TEMPERATURE EXERCISE

This exercises uses data from the Elysian Field.
Well: 24-1X
Depth Range: 2900 - 3300 m
Lithology: Variable

Several logs have been run in well 24-1X of the Elysian Field between depths of 2900 m and 3300 m (the bottom of the borehole).

The following data were collected:

	Process	Depth (\mathbf{m})	Temp. $\left({ }^{\circ} \mathbf{F}\right)$	Time \& Date	\boldsymbol{T} (hours)	$(\boldsymbol{t}+\boldsymbol{T}) / \boldsymbol{T}$
	Drilling Stopped	3300	-	$22: 00 / 15^{\mathrm{th}}$	-	-
	Mud Circulation Stopped	-	-	$04: 00 / 16^{\mathrm{th}}$	-	-
1	DIL log	3300	241	$12: 15 / 16^{\mathrm{h}}$		
2	FDC log	3300	257	$15: 00 / 16^{6^{\mathrm{th}}}$		
3	SNP log	3300	266	$17: 30 / 16^{\text {th }}$		
4	Dipmeter	3300	273	$20: 30 / 16^{\mathrm{th}}$		

(a) Calculate the mud circulation time, t, in hours $t=$
(b) Calculate the recovery time, T (hours), for each logging run and fill in last but one column. Note: remember to use decimal time in hours.
(c) Calculate $(t+T) / T$, and fill in the table.
(d) Make a Horner plot of temperature on the y-axis (linear, 230 to $310^{\circ} \mathrm{F}$) against $(t+T) / T$ on the x -axis (linear 1.0 to 2.0).
(e) What is the true formation temperature at 3300 m in ${ }^{\circ} \mathrm{F}$ and in ${ }^{\circ} \mathrm{C}$? (Note that to convert ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ subtract 32 , divide the result by 9 , and then multiply by 5 .)
(f) Given that the mean annual temperature of the sea-floor is $10^{\circ} \mathrm{C}$ and that the sea-floor is 300 m below the logging depth measurement point, calculate the mean temperature gradient in the well in ${ }^{\circ} \mathrm{C} / \mathrm{m}$ and in ${ }^{\circ} \mathrm{F} / \mathrm{m}$.
(g) What is the temperature in ${ }^{\circ} \mathrm{F}$ and in ${ }^{\circ} \mathrm{C}$ at 3100 m ?

