Abbreviations A Cross sectional area B Specific Counterion Activity (Waxman-Smits) C_p Capillary Pressure FF,F Formation factor E Tortuosity factor H_t Producing zone thicknessK_{brine} Brine permeability K_{brine} Brine permeability K_g Gas permeability K_L Equivalent liquid permeability (Klinkenberg corrected gas permeability) K_o Oil permeability K_{eo} Effective oil permeability K_r Relative permeability K_{ro} Relative permeability to oil K_{rw} Relative permeability brine K_{SFW} Permeability to simulated formation water K_w Brine/water permeability K_{ew} Effective brine/water permeability ℓ , L Length m Cementation factor m* Cementation factor (corrected) M_r Mobility n Saturation exponent n* Saturation exponent (corrected) P, p Pressure $\begin{array}{ll} P_c & Capillary \ pressure \ (psi) \\ P_d & Drawdown \ pressure \\ P_m & Mean \ flowing \ pressure \\ Q_o & Volume \ oil \ produced \\ Q_i & Volume \ water \ injected \end{array}$ Q_v Cation exchange capacity meq/ml Qw Volume water produced Re Effective reservoir radius RCAL Routine core analysis Relative Permeability R_o Core resistivity R_w Brine resistivity (or wellbore diameter) R_t Core resistivity at reduced S_w SCAL Special Core Analysis S_o Oil saturation S_{or} Residual oil saturation S_{gt} Residual trapped gas saturation $egin{array}{lll} S_w & Brine saturation \\ S_{wi} & Initial brine saturation \end{array}$ t Time (secs) Dr. Paul Glover Page i ## Abbreviations continued | V, v | Volume | |------------------------------|-------------------------| | g | Interfacial tension | | 1 | Mobility ratio | | \boldsymbol{q} | Contact angle | | \boldsymbol{f} | Porosity | | r_o | Oil density | | $r_{\scriptscriptstyle W}$ | Brine density | | m_{o} | Oil viscosity | | $m_{\!\scriptscriptstyle W}$ | Water (brine) viscosity | Dr. Paul Glover Page ii