Conversion Factors, Units and Logging Tool Responses to Common Minerals (Courtesy of Theo. Grupping and Halliburton) | | S.I. UNIT | | | | |-----------------|----------------------------|----------|---|-----------------------------| | Length | 1 m | | 3.281 | ft | | | | = | 39.37 | inches | | Area | 1 m ² | = | 10.76 | ft ² | | | | | 2.471 x 10 ⁻⁴ | acres | | Volume | 1 m ³ | | 35.31 | ft ³ | | | | = | 6.290 | barrels | | Vol./Vol. | $1 \text{ m}^3/\text{m}^3$ | = | 7,758 | barrels/acre-foot. | | | | = | 43,560 | ft ³ /acre-foot. | | Density | 1 kg/m^3 | | 10-3 | g/cm ³ | | | | | 6.243×10^{-2} | lbs/ft ³ | | | | | 0.433×10^{-3} | psi/ft | | | | | 8.345 | lbs/U.S. gallon | | Force | 1 Newton | | 1x10 ⁵ | dynes | | Pressure | 1 Pascal | | 1 | Newton/m ² | | | | | 9.869×10^{-6} | atm. | | | | | 1.450×10^{-4} | psi. | | | | | 10 ⁻⁵ | bar | | | | | 10 | dynes/cm ² | | Surface Tension | 1 Newton/m | | 10 ³ | dynes/cm | | Viscosity | 1 Pascal.sec | | 10 | Poise | | Permeability | 1 Darcy | = | 0.9869×10^{-12} | m ² | | Temperature | °C | | (°F - 32) x ⁵ / ₉ | | | | °F | | $(^{\circ}C \times ^{9}/_{5}) + 32$ | 2 | Dr. Paul Glover Page i Dr. Paul Glover Page ii Dr. Paul Glover Page iii | Name | Formula | ΦNLS*
thermal
(p.u.) | ρ _ь
g/cc | ριog
g/cc | Pe | P _{em} ⁴ | Δt_c (μ s/ft) | Δt_s (µs/ft) | Σ _{ma}
(c.u.) | |------------------------------|--|----------------------------|---|--------------|-----------|------------------------------|----------------------------|----------------------|---------------------------| | SILICATES | 1 | (1-1-1-7 | | | | | <u> </u> | | | | Quartz | SiO ₂ | -1 | 2.65 | 2.64 | 1.81 | 1.81 | 55.5 | 74 | 4.6 | | Cristobalite | SiO ₂ | -1.4 | 2.33 | 2.30 | 1.81 | 1.81 | | | 4.0 | | Opal (3.5% H ₂ O) | SiO ₂ (H ₂ O) _{.1209} | 2.0 | 2.13 | 2.10 | 1.75 | 1.74 | 58.0 | | 3.8 | | Garnet | | | *************************************** | | | | | | | | Almandine | Fe ₃ Al ₂ (SiO ₄) ₃ | 1.8 | 4.32 | 4.31 | 11.1 | 10.3 | 35.8 | 63.9 | 45 | | Andradite | Ca ₃ Fe ₂ Si ₃ O ₁₂ | .4 | 3.86 | 3.88 | 10.13 | 9.67 | | | 32 | | Grossularite | Ca ₃ Al ₂ Si ₃ O ₁₂ | 3 | 3.59 | 3.63 | 4.37 | 4.44 | | | 11 | | Pyrope | Mg ₃ Al ₂ Si ₃ O ₁₂ | .4 | 3.58 | 3.61 | 1.60 | 1.61 | | | 6.2 | | Zircon | ZrSiO ₄ | 0 | 4.68 | 4.51 | 69.1 | 50 | 95.8 | 146.5 | 5.5 | | Hornblende | Ca ₂ NaMg ₂ Fe ₂ AlSi ₈ -
O ₂₂ (O,OH) ₂ | 2.9 | 3.12 | 3.11 | 5.99 | 5.72 | 44 | 82 | 17.9 | | Tourmaline | (Na,Ca) (Li,Mg,Al)-
(Al,Fe,Mn) ₆ -
(BO ₃) ₃ (Si ₆ O ₁₈) (OH) ₄ | 11-22 | 3.00 | 2.93-3.00 | 1.9-10.5 | 1.3-9.5 | | | 4000 | | SHEET SILICATE | | T | T | | | | Т | | | | Kaolinite | Al ₄ (Si ₄ O ₁₀)(OH) ₈ | 40 | 2.61 | 2.63 | 1.49 | 1.45 | 212 | 328 | 12.9 | | Illite | KAl ₄ (Si ₇ AlO ₂₀)(OH) ₄ | 9-10 | 2.65-2.69 | 2.64-2.69 | 2.04 | 2.05 | | | 12-14 | | Montmorillonite | (Ca,Na) ₇ (Al,Mg,Fe) ₄ -
(Si,Al) ₈ O ₂₀ (OH) ₄ •4H ₂ O | 18-53 | 2.2-2.7 | 2.2-2.7 | 1.3-1.55 | 1.24-1.5 | | | 14.7 | | Chlorite | · | | | | · | | | | | | Clinochlore | (Mg,Fe) ₅ Al(Si ₃ Al)-
O ₁₀ (OH) ₈ | 29-47 | 2.63-2.98 | 2.6-3.0 | 1.04-12.7 | .95-11.7 | | | 35.6 | | Gonyerite | (Mn,Mg) ₅ Fe ³⁺ (Si ₃ Fe ³⁺)-
O ₁₀ (OH) ₈ | 45 | 3.01 | 2.97 | 10-16 | 9.2-15 | | | 113 | | Nimite | (Ni,Mg,Fe) ₅ Al(Si ₃ O)-
O ₁₀ (OH) ₈ | 75 | 3.19 | 3.20 | 1.3-17 | 1.2-15 | | | 45 | | Muscovite | KAI ₂ (AISi ₃)O ₁₀ (OH) ₂ | 11 | 2.83 | 2.82 | 2.40 | 2.40 | 53 | 92 | 16.9 | | Biotite | K(Mg,Fe) ₃ AlSi ₃ O ₁₀ -
(OH) ₂ | 10-12 | 3.01 | 2.95-3.03 | 2.3-10.2 | 2.3-9.5 | 49 | 82 | 35.2 | | Glauconite | (K,Na,Ca) _{1.2-2} -
(Fe ³⁺ ,Al,Fe,Mg) ₄
Si _{7-7.6} -
Al ₁₋₄ O ₂₀ (OH) _{4•} 2H ₂ O | 11-18 | 2.45-2.85 | 2.42-2.83 | 5.1-6.1 | 4.8-5.9 | | | 17-22 | | FELDSPARS | T | | T | | | | T | T | · | | Microcline | KAISi ₃ O ₈ | -1.3 | 2.59 | 2.56 | 2.86 | 2.87 | | | 15.8 | | Orthoclase | KAISi ₃ O ₈ | -1.4 | 2.56 | 2.53 | 2.86 | 2.87 | 69 | | 15.8 | | Anorthoclase | KAISi ₃ O ₈ | -1.4 | 2.59 | 2.56 | 2.86 | 2.87 | 69 | | 15.8 | | Albite | NaAlSi ₃ O ₈ | -1.1 | 2.62 | 2.59 | 1.68 | 1.68 | 49 | 85 | 7.7 | | Anorthite | CaAl ₂ Si ₃ O ₈ | -1.2 | 2.76 | 2.74 | 3.13 | 3.18 | 45 | <u></u> | 7.4 | | CARBONATES | | | | T | | | T .= | | Γ | | Calcite | CaCO ₃ | 0 | 2.71 | 2.71 | 5.08 | 5.08 | 47.6 | 88.7 | 7.1 | | Aragonite | CaCO ₃ | .6 | 2.95 | 2.97 | 5.08 | 5.08 | 47.6 | 88.7 | 7.1 | | Dolomite | CaMg(CO ₃) ₂ | .9 | 2.87 | 2.88 | 3.14 | 3.08 | 43.5 | , 71 | 4.7 | | Siderite | Fe(CO ₃) ₂ | 6 | 3.96 | 3.89 | 14.7 | 13.4 | 43.8 | 84.9 | 52.8 | | Ankerite | CaCO ₃ (Mg,Fe,Mn)CO ₃ | ≈1 | 2.94 | 2.90-2.95 | 7.3-8.7 | 6.9-8.1 | 53.0 | 83.6 | 24.9 | Dr. Paul Glover Page iv | Name | Formula | ФNLS*
thermal
(p.u.) | ρь
g/cc | ριog
g/cc | Pe | P _{em} ⁴ | Δt _c
(μs/ft) | Δt_s (µs/ft) | Σ _{ma}
(c.u.) | |--------------|---|----------------------------|------------|--------------|---------|------------------------------|----------------------------|----------------------|---------------------------| | SULPHATES | | | | _ | | | | | | | Barite | BaSO ₄ | -1 | 4.48 | 4.09 | 267 | 144 | 69.7 | 132.7 | 20 | | Celestite | SrSO ₄ | 8 | 3.96 | 3.79 | 55.2 | 41.2 | 60.7 | 168.8 | 23.5 | | SULPHIDES | | Г | | | | 1 | 1 | | | | Pyrite | FeS ₂ | -1.7 | 5.02 | 5.00 | 17.0 | 16.1 | 38 | 59 | 91.2 | | Pyrrhotite | Fe ₇ S ₈ | -1.7 | 4.60 | 4.53 | 20.5 | 19.3 | 65 | 110 | 95.8 | | Galena | PbS | -2.3 | 7.40 | 6.30 | 1631 | 133 | | | 13.4 | | Sphalerite | ZnS | -2.3 | 4.10 | 3.96 | 35.9 | 31.7 | 57 | 108 | 41 | | Chalcopyrite | CuFeS ₂ | -1.9 | 4.20 | 4.07 | 26.7 | 24.4 | | | 102 | | Chalcocite | Cu ₂ S | -1.5 | 5.50 | 5.20 | 37.4 | 33.4 | | | 168 | | OXIDES | | | | | | | | | | | Hematite | Fe ₂ O ₃ | 4.8 | 5.27 | 5.18 | 21.5 | 19.8 | 46 | 72 | 102 | | Magnetite | Fe ₃ O ₄ | 3.8 | 5.18 | 5.08 | 22.2 | 20.5 | 73 | 155 | 103 | | Limonite | $FeO \cdot OH \cdot nH_2O(n = 2.1)$ | >100 | 3.85 | 3.98 | 12.9 | 11.8 | 57 | 103 | 78.5 | | Corundum | Al ₂ O ₃ | .5 | 4.02 | 4.03 | 1.55 | 1.57 | | | 11 | | Rutile | TiO ₂ | 1 | 4.18 | 4.06 | 10.1 | 9.70 | | | 192 | | Spinel | MgAl ₂ O ₄ | 1-(+1) | 3.5-4.1 | 3.49-4.13 | 1.49 | 1.51 | | | 7.5-10 | | Ilmenite | FeTiO ₃ | 2.0 | 4.70 | 4.60 | 16.6 | 15.5 | | | 162 | | EVAPORITES | | | | | | | | | <u></u> | | Halite | NaCl | -1.5 | 2.17 | 2.04 | 4.65 | 4.86 | 67 | 116 | 761 | | Sylvite | KCI | -2 | 1.99 | 1.87 | 8.51 | 8.71 | 74 | | 572 | | Carnallite | KMgCl ₃ •6H ₂ O | 63 | 1.61 | 1.57 | 4.09 | 4.11 | 78 | | 372 | | Anhydrite | CaSO ₄ | -1 | 2.96 | 2.98 | 5.05 | 5.14 | 50 | 97.5 | 12.6 | | Gypsum | CaSO ₄ •2H ₂ O | 53 | 2.32 | 2.35 | 3.99 | 3.99 | 52.5 | | 18.6 | | Langbeinite | K ₂ Mg ₂ (SO ₄) ₃ | -1.1 | 2.83 | 2.82 | 3.56 | 3.57 | 52 | | 24.0 | | Polyhalite | K ₂ Ca ₂ Mg(SO ₄) ₄ •2H ₂ O | 14.5 | 2.78 | 2.79 | 4.32 | 4.35 | 57.5 | | 23.8 | | Kieserite | MgSO ₄ H ₂ O | 37 | 2.57 | 2.59 | 1.83 | 1.79 | | | 14.1 | | MISCELLANEO | | | | | | L | L | | | | Borax | Na ₂ B ₄ O ₇ •10H ₂ O | >100 | 1.71 | 1.71 | .473 | .247 | | | 8305 | | Kernite | Na ₂ B ₄ O ₇ •4H ₂ O | >100 | 1.91 | 1.87 | .522 | .314 | | | 13000 | | Flourite | CaF ₂ | -1.3 | 3.18 | 3.13 | 6.71 | 6.82 | | | 11 | | Apatite | Ca ₅ (PO ₄) ₃ (F,Cl,OH) | 1.2 | 3.15 | 3.15 | 5.8-6.1 | 5.9-6.2 | | | 52 | | Goethite | FeO•OH | >100 | 4.37 | 4.34 | 19.0 | 17.5 | | | 80 | | Augite | (CaNa)(Mg,Fe,Al)-
(Si,Al) ₂ O ₆ | 7-(-1.1) | 3.30 | 3.25-3.32 | 1.3-9.6 | 1.3-9.1 | | | 7-30 | | Sulphur | S ₂ | -2 | 2.07 | 2.02 | 5.40 | 5.80 | 122 | | 20.6 | | COALS | | · | | | | | | | | | Anthracite | CH.358N.009O.022 | >60 | 1.60 | 1.57 | .17 | 15 | 105 | | 10.5 | | Bituminuous | CH.793N.015O.078 | >100 | 1.35 | 1.34 | .17 | 16 | 120 | · | 20 | | Lignite | CH.849N.015O.211 | >45 | 1.10 | 1.05 | .20 | 11 | 160 | | 12.6 | ^{*} DSN-II Neutron Porosity only ## References - 1. Hurlbut, C.S., Jr., Klien, C., Manual of Mineralogy, 19th Ed., Wylie and Sons, 1971. - 2. Handbook of Chemistry and Physics, 60th Edition, CRC Press Boca Raton, Fl., 1981. - 3. Roberts, W.L., Campbell, T.J., Rapp, G.R., Jr., Encyclopedia of Minerals, 2nd Ed., Van Nostran Reinhold Co., New York, 1990 - Moake, G.L.: "Definition of an Improved Lithology Factor and a Laboratory Technique for Its Measurement." Presented at the 29th Annual SPwla Symposium in San Antonio, Texas, June 1988, paper PP. Dr. Paul Glover Page v