TOTAL GAMMA RAY LOG EXERCISE

GENERAL DATA EXERCISE

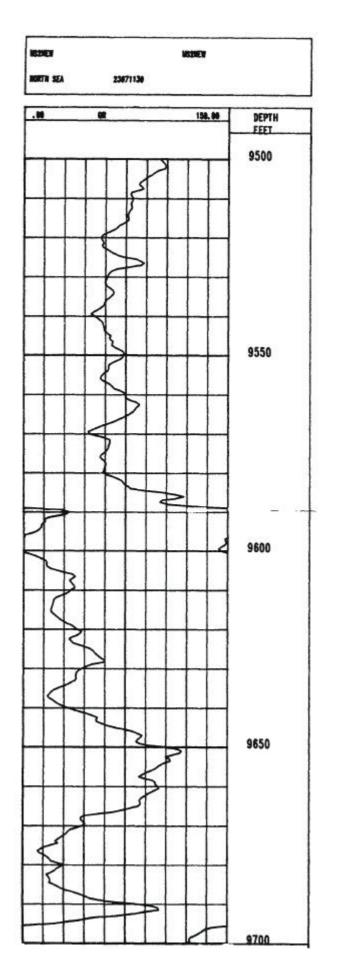
The enclosed pseudo-log sheet shows the lithologies in a pseudo-well.

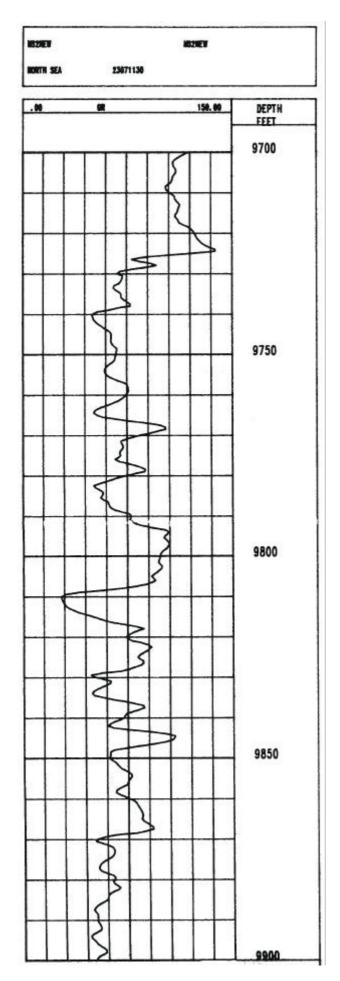
- (a) Draw in the log as a schematic representation of the total gamma ray that you might expect from each of the 100% shale and clean sandstone lithologies. Assume that all 100% shales have the same GR value, which is 120 API. Make the sandstone with an API value of 40 API. These are your relative points.
- (b) Indicate the effect on the gamma ray log of the caving in the shale.
- (c) Extend the log to include the sandy shale ($V_{sh}=0.75$) and shaly sandstone ($V_{sh}=0.375$).
- (d) Add the additional effect that is to be expected from:
 - The heavy mineral glauconite band, that is represented by *.
 - The presence of feldspars in the arkose sandstone.
 - The presence of significant mica in the micaceous sandstone.
- (e) Draw in the shale line and sand lines.
- (f) Extend the log to the bottom including typical values for the remaining lithologies.
- (g) Draw in a possible shape for the GR log in the finning-upwards shaly sandstone.

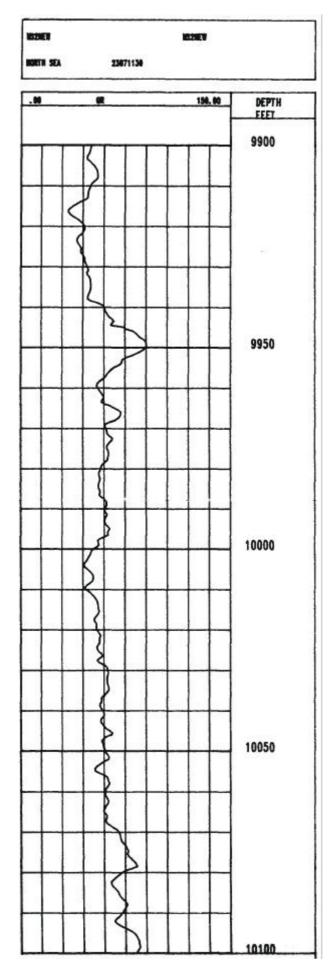
When complete, you should have a log that is typical of the various lithologies occurring in the exercise.

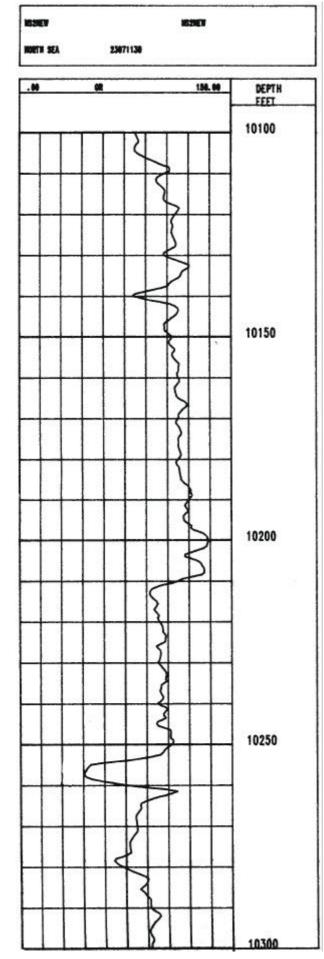
			GR (API)				
			0				150
Shale		Caving					
Sandy Shale							
Shaly Sandstone							
Sandstone	* * * * *						
Arkose SST	F F F F F F						
Micaceous SST	M M M						
Organic/ Black Shale							
Gypsum							
Coal							
Limestone							
Dolomite							
Halite							
Anhydrite							
Shaly							
Fining-Up							
Sandy							
Shale							

NORTH SEA EXAMPLE


The next few pages show a toal gamma ray log from the North Sea. It begins in the Upper Kimmeridge Clay on the 9 - 150 API scale (i.e., no wraparound). The log contains, predominantly sequences of sands and shales of varying shale volume, but also contains, in part, micaceous sandstones, carbonate cemented sandstones, a thin heavy mineral bed associated with a marine transgression, and some organic-rich shales.


The order of the formations in the log (downward) are:


- Upper Kimmeridge Clay
- Lower Kimmeridge Clay
- Heather formation?
- Tarbet formation
- Ness formation
- Etive formation
- Rannoch formation
- Dunlin formation


A literature survey may help you with this exercise.

- (a) Divide the log into large scale units that you believe to be of similar lithology, or indicate packages (i.e, a fining-up sequence).
- (b) Indicate to the right-hand side of the log, your interpretation of the likely lithology of these units.
- (c) Revisit the log at a finer scale to attempt to find areas where there are small scale disturbances to the overall pattern within the units and attempt to find a reason for these disturbances.
- (d) Analyse the log for facies and the sedimentary environment, indicating all possible finning-up and coarsening-up sequences, marine transgressions and maximum flooding surfaces etc., if present, and mark on the log.

