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Densely packed surface fractal aggregates form in systems with high local volume fractions of
particles with very short diffusion lengths, which effectively means that particles have little space to
move. However, there are no prior mathematical models, which would describe scattering from such
surface fractal aggregates and which would allow the subdivision between inter- and intraparticle
interferences of such aggregates. Here, we show that by including a form factor function of the
primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces
can be derived from a structure factor term. This formalism allows us to define both a finite specific
surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter
of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio
approach that involves the generation of a “brick-in-a-wall” von Koch type contour fractals. Moreover,
we show that this approach explains observed scattering intensities from in situ experiments that
followed gypsum (CaSO4·2H2O) precipitation from highly supersaturated solutions. Our model of
densely packed “brick-in-a-wall” surface fractal aggregates may well be the key precursor step in
the formation of several types of mosaic- and meso-crystals. C 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4960953]

INTRODUCTION

In colloid sciences fractal scaling concepts constitute
an important formalism that provides for the statistical
description of the properties of particles and their aggregates
(e.g., morphologies, porosity, density, and specific surface
area). The fractal nature of colloids can be experimentally
quantified using scattering techniques, and based on a
combination of theoretical and experimental evidence1–18 two
distinct scaling laws have been used to describe experimental
observations: mass fractals and surface fractals. Mass fractal
scaling can be associated with the packing efficiency of an
aggregate, which in turn depends on the type of aggregation,
e.g., diffusion or reaction limited mechanism.13–21 On the other
hand, surface fractal scaling only relates to the perimeter of
a particle or aggregate of particles and correlates with its
specific surface area.1–5

The core idea behind mass fractals stems from our need to
statistically describe aggregation processes involving primary
particles. To exemplify this, we will assume for simplicity that
a system only has spherical and monodisperse particles with
radii r0. These particles aggregate into larger structures, whose
size is typically characterized by a radius of gyration Rg (see
Fig. 1(a)). For a mass fractal aggregate, the average number
of particles N(r) within a distance of a variable length scale
r , with an arbitrary origin within the aggregate (r < 2Rg), is

a)Authors to whom correspondence should be addressed. Electronic
addresses: rogier@gfz-potsdam.de and stawski@gfz-potsdam.de.

b)R. Besselink and T. M. Stawski contributed equally to this work.

given by10,11

N (r) ∝
(

r
r0

)Dm

, (1)

where Dm is a mass fractal dimension, which in a three-
dimensional space can assume values of 1 ≤ Dm < 3. Regular
objects such as a thin rod, a thin plate, or a cube have
an integer Dm of 1, 2, and 3, respectively. However, for
more complex morphologies, such as branched objects, N(r)
does not necessarily scale with an integer value of Dm,
depending on the aggregate packing density, Dm can have any
fractional value between 1 and 3. For particles aggregating
in solution, one would expect mass fractals, because such
structures usually form at relatively low local particle
concentrations and considerably large diffusion lengths.15–21

This fact is exemplified by the common observation of such
aggregates in nature. Important to note is that the mathematical
formalism used for describing these structures is well
established.8–12

On the other hand, for surface fractal aggregates the
current concepts do not explicitly consider primary particles as
building blocks for the aggregates, since their surface fractal
dimensions cannot be associated with the internal packing
efficiency of primary particles. This is because, surface fractal
scaling deals with an apparently dense object whose surface
area, α, scales with the variable length scale r as follows:3

α(r) = α2

(
r
l2

)2−Ds

, (2)

0021-9606/2016/145(21)/211908/11 145, 211908-1 © Author(s) 2016.
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FIG. 1. (a) Mass fractal aggregate characterized by a radius of gyration Rg and composed of spherical primary particles of radii r0 (grey and green spheres);
(b) Mandelbrot’s22 “How long is the coast of Britain?” example illustrates that the total measured length of the coast (i.e., fractal contour) increases with
decreasing size of the yardstick (pink line). When the yardstick is in relative terms infinitely small (or at least smaller than the smallest d-spacing corresponding
to a measured q-range in scattering, e.g., atomic), the total length of a fractal contour will become effectively infinite; (c) in analogy to (b) the concept of the
surface fractal aggregate is based on the total length of the coastline still being a fractal, but with a yardstick that has a practical finite size. This finite size can
be associated with the size of the primary building blocks (orange and blue squares) making up the entire object. As a consequence, the length of the contour
becomes finite. The blue squares represent the building blocks at the surface. The inset in (c) depicts a rectangular island composed of primary building blocks,
which is an analogue of an aggregate with a smooth surface (Ds= 2). Because of its flat shape, the measured length of the contour line is independent of the
length of the yardstick, provided that the yardstick is considerably shorter than the measured length.

where α2 is the projected area of a rough surface onto a 2D
plane (i.e., area of the “en face photo” of a rough surface), Ds
is the surface fractal dimension, and l2 is the limiting length-
scale, which is related to the size of the discrete building
blocks (e.g., atoms, primary particles, etc.). Such surface
fractal dimensions can assume values between 2 ≤ Ds < 3,
where Ds = 2 represents a perfectly smooth surface, and
values approaching 3 represent a “very rough” surface. The
concept of surface fractals is in line with a classical paper
by Mandelbrot,22 which showed that the apparent length
of Britain’s coastline (i.e., contour line) depends on the
length of the applied yardstick (see Fig. 1(b)). Although
the example used by Mandelbrot dealt with two-dimensional
objects, and thus the yardsticks and the fractal properties were
one-dimensional, in surface fractals we consider the surfaces
of three-dimensional objects. Consequently, the yardsticks and
fractal properties are two-dimensional, and thus a yardstick
can be linked to the surface area α described in Eq. (2).
Although the surface fractal formalism does not exclude the
existence of primary particles (i.e., larger than a single atom)
making up the surface of the aggregate, it is typically assumed
that surface fractal scaling extends to the infinitely small
“atomic” level and hence r → 0 (in analogy to Fig. 1(b)). In
such a case, this type of scaling is attributed to the properties
of surfaces (regardless if these are surfaces of amorphous
particles23 or external crystal surfaces24), excluding smaller
particle morphologies.

There is still an open question, whether we can rationalise
the physicochemical process(es) leading to the formation of

true surface fractal aggregates. Such surface fractals would
have to be internally (nearly) close-packed; however, the
primary building blocks making up such an aggregate still
has to be distinguishable from their surroundings. This
means that they have to be separated by low-density spacers
(e.g., Fig. 1(c)). The presence of such spacers seems to
contradict the close-packing hypothesis; however, close-
packing only requires a high coordination number of nearest
neighbours. Kolb and Herrmann25 showed through Monte
Carlo simulations of highly concentrated colloidal aggregates,
that if the “local” concentration of particles is close to 1
(i.e., the particles have very little space to move), then
surface fractal aggregates are formed instead of their mass
counterparts.25 This is particularly relevant if we consider that
recent studies have pointed out that, for example, nucleation is
driven by local density fluctuations,26,27 and that due to these
fluctuations the local particle concentration can significantly
increase resulting in much decreased diffusion lengths. In
a recent work28 we showed that, during the formation of
gypsum (CaSO4·2H2O), surface fractal aggregates made of
sub-3 nm primary species constituted a crucial step in the
process, without which nucleation nor further growth could
proceed. This insight was gained from experimental in situ
and time-resolved scattering evidence and showed that the
appearance of surface fractal aggregates was indeed preceded
by the formation of domains of increased local number density
of the primary species. We attributed the onset of aggregation
to the “collapse” of these high-density domains and the
sudden increase in the local volume fractions of primary
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species. As a result, surface fractal aggregates formed, yet we
could still distinguish the primary particles making up these
larger morphologies. In addition, this surface fractal aggregate
concept could be particularly relevant within the framework
of non-classical crystallization models, which suggest that
crystals may form as a result of aggregation of primary
particles. As such, this concept could be associated, if not
actually considered as interchangeable, with the notion of
meso-crystals defined for the growth by oriented attachment
of nanoparticles building up single crystals.29 It also appears
that a surface fractal aggregate model could explain various
aspects of the concept of mosaicity that characterises the
formation of inorganic30–32 and macromolecular33–36 single
crystals.

In the aforementioned study on the CaSO4 system, we
used small-angle X-ray scattering data to draft the concept of
surface fractal aggregation. Scattering approaches are among
the most powerful experimental tools for in situ and time-
resolved characterization of nano- and microscopic properties
of colloidal systems, including their possible fractal nature and
aggregation mechanism. Nevertheless, the prime conceptual
missing link between mass fractal and surface fractal systems
has been the total lack of any suitable mathematical model
that describes the measured scattering phenomena for surface
fractal aggregates. To fill this gap, we derived, validated, and
tested an advanced mathematical model in this work, which
allowed us to analyse and fit scattering data, and explained
the concepts of surface fractal aggregates for colloidal
systems.

SCATTERING FROM FRACTAL OBJECTS

Both mass and surface fractals are relatively easy to
observe in the small-angle scattering region of electromagnetic
waves. For mass fractals, the isotropic scattering intensity I
can be expressed as a function of the modulus of the scattering
vector q, for a certain range of length-scales (defined by q) as
follows:

I (q) ∝ q−Dm, (3)

whereas, for surface fractals,

I (q) ∝ q−6+Ds (4)

applies.
To categorize a structure as a true fractal, these

dependencies should extend for at least one decade in q,
and the log I(q) vs. log q representation should yield a
characteristic straight line for both types of fractals (Fig. 2). If
the exponent (i.e., the slope in the logarithmic representation)
is <−1 and >−3, then it corresponds to −Dm, and we deal
with mass fractals (Eq. (3); lines I and II in Fig. 2). On the
other hand, if the exponent is <−3 and >−4, then it is equal
to −6 + Ds, and we should consider surface fractals (Eq. (4);
lines III and IV in Fig. 2). This constitutes in many cases
a straightforward method to establish the occurrence, and
distinguish between the two types, of fractal structures in a
system (Fig. 2).

FIG. 2. log I (q) vs. log q representation of simulated scattering intensities:
(I) exponent −1.5 for ∼0.01 < q < ∼ 2 a.u. indicates a lower density mass
fractal of Dm= 1.5; (II) exponent −2.5 for ∼0.01 < q < ∼ 2 a.u. indicates a
higher density mass fractal of Dm= 2.5; (III) exponent −3.1 for the entire
q-range indicates a rough surface fractal of Ds= 6−3.1= 2.9; (II) exponent
−3.99 for the entire q-range indicates an almost smooth surface fractal of
Ds= 6−3.99= 2.01.

Scattering from mass fractal aggregates
of primary particles

Following the above defined notions, it becomes clear that
in Fig. 2, within the region spanning ∼0.01 < q <∼ 2 a.u.,
the curves I and II originate from mass fractal structures.
However, the power law q−Dm relationship holds neither
for q < ∼0.01 a.u. in the low-q regime where the curves
flatten out approaching q0 nor for q > ∼2 a.u. where the
exponents sharply increase at high-q. The low-q regime marks
the characteristic size of an entire aggregate with a given
Rg (e.g., Fig. 1(a)). Conversely, the high-q regime contains
information about the individual primary particles of radius
r , which make up the aggregate. This regime also contains
information about the size, shape, and/or polydispersity of the
primary particles. The scattering intensity from such a system
with both individual primary particles and aggregates can be
expressed as the product of the three major components10,11

I (q) = vppφ(∆ρ)2 · P(q) · S(q), (5)

where the first contribution is described by vppφ(∆ρ)2, which
is the scattering pre-factor, in which vpp denotes the volume of
a primary particle, φ is the total volume fraction of the primary
particles in the matrix, and ∆ρ is the scattering length density
difference between the primary particles and the surrounding
homogenous matrix (e.g., solvent). The other two components
are the functions, P(q) and S(q), which describe the form
and structure of the particles, respectively. P(q) originates
from intraparticle interferences and defines the geometrical
properties of the primary particles building the aggregate (and
thus also defines vpp). The contributions of P(q) in curves I
and II in Fig. 2 are visible at q > ∼2 a.u. On the other hand,
S(q) originates from interparticle interferences and describes
the geometrical arrangement of the primary particles. This
function describes the q < ∼2 a.u. features of the scattering
patterns in curves I and II in Fig. 2.
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For mass fractals the contributions of the various
length-scales are distinguishable in the scattering pattern,
expressed by Eq. (5), and can be easily separated. For an
in-depth description we refer the reader to the literature.12,37,38

Nevertheless, for the sake of a good understanding of the
model for surface fractals we develop below, we will briefly
explain here these concepts.

Firstly, for simplicity, we consider a monodisperse system
with spheres of radius r0. Hence, P(q) is given/known, and
it is by default normalized to its primary particle volume
and consequently P(q → 0) = 1. Furthermore, S(q), once
normalized in such a way that S(q → ∞) = 1, can be expressed
as10,11,39,40

S (q) = 1 − V2 (q)
v1
= 1 +

1
v1

4π
 ∞

0
(g (r) − 1) r2 sin qr

qr
dr,

(6)

where V2 represents the perturbed or excluded particle volume,
which represents the length-scale dependent volume that
will not be occupied by primary particles. v1 is the average
available volume per primary particle and equates to V/N1,
where V is the sample’s scattering volume and N1 the total
number of primary particles.40 v1 is therefore the inverse of
the particle number density n1. The mass fractal scaling in
Eq. (6) is represented by g(r). This is a correlation function that
describes the probability of finding two locations separated by
a distance r , which in the case of mass fractals is proportional
to the amount of volume occupied by solid matter, V (r) ∝ rDm.
Using the formalism defined by Chen and Teixeira10,11 the
correlation function for the total number of particles N(r)
within a sphere of radius r is defined by the expression

n1 · (g (r) − 1) = 1
4πr2 ·

dN (r)
dr

=
1

4πr2 ·
d
dr

(
r
r0

)Dm

=
Dm

4π
· r (Dm−3)

rDm
0

, (7)

where n1 is the overall particle number density within the
sample’s scattering volume V (i.e., V represents the sample
volume that is exposed to incident beam). A finite size of
aggregates can be taken into account in the expression for g(r)
by multiplying Eq. (7) by an exponential cut-off function8–12

exp(−r/ξ), where ξ is the cut-off length. This length marks
the perimeter of the aggregate, and it can be related to Rg from
Eq. (1).10,11 It is worth noting that, by including the exponential
cut-off function (Eq. (7)), n1 represents a local particle number
density within the boundary of the mass-fractal aggregate
rather than an overall particle number density. By substitution
of a normalized correlation function for mass fractals (as
in Eq. (7)) and including a multiplied exponential cut-off
function, exp(−r/ξ), within the normalized definition of the
structure function (Eq. (6)) the following structure function
for mass-fractal aggregates is derived:10,11

SMF (q) = 1 +
DmΓ (Dm − 1)

(qr0)Dm
· sin [(Dm − 1)atan(qξ)](

1 + (qξ)−2
) (Dm−1)/2

, (8)

where Γ denotes a gamma function.
This mass fractal structure factor, SMF(q), is dimen-

sionless and normalized by its primary particle volume,

and the structure factor goes to unity in the high-q limit
(S(q → ∞) = 1). Hence, this formalism enables the inclusion
of a separate form factor that can describe the shape of
the primary entities. Consequently, this approach provides
information about both the average number of primary
particles per aggregate and the size of the primary entities,
which in turn correlates with the specific surface area and
porosity of the aggregates.

Model development for surface fractal structures

Based on a similar approach as for the mass fractal
structure factor, below we derive a surface fractal structure
factor that will then be linked to, and validated with, our
scattering data. To do this, we start with the advanced
expressions for scattering from surface fractal morphologies
derived by Bale and Schmidt,1 Reich et al.,2 and Wong and
Bray,3,4

I (q) = A · Γ (5 − Ds) sin [π (3 − Ds) /2]
3 − Ds

· q−6+Ds, (9)

where A is a constant proportional to the surface area of the
scattering features (e.g., a particle, crystal or pore surface,
etc.) and the scattering contrast.

Contrary to Chen and Teixeira’s derivation(s) for the
mass fractal structure factor (Eq. (8)), the scattering intensity
function for surface fractals in Eq. (9) was not normalized
against the primary particle volume (Eq. (6)), and hence Eq. (9)
does not describe a structure factor function. Consequently, it
cannot be used to describe a multi-level hierarchical structure
composed of primary particles that assemble into larger
aggregates. With Eq. (9), we can simulate various scattering
patterns representing surface fractals (as shown in the
log I(q) vs. log q in Fig. 2, curves III and IV). In this
representation, the simulated scattering patterns turn into
simple straight lines, which essentially lack any characteristic
features at both extremes of the limiting q-range (compared
to curves I and II for mass fractals). Hence, in the current
form Eq. (9) does not describe surface fractal aggregates, but
merely fractal rough surfaces.

To include a form factor, we start with the established
model of fractal surfaces, which relies on a first order
approximation of the correlation function for the scattering
intensity,40,41 that can be expressed as(

d
dr

g (r)
)
r→0
=

−1
4 (1 − φ) ·

α

Vφ
, (10)

where V is the sample’s scattering volume, α is the surface
area of the solid and as introduced above in Eq. (2), and φ
is the total volume fraction of the primary particles within
the sample’s scattering volume. For fractal rough surfaces,
the surface area α depends on the limiting length-scale, l2,
introduced in Eq. (2). Now, let us assume that a fractal rough
surface is composed of small spherical subunits of radius r0
(see Figs. 3 and 1(c)). In such a case the limiting length-scale
of the surface roughness will be approximately the same size
as that of the primary particles that make up the rough fractal
surface (i.e., l2 ∼ 2r0). Furthermore, when a solid aggregate
is built of Npp number of spherical primary particles, the
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FIG. 3. Schematic representation of the characteristic length-scales consid-
ered for a fractal surface composed of spherical primary particles of radii
r0. l2 is a limiting length-scale and l2= 2r0−a, where a is a small overlap
parameter and a→ 0. α2,pp is a surface area of the projection of a single
spherical primary particle.

total volume of the resulting solid phase within the aggregate
(i.e., Vφ: a product of the sample’s scattering volume V and a
total volume fraction of primary particles φ) can be described
by Eq. (11) and is illustrated in Fig. 3,

φV = Npp · 4/3πr3
0. (11)

For a typical aggregate, only a limited number of primary
particles Nb,pp are located at the rough boundary surface
(Nb,pp ≪ Npp). Furthermore, as postulated by Wong and Bray,3

primary particles can be partially merged together, and thus
to some extent they may overlap (a la Minkowski sausage3).
For the sake of simplicity we assume that the overlap, a,
is negligibly small compared to the particle radius and thus
l2 = 2r0. In our derivation, α2,pp denotes the surface area of
the projection of a single primary particle (Fig. 1(a), grey and
green spheres), and thus the total projected surface area of the
so formed aggregate can be expressed as

α2 = Nb,ppα2,pp = Nb,pp · π(l2/2)2 = Nb,pp · πr2
0. (12)

By combining Eqs. (10)-(12) we obtain(
d
dr

g (r)
)
r→0
=

−1
4 (1 − φ) ·

Nb,pp · πr2
0

Npp · 4/3πr3
0

·
(

r
2r0

)2−Ds

=
−3φb
16r0

·
(

r
2r0

)2−Ds

. (13)

Here, φb = Nb,pp/Npp is the fraction of primary particles
located at the fractal surface boundary and for dilute systems
(1 − φ) ≈ 1. Integration of Eq. (13) by satisfying the boundary
condition g(r → 0) = 1 results in the following correlation
function g(r), which describes surface fractal aggregates:

g (r) = 1 − 3φb
8 (3 − Ds) ·

(
r

2r0

)3−Ds

. (14)

Importantly, this new correlation function, g(r), also considers
smaller primary entities of size r0. Consequently, we can
substitute this correlation function into the definition of S(q)
in Eq. (6) and derive a new expression for the surface fractal

structure factor SSF(q),

SSF (q) = 1 −
 ∞

0

9 · 4π · φb · r5−Ds

32π · (3 − Ds) r3
0(2r0)3−Ds

· sin qr
qr

dr

= 1 +
9φbΓ (5 − Ds)
(2qr0)6−Ds

· sin [π (3 − Ds) /2]
3 − Ds

, (15)

where the available primary particle volume v1 (see Eq. (6))
is approximated as the volume of a primary particle with a
radius r0.

In accordance with Wong and Bray,3 this function is
still valid for surface fractal dimensions, Ds up to 3, and
the term sin[π(3 − Ds)/2]/(3 − Ds) converges to π/2. Please
note that, contrary to the mass fractal equation (Eq. (8))
we did not include an upper cut-off value of the aggregate.
This is only useful when all features, including the primary
particle form factor, the intermediate plateau regime, the
surface fractal regime, and the upper cut-off regime fall within
the measured q-range. Since such aggregates are typically
orders of magnitude larger as the primary particles, we
assume that these aggregates extend to macroscopic sizes
and consequently, I(q → 0) → ∞.

DISCUSSION

The general properties of surface fractal aggregates

Based on the mathematical concepts developed above
we can now simulate the expected scattering profiles for any
system as a function of the three characteristic parameters
of Eq. (15), namely, φb, which is the fraction of primary
particles located at the fractal surface boundary; Ds, the
surface fractal dimension; and r0, the primary particle radius.
We used spherical amorphous silica particles (with a density
of 2.196 g/cm3)46 as an example (Fig. 4). The surface fractal
structure factor from Eq. (15) has to be combined with
a form factor function of primary particles making up an
aggregate (as expressed by Eq. (5)), for which we used a
form factor for monodisperse spheres39,40,42 with radius r0,
Psphere(q) (Eq. (16)). This way the three parameters of the
structure factor function, SSF(q), can be associated with the
specific surface area and the typical length-scale of surface
interfacial sub-surfaces of an aggregate. In real systems, these
parameters are essential, for instance, when considering the
catalytic activity or adsorption efficiency of a catalyst,43–45

Psphere (q) =
(
3

sin qr0 − qr0 cos qr0

(qr0)3
)2

. (16)

For large q-values, Psphere(q) from Eq. (16) will oscillate
around an average value of 9/2 (qr0)−4 (Fig. 4(a), dark green
curve I). From a mathematical standpoint such oscillations
are not an issue, yet the fringes would blur the simulated
scattering curves at high-q. For clarity, this spherical form
function is transformed into an approximated spherical form
factor function without figure-obstructing fringes (Papp(q);
Eq. (17)). When plotted in Fig. 4(a) (light green curve II) it
becomes clear that this provides a good approximation for
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FIG. 4. Simulated scattering patterns based on Eqs. (5), (15), and (17). The volume fraction, φ, and the scattering contrast, ∆ρ, were calculated for aqueous
dispersions of amorphous silica particles of density46 2.196 g/cm3 and φ = 0.5%. The scattering length density difference was calculated with respect to water.
(a) log I (q) vs. log q representation (Porod plot) for constant r0= 5 nm and various φb and Ds; (b) Porod plot for various r0, but with constant φb= 0.01 and
Ds= 2.5; (c) log(I (q)·q4) vs. log q plot for surface fractals based on the lines shown in (a), the secondary y-axis represents the modelled specific surface area
which is proportional to the I (q)·q4-axis; (d) log(I (q)·q4) vs. log q plot for surface fractals based on (b) with a specific surface area on the secondary axis.

Psphere(q),

Papp (q) =
(

1

1 + 2/9 (qr0)4
)
. (17)

This way we can differentiate the three distinct effects that
the φb, DS, and r0 parameters have on the scattering curves
(Fig. 4):

(i) The combination of Eqs. (5), (15), and (17) reveals that
the scattering intensity originating from fractal surfaces
scales linearly with the fraction of particles (φb) located at
this surface (e.g., blue squares in Fig. 1(c)). For instance,
a 100-fold decrease in φb causes a 100-fold decrease
in scattering intensity at low-q, as illustrated by curves
III and IV in Fig. 4(a).

(ii) In analogy to other aforementioned surface fractal
models,1–5 the exponent of the surface fractal regime
(at low-q) in a Porod plot increases from −4 to −3 when
the surface fractal dimensions, Ds, shift from 2 to 3
(Fig. 4(a), curves IV and V).

(iii) The effect the primary particle radius, r0, has on the
simulated intensity patterns is shown in Fig. 4(b). The
intensity value at which the form factors level off (dashed
lines in Fig. 4(b)) scales proportionally with the volume
of the primary particles. Furthermore, an extrapolation
of the primary particle contribution to q → 0 is directly
equal to the scattering pre-factor vppφ(∆ρ)2 (see Eq. (5)).
The inflection points in Fig. 4(b) (and Fig. 4(a)) divide
the scattering patterns into a low-q part, dependent solely
on the structure factor (SSF(q), Eq. (15)), and a high-q

part, describable exclusively by the primary particle’s
form factor (Papp(q); Eq. (17)).

The above derived surface fractal model can be used
to determine the specific surfaces of the primary particles,
and their aggregates, at different length-scales by using a
log(I(q)·q4) vs. log q representation (Fig. 4(c)). It was shown
by Porod,47 that for a high-q limit, when the scattering
is described by the form factor function of only primary
particles with radius r0, the total smooth surface area of
these particles (i.e., the total sum of the individual surface
areas of all primary particles) is independent of the limiting
length-scale for π/r0 < q < ∞. Therefore, the obtained shapes
of the curves in the high-q part are characterized by a plateau
in a log(I(q)·q4)-log q-plot for q → ∞ (Fig. 4(c), curve I).
The associated specific surface, σ (shown as a secondary
right hand axis in Figs. 4(c) and 4(d)) is determined for this
high-q limit as follows:

σ =
α

Vφ
=

1

2πφ(∆ρ)2 lim
π/r0<q→∞

I (q) · q4. (18)

Converting the intensity axis into a specific surface area axis
(right-hand side y-axis in Figs. 4(c) and 4(d)) reveals that
when smooth aggregates of primary particles are considered
(e.g., particles with a Ds = 2 as shown in Fig. 4(c), curves
II and III), the plots exhibit two plateaus. The aforementioned
high-q plateau originates from the total surface of primary
particles (Eq. (18)), while the 2nd low-q plateau is associated
with the surface of smooth aggregates (low-q regime). In
analogy to the total length of the coastline concept illustrated
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in Fig. 1(c), the case of a surface fractal dimension Ds = 2,
would correspond to a modified figure in which, instead of an
irregularly shaped island, we would have an island with a very
regular shape, such as the rectangle in Fig. 1(c). However,
such a regularly shaped island would itself still be composed
of much smaller bricks. By using such an approach, any
measurement of the length of the coastline contour line (in
analogy to a specific surface) with any yardstick of a length
sufficiently shorter than the dimensions of our rectangular
island, but longer than the dimension of the building-block
brick, would yield the same result. This is analogous to a
plateau in log(I(q)·q4) vs. log q representation (Fig. 4(c),
curves II and III). In the special case of φb = 1 and Ds = 2, the
specific surface area of an aggregate measured this way would
be exactly 4 times smaller than the specific surface area of the
particles that make it up. This is because the approximated
surface area of a circular smooth surface segment α2,pp = π·r0

2

(see Fig. 3 for clarification) is exactly 4 times smaller than the
surface of a sphere αsphere = 4π·r0

2 (see Fig. 4(c), curve II).
This statement holds under the assumption that the average
electron density of the aggregate is close to the electron density
of the individual primary particles. For sake of simplicity
we neglected the contribution of the electron lean regions
between the bricks to the electron density of the whole
aggregate.

On the other hand, for Ds > 2, a low-q plateau is not
visible in our log(I(q)·q4)-log q-plot. Instead, a linear region
with a constant slope is observed for q < π/r0 (Fig. 4(c),
curves III and IV; Fig. 4(d)). If we return for a moment
to Figs. 1(b) and 1(c), we immediately see that the specific
surface (analogous to the length of a contour line) is not
a constant value, because it depends on our measurement
yardstick. Now let us imagine that England is composed of
small bricks (Fig. 1(c)). In such a case, the length of the
coastline increases for decreasing yardstick length, until the
yardstick reaches the size of the primary bricks that form
England. Consequently, the map of England is a fractal object
only down to the size of these primary building blocks.
Likewise, we can assume that the rough surface area α
increases for decreasing yardstick length r , until r reaches
the size of the smallest entities: r = l2 ≈ 2r0 (Eq. (2) and
Fig. 2). Hence, the specific surface area of a rough surface
fractal aggregate, σSF, can be determined by extrapolating
I(q)·q4 to the limiting length-scale (q → 2π/l2) following
Porod’s definition (Eq. (18)) and by changing the limit to
π/r0. Mathematically this can be expressed as

σSF =
1

2πφ(∆ρ)2 lim
q→π/r0

I (q) · q4

=
vpp

2π
lim

q→π/r0
(S (q) − 1) · q4

=
3φbΓ (5 − Ds)
8r0(2π)2−Ds

· sin [π (3 − Ds) /2]
3 − Ds

. (19)

Note that here we also assumed that the electron density of
the aggregate is close to the electron density of the individual
particles. However, when the electron density of the aggregate
is substantially lower than that of the individual particles,
due to a substantial contribution of electron lean regions

between the bricks, the intensity of the structure factor will
be reduced. Consequently, the obtained values for φb and σSF
can be overestimated. Extrapolations of the surface fractal
regimes are illustrated by the dashed portions of the lines in
Figures 4(c) and 4(d). Please note that, although the
scattering intensities in the low-q regime decrease, the
actual extrapolation of this regime reveals increasing surface
areas for increasing surface fractal dimensions. For example,
as Ds increases from 2 to 3, while φb and r0 are kept
constant, the specific surface area σSF increases by a factor
π2/2 ≈ 4.9. Moreover, the specific surface area is inversely
proportional to r0 as illustrated in Fig. 4(d). This holds for
both the total specific surface of primary particles given
by σpp = 4πr0

2/(4/3πr0
3) = 3/r0 as well as for fractal rough

aggregate surfaces as defined by Eq. (19).

Empirical validation of the surface fractal
aggregate model

Above, we analytically derived properties of surface
fractal aggregates (Eqs. (5), (16), and (17)) and demonstrated
how this would work on a hypothetical system of spherical
silica particles of a given density (Fig. 4). The profiles in the
log I(q) vs. log q plots (Figs. 4(a) and 4(b)) showed that the
inflection points in the scattering curves, separating the form
factors and the structure factors, were a characteristic feature
of the surface fractal aggregates. These inflection points and
the associated intensity plateaus (I(q) ∝ q0) are related to the
fact that only primary particles at the surface of the aggregates
contribute to the low-q increase in intensity (see also Fig. 1(c)).
We can empirically validate this observation by generating a
Koch-like fractal surface aggregate representation composed
of square-shaped primary particles (Fig. 5) and simulate
ab initio their scattering pattern (see also supplementary
material).

We validated our model by using a quadratic von Koch
curve as described by Mandelbrot.48 In such a case, the
fractal generation involves a systematic surface roughening
that has to be applied at varying length-scales of an initially
square-shaped outline. However, contrary to the classical
von Koch procedure, we simulated aggregates composed
of smaller quadrilaterals of a similar size as the smallest
segment of the outer aggregate contour line. This simple, yet
elegant, approach allowed us to predict the morphology of
an aggregate, which was model-independent because it does
not rely on the mathematical definitions of the correlation
function g(r) described by Eq. (14). The generated aggregate
object is akin to a “brick-in-a-wall” or mosaic structure,
which exhibits a very dense packing of primary particles in
agreement with the findings of Kolb and Herrmann.25 In order
for this to be valid, our hypothetical, computer-generated
object had to be large enough to include all length-scales, in
analogy to primary particles and the fractal rough surfaces
of micron-sized aggregates (i.e., between 1 nm and 10 µm).
Taking into account our limited computational capacities, we
opted for a 2D instead of a 3D simulation approach. We
found that simulating a 2D fractal contained within a matrix
of 256 × 256 primary particles of an average size of 10 × 10
pixel2 (Fig. 5) allowed us to evaluate all characteristic regions
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FIG. 5. Simulated contour Koch-like fractals composed of 2D square-shaped particles (black pixels) and their corresponding intensity patterns, with a contour
fractal dimension of 1.5. (a) Real space 8000 × 8000 pixel2 image of a contour fractal but rotated by 45◦ with 4 contour fractal iteration levels composed of
216 quadrilaterals. The randomised square edge length is 2–20 pixels with the randomised inter-quadrilateral distances of 2–8 pixels (white pixels). In total
218 quadrilateral edges, out of which 214 edges are located at the outer boundary (φL= 6.25%); (b) and (c), respectively, 10× (image 800 × 400 pixel2) and
40× (200 × 100 pixel2) magnification of a contour fractal region in (a); (d) the square of the modulus of the 2D Fourier transform of the image in (a). Intensity
scale increases: blue (lowest)-green-yellow-orange-red (highest); (e)-(h) azimuthally averaged intensity pattern for 4 different types of surface fractals, where
the purple and orange line represent, respectively, the lower and higher boundary of a 99% confidence interval of 10 individually randomized contour fractals at
10 varying clockwise rotation angles in a range between 0◦ and 84˚, with (e) azimuthally averaged intensity pattern of (a) (inlet represents 45◦ rotated contour
fractal); (f) azimuthally averaged intensity pattern from a contour fractal as in (a), however with regular square-shaped bricks of 10 × 10 pixels and 10 pixel
spacers. The input image is 8000 × 8000 pixel2 (blue box) and the magnified images are 200 × 100 pixel2 (red box); (g) azimuthally averaged intensity pattern
from a contour fractal as in (a), but without the “low electron density” spacers, i.e., a dense fractal. The input image is 4000 × 4000 pixel2 (blue box) and the
magnified images are 100 × 50 pixel2 (red box); (h) azimuthally averaged intensity pattern from a contour line fractal as in (a), but the aggregate contained 2
iteration levels, which are repeated 24× along the 4 aggregate edges. This routine results in a contour fractal with a larger number of squares as in (a) (9 ×216),
but with a reduced number of edges at the outer boundary (3×211) leading to a reduced φL= 1.04% as compared to a larger φL= 6.25% of the surface fractal
as shown in (a)-(e) (inlet surface fractal is 12 000 × 12 000 pixels (blue box) and zoom is 200 × 100 pixels (red box). In (e)-(h) the blue dashed lines mark the
characteristic exponents of intensity scaling at different q-regimes. Moreover, green and red arrows indicate ((e)-(g)) the positions of bumps and dips in the
scattering curves, respectively, which correlate with the self-similar build-up of surface fractal roughness pattern.

qualitatively, including the primary particle region, plateau
region, and surface fractal region.

It is worth noting that working in 2D merely changed the
considered definitions because we did not produce a fractal
surface, but a fractal contour (as in Figs. 1(b) and 1(c)).
Furthermore, scattering patterns from such 2D objects are

expected to have exponents between −2 and −3 (rather than
−3 and −4). We simulated four different contour fractals
(Fig. 5) with a theoretical contour fractal dimension of
log4 8 = 1.5, which should result in I(q) ∝ q−2.5. We started by
building a contour fractal composed of 216 quadrilaterals (i.e.,
primary particles, “bricks”) with a randomized area between
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4 and 200 pixels/quadrilateral (schematics in Figs. 5(a)-5(c)).
Each black pixel represents a “high electron density” area. In
order to suppress the potential symmetry contributions to the
scattering patterns (see below), we randomized the positions
of the quadrilaterals’ vertices. Although each quadrilateral
should have four edges, due to the randomization, some angles
were either 0◦ or 180◦, and thus some primary particles became
triangular or line-shaped. The quadrilaterals were separated
by white gaps in a range between 2 and 8 pixels, which
represented the “low electron density” matrix. We assumed
that the electron density of the electron-lean regions between
the bricks equalled the electron density of the “solvent”
surrounding an aggregate.

Then the 2D scattering intensity pattern is the square
of the modulus of the 2D Fourier transform of the 2D
image of an aggregate (Fig. 5(d)). This simulated pattern
was in turn azimuthally averaged to a 1D scattering curve
(Fig. 5(e)). This showed that the curve was qualitatively
very similar to the scattering intensity patterns simulated
with Eqs. (5), (15), and (17) (Figs. 4(a) and 4(c)). The
simulation-derived intensity curve shown in Fig. 5(e) contains
the three characteristic regions previously discussed: (I) low−q
surface fractal region (0.0025 < q < 0.068 pixel−1, with
I(q) ∝ q−2.5), (II) an inflection point and a plateau region
(0.068 < q < 0.30 pixel−1, with I(q) ∝ q0), and (III) a high-q
form factor region (0.45 < q < 3 pixel−1, with I(q) ∝ q−3).
Despite the randomized distances between the neighbouring
quadrilaterals, the intensity curve still contains suppressed
correlation peaks, which correspond to the interparticle
distances along the (1,0) and (1,1) directions with a d-spacing
of 20 and 14.1 pixels, respectively (as shown by the red
stars in Fig. 5(e)). Further randomization would be required
to suppress these correlation peaks even more. Without this
randomization, i.e., for an ordered arrangement of equally
shaped squares, much stronger correlations/diffraction peaks
are produced (Fig. 5(f)). Complete suppression, regardless of
randomization, is practically impossible due to the algorithms
used for the generation of the Koch-type contour fractal (see
supplementary material).

In the simulated intensity patterns in Fig. 5, the length
of the plateau regions depends on the fraction of quadrilateral
edges at the outer boundary with respect to the total number
of quadrilateral edges, φL. The fraction, φL, in these is a
two-dimensional equivalent of the φb parameter that we
introduced for the three-dimensional structure function in
Eq. (16). We calculated the theoretical value of φL as follows:
each quadrilateral was set to have essentially 4 edges, and the
aggregate shown in Fig. 5(e) has thus a total of 218 edges.
Out of these 214 were located at the outer boundary of the
aggregate. This corresponds to a fraction of quadrilateral’s
edges at the boundary, φL = 6.25%. Therefore, the scaling
constant of the structure factor was reduced to 6.25% with
respect to the form factor’s scaling constant, and as a result
we observed an intermediate plateau region (Fig. 5(e)).
Furthermore, the composition of the electron lean region
in between the bricks can be different from the “solvent” that
surrounds the whole aggregate. In such a case the system
is composed of three distinct phases with different electron
densities, namely, the electron density of the bricks (ρb), of the

internal voids (ρiv), and of the surrounding solvent (ρss). For
increasing ρiv with respect to ρss, the inner contrast (ρb − ρiv)
will reduce with respect to the outer contrast (ρb − ρss) (see
Eq. (5)). Consequently, the outer edges contribute more than
the inner edges. Therefore the apparent φL or φb values will
increase for increasing electron density difference between
internal voids and surrounding solvent (ρiv − ρss). Unless the
electron densities of the three phases are known we cannot
unambiguously distinguish between an increase in (ρiv − ρss)
or φ.

Alternatively, when electron dense phases are merged
together and the inner edges of the quadrilateral primary
particles disappeared, we only observed a contrast difference
at the outer contour line (Fig. 5(g)). The length of the
q-range of the plateau region (0.13 < q < 0.25 pixel−1) clearly
decreased in size; however, it was not fully diminished, and
the presence of this plateau region was very consistent over
10 different simulations. Nevertheless, this apparent plateau
belongs to a sequence of bumps and dips (green and red arrows
in Fig. 5(g)), which are separated from each other by a factor
4. A similar sequence of bumps and dips was observed for
the “brick-in-a-wall” contour fractals (green and red arrows
in Figs. 5(e) and 5(f)) and deterministic mass fractals as
reported previously.6,7 The fourfold ratio between the dips
correlates with the fourfold ratio between the self-similar
patterns of surface fractal roughness at different length-scales
or iteration levels. Thus, the apparent plateau in Fig. 5(g)
is an artefact that relates to the self-similar nature of rough
fractal surfaces. Our simulation shows that the plateau region
practically disappears for dense fractals (Fig. 5(g)) and is
only observed when electron dense primary entities remain
separated by electron lean regions, as “bricks-in-a-wall.”

In order to validate the relation between surface fractal
intensity scaling with the number of particles at the outer
boundary, we reduced the relative number of primary
quadrilaterals at the outer surface (Fig. 5(h)). This leads
to 3 × 211 of the quadrilaterals’ edges from a total of 9 × 216

edges to be located at the outer contour line yielding a φL
value of 1.04%. As expected, the intensity of the low-q contour
fractal regime further decreased with respect to the intensity of
the surface fractal shown in Fig. 5(e), and the plateau region
became expanded in the q-range. In overall, our ab initio
approach confirmed that the intensity of the fractal region
scaled proportionally with the number of primary entities at
the aggregate’s surface.

In the final part of this paper we apply the above-
derived surface fractal concepts to real scattering data from
a previous experimental work.28 In our in situ and real-
time scattering data on the nucleation and growth of CaSO4
solids from supersaturated aqueous solution, we observed
very characteristic surface fractal morphologies. These data
sets were the initial inspiration to draft the surface fractal
aggregate concept, which we now expanded and formalized
in this work. In Fig. 6, we show a typical in situ small-angle
X-ray scattering curve obtained from a 75 mmol/l CaSO4
supersaturated solution after 150 s at 21 ◦C. In contrast to
the assumptions made in our derivation, for the case of the
experimental CaSO4 data, the primary particles were found not
to be spherical, but rather cylindrical in shape.28 Thus, to fit the
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FIG. 6. In situ SAXS (Small Angle X-ray Scattering) curve from the solid phase forming in a 75 mmol/l CaSO4 solution at 150 s (21 ◦C). Full experimental
description of the measurement can be found elsewhere.28 Fit parameters for (a)-(d) are based on Eqs. (5), (15), and (20) and using a cylindrical form factor
with the main parameters expressed as vppφ(∆ρ)2= 0.022 89 cm−1, R = 0.243 nm, L = 3.25 nm, Rpp,g= 0.953 nm, r0= 1.23 nm, Ds= 2.129, φb= 0.100 85.
The horizontal dashed line in all the panels corresponds to the intensity equal to the scattering pre-factor from Eq. (5), vppφ(∆ρ)2. (a) Best fit of the data based
on Eqs. (5) and (16) (SSF(q)) and Eq. (20) (PGuinier(q)); (b) best fit of the data based on Eqs. (5) and (15), but by using a cylindrical form factor (variables R and
L)42 instead of the Guinier approximation from Eq. (20). Rpp,g in the Guinier approximation is equal to the radius of gyration of a cylinder;39 (c) comparison
between the cylindrical form factor and the Guinier approximation and their extrapolation to q→ 0. Both form factors correspond to the same Rpp,g, and their
profiles are identical for q < ∼2 nm−1; (d) extrapolation of SSF(q) from Eq. (15) to q→ ∞ with r0 parameter in the structure factor calculated from Rpp,g of the
form factor, under the assumption that the primary particles were spherical (meaning that they could be characterised by a single parameter r0).

scattering curves at high-q, we exchanged the spherical for a
cylindrical form factor,40 which is a function of the particle
length L and the cross-sectional radius R. This approach
provides a more accurate description of the experimental
data at high q-values, which contains information about the
shape of the primary particles. However, deriving SSF(q) from
Eq. (15) revealed that the position of the inflection point
between P(q) and S(q) was dependent both on r0, which is
assumed to be the radius of a primary spherical particle, and
on the fraction, φb, of these primary particles at the surface of
the aggregate. Consequently, r0 has to be known to evaluate
correctly the fraction of the primary particles at the surface.
Clearly, for spherical particles this is not an issue. On the
other hand, for the cylindrical CaSO4 primary particles, r0 can
be approximated by equating the radius of gyration Rpp,g of
a sphere to that of a cylinder. The solid red line in Fig. 6(a)
represents the best fit to the data using Eq. (5). The surface
fractal structure factor, SSF(q), was expressed by Eq. (15), and
for the form factor we used the shape-independent Guinier
approximation (Eq. (20)), where Rpp,g is the radius of gyration
for a primary particle (not the whole aggregate). In Fig. 6(b)
we show a fit which includes a cylindrical form factor,

PGuinier (q) = exp *
,
−

q2Rpp,g2

3
+
-
. (20)

Although such a procedure affects the fit in the high-q part
of the plot (at q > 2 nm−1 see Fig. 6(c)), it does correctly
determine the position of the inflection point, because by
definition S(q → ∞) = 1 and PGuinier(q → 0) = 1. Therefore,
regardless of the form factor contribution, the intensity
corresponding to the inflection point becomes equal to the
scattering pre-factor vppφ(∆ρ)2 introduced in Eq. (5), and
shown in Fig. 6 by the dotted horizontal lines, which marks

this intensity value. Consequently, the extrapolation of the
structure factor from Eq. (15) to q → ∞ (Fig. 6(d)) and the
form factor from Eq. (20) to q → 0 (Fig. 6(c)) mutually
determines the vppφ(∆ρ)2 level and the q-coordinate inflection
point. For the computer-generated Koch-like contour fractals,
we demonstrated above (Figs. 5(e) and 5(g)) that the very
occurrence of an inflection point and a plateau in the scattering
region originates from a “low electron density” region
separating the primary particles within an aggregate (compare
Figs. 5(e) and 5(g)). Indeed, based on similar arguments
we had previously concluded that the CaSO4 surface fractal
aggregates in our system were composed of anhydrous-CaSO4
rod-shaped primary species in a water matrix. These are
akin to high electron density “bricks” separated by lower
electron density voids, i.e., a textbook example of a “brick-in-
a-wall” structure. Using the above formulated surface structure
factor fractal model we could thus show (Fig. 6) that indeed
the precursor phase in the CaSO4 system is made of such
“brick-in-a-wall” structures.

CONCLUSIONS

We derived and validated a model for a structure factor
expressed by Eq. (15) which describes the scattering from
“brick-in-a-wall” surface fractal aggregates build of primary
particles. We showed that scattering patterns from such
structures exhibit three characteristic intensity scaling regions:
(I) a low-q part yielding high scattering intensities with the
intensity scaling proportional to q−6+Ds, and which is described
by a structure factor equation; (II) a high-q part representing
only the scattering from the form factor of primary particles
building the aggregate, and (III) the mid-q inflection point
and a plateau (I(q) ∝ q0) separating regions I and II. The very
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existence of such a plateau shows that within the aggregates,
individual primary particles are distinguishable entities (as
shown in Figs. 1(c) and 5(a)-5(c)). Such a distinction is
achieved by introducing gaps in between the primary particles.
These gaps can represent either a local disorder in the
alignment of building blocks caused by the polydisperse
nature of the shape and size of the primary particles or the
presence of solvent rich, possibly diffuse, layers in between
particles that do not contribute to the scattering contrast such
as the crystal water. This arrangement is akin to a typical
“brick-in-a-wall” arrangement, which is consistent with the
concept of a mesocrystal29 frequently observed as the outcome
of non-classical crystal nucleation and growth processes.

SUPPLEMENTARY MATERIAL

See supplementary material for the algorithm we used for
the generation of the Koch-type contour fractal.
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