regeneration is not the product of QOOH fragmentation.
- Another route is required to OH.

3. Room Temperature decay

- Good fits for single exponential loss with traces returning to the pre-trigger baseline.
- Photolysis of the RO₂ is not responsible for OH regeneration seen later.

3. Room temperature Oxidation

3. OH recycling kinetics

- We recover biexponential decays at temperatures > 500 K
- We fit these using a simplified model.

Trace taken at 550 K 50 -OH Signal (arbritrary units) 40 30 -20 10 -0 -10 -2000 8000 2000 4000 6000 10000 0

Time (µs)

3. Temperature dependence of $k_{\rm B}$

- Initially k_B is a small value and it increases with temperature.
- The temperature dependence of this can be compared with the output of our models.
- At the highest temperatures have over 90 % OH coming back.

UNIVERSITY OF LEEDS

3. Modelled output for DMF PES

Energies in kJ/mol

2nd Oxygen addition PES

- QOOH+ $O_2 \rightarrow OH$?
- Rate coefficients for the individual reactions on this PES were used in combination with Kintecus to simulate OH decay curves.

Energies in kJ/mol

Mesmer output for OOQOOH decomposition PES

3. Amide Chemistry Summary

- Potential to study/observe critical intermediates
 - lying at the heart of combustion chemistry.

4. SUMMARY AND FUTURE DIRECTIONS

4. Summary

- Biomass burning contributes strongly to air quality (HCN, HNCO, VOC, O₃, particulates) and Climate Change (CO₂, N₂O, CH₄, particulates)
- Need to understand the details of the chemistry to predict yields.
- Nitrogen chemistry particularly important AND interesting.
- Examples of studies to characterise:
 - branching ratios OH + amines
 - reaction intermediates Amide chemistry

4. Future Directions

- Studies in HIRAC and other environmental chambers. Greater detail on product yields.
- Expand amide studies. Consider potential for direct observation of intermediates.
- Examine chemical mechanisms for biomass burning.

4. Biomass Burning @ Leeds?

- Leeds is well-placed to expand activity in plant biomass burning
 - CDT looking at controlled biomass burning (input from Engineering, MAPS, E&E)
 - Detailed Chemistry (laboratory and MCM)
 - Field studies capability (COBRA, Dwayne et al.)
 - Modelling