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1. Introduction
1. Natural/anthropogenic crop/forest burning
2. Controlled biomass burning for heat and power

2. Pollutant formation — Amines — RNH,

3. Contrast between carbon only and
carbon/nitrogen combustion mechanisms —

Amides — R —C(O)NH,
4. Conclusions and Outlook
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Plant or forest burning Biomass Burning for Power

Natural or manmade

* Flaming or smouldering and air quality?

Air Quality Issues

Climate Change Issues



1. Controlled Biomass Burning for
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The UK is driving increased demand for pellets
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1. Good or Bad for Climate?
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* Primarily depends on the origin of the wood

* Waste wood and ‘forest residue’ low emission or
even negative (decay in forest environment leads
to methane)

e Mature wood is a better sink for carbon

* Land use change can impose a huge carbon debt
that can take decades to repay.

* As with biofuels, it may be worth working with
lower efficiency to encourage development and
infrastructure for the future. CCS?

e Talk from Drax 4 pm 12t June.



1. Wildfires — Flaming vs Smouldering
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Flaming vs Smouldring Emissions Relative to CO,
Emission | Faming | smouidering | Emission | Flaming | Smouldering
Co, 63 37 CO, 100 100
CcO 16 84 CcO 6.7 12.1
CH, 27 73 CH, 0.64 1.2
VOCs 33 67 VOCs 0.66 1.08

Typically smouldering phase lasts longer



1. Distribution and Role of Biomass
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18% of CO, Emissions

6- 15% of CH,

~30% CO

~20% NOXx

24% NMHC (ex isoprene)
86% elemental carbon
N,O

5 - 10% of worldwide Air
Quality mortalities
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2. AMINE CHEMISTRY AND
POLLUTANT FORMATION

Methylamine — CH;NH,



2. Principles of CCS
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HOW CARBON CAPTURE WORKS
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2. Questions to address
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* |In the atmosphere amines will be removed by
reaction with the OH radical
* OH + HOCH,CH,NH, — H,0 + product

Do amines react preferentially in the gas phase
with OH or via uptake into water?

e What is the mechanism of amine oxidation?

 What is the potential for formation of toxic
products? Requires knowledge of initial OH
abstraction site.



2. Oxidation of dimethylamine (DMA) gny
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2. OH + MEA (monoethanolamine)
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Fast!
Gas phase oxidation will compete
with aerosol uptake




2. Dimethylamine (DMA) + OH + O, + NO
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2. DMA/MA + OH + 0, + NO
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2 .Pollutants downwind from a power
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\Nitramine HOCH2CH2NH-NO2

a) downwind distance / km
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2. Summary
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 Amines react rapidly in the gas phase. Gas phase
processing will compete with heterogeneous
uptake.

* For simple amines, abstraction at the C-H
grouping dominates. Needs to be studied as a
function of temperature.

* Despite not being the dominant route, sufficient
N-H abstraction occurs for nitramine levels to be
significant.
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3. Introduction — Chain Branching

mechanism UNIVERSITY OF LEEDS

* Some stabilised
QOOH species have
been observed.
» Stable QOOH tend to
be less reactive
RH+OH - H,0+R towards O, addition.

R+ 0, — RO,
RO, — QOOH — OH (Propagation)

QOOH + 0, - 00QO0OH - OH (Propagation) + Product —
OH (Branching)



3. Standard PES

Energies in kJ/mol

Prod1 + Prod2 + OH
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QOOH higher in
energy than RO,
Barrier to
Isomerisation and
barrier to OH bellow
entrance energy.
Low population of
QOOH well.
Competition between
QOOH fragmenting to
give OH and being
intercepted by O, to
form OOQOOH.



3. DMF PES

i
K\N,Me

Me

Energies in ki/mol

RO2toQO0OH_TS
-32.6

QOOH__OHCO2_MeNCH2_TS
304

CH2NCH3 + OH + C02

UNIVERSITY OF LEED

QOOH lower in energy
than RO2

Barrier to isomerisation
below entrance energy.
Allows for QOOH well to
be readily populated at
elevated temperatures.
Barrier to OH well above
entrance energy - not a
route out to OH.
Competition between R
fragmentation and oxygen
interception.



3. DMF PES
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QOOH__OHCO2_MeNCH2_TS
304

RO2t0QOOH_TS
326

i
k\N,Me

Me

Implications for DMF OH

oxidation are:

* At low temperatures
RO, chemistry will
dominate.

« At low temperatures
we will generate
single exponential
traces for the loss of
OH.

OOCONMeZ  HoOCONMECH?, ; - At elevated
0 ¢ .
K e oo N e oo Sy M temperatures OH
Ve WO Hzé\oo regeneration is not
M T 2s5a the product of QOOH
CHINCHI+OH+C02  mec00  fr@gmentation.

Energies in kJ/mol

* Another route is
required to OH.



3. Room Temperature decay
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3. Room temperature Oxidation
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3. OH recycling kinetics
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 We recover biexponential
decays at temperatures >

500 K Trace taken at 550 K

* We fit these using a
simplified model.

ey [$3]
o o
1 1

w
(a)
1 "

OH Signal (arbritrary units)

o
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T — T T T T T T T 1
-2000 0 2000 4000 6000 8000 10000

Time (us)



3. Temperature dependence of kg
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* Initially kg is a small
value and it increases

with temperature. 000,

 The temperature o]
. 500 +
dependence of this can +

be compared with the 20004 | © "
output of our models.

* At the highest .
temperatures have over . o
90 % OH coming back. 500'_ e

1500 H +

k,(s™

S0+ T T T T T T T
440 460 480 500 520 540 560 580 600 620 640

Temperature (k)




3. Modelled output for DMF PES
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QOQ0H _OHCO2_MeNCH2_TS
30.4

500K 1.9313e+19 RO2toQOOH_TS

-32.6
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O0CONMe2 0OCONMe2
CHZNCH3

HOOCONMeCH2

Roughly
experimental
timeframes
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log10(time/secs)

Energies in kJ/mol
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2"d Oxygen addition PES
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QOOH__OHCO2_MeNCH2_TS
304

0.0

« QOOH+0O, —» OH ? RO2t0QOOH TS

-32.6

* Rate coefficients for the
individual reactions on
this PES were used in
combination with Kintecus
to simulate OH decay
curves.

T 2551

+
CH2NCH3 + OH + C02 HOOCONMeCH200

Energies in kJ/mol
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Mesmer output for OOQOOH decomposition PES
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3. Amide Chemistry Summary
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* Potential to study/observe critical intermediates
lying at the heart of combustion chemistry.
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4. SUMMARY AND FUTURE
DIRECTIONS



4. Summary
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* Biomass burning contributes strongly to air

quality (HCN, HNCO, VOC, O,, particulates) and
Climate Change (CO,, N,0O, CH,, particulates)

* Need to understand the details of the chemistry
to predict yields.

* Nitrogen chemistry particularly important AND
Interesting.

 Examples of studies to characterise:
— branching ratios — OH + amines
— reaction intermediates — Amide chemistry



4. Future Directions
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e Studies in HIRAC and other environmental
chambers. Greater detail on product yields.

* Expand amide studies. Consider potential for
direct observation of intermediates.

e Examine chemical mechanisms for biomass
burning.



4. Biomass Burning @ Leeds?
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* Leeds is well-placed to expand activity in plant
biomass burning

— CDT looking at controlled biomass burning (input from
Engineering, MAPS, E&E)

— Detailed Chemistry (laboratory and MCM)
— Field studies capability (COBRA, Dwayne et al.)
— Modelling



