
1

Numerical Methods
notes by G. Houseman

for EARS1160, ENVI2240, CCFD1160

Lecture 1: Numerical Solution of Non-linear equations.

• If f(x) = 0, what is x ?
• Well-behaved functions and Continuity
• Bracketing the Solution
• Bisection Method
• Iteration and Convergence
• The Bisection Algorithm
• Pitfalls and Problems
• Interpolation method

f(x) is a general non-linear function of x. Solve the
equation:

f(x)=0

at which value(s) of x does the graph of the function cross
the x-axis ? Maybe there is no value, or more than one.

Some functions can be analytically inverted. Many can not.

But there are standard methods that can be programmed
into a computer to solve this problem, for just about all
"well-behaved" functions. Note: what if f(x) = g(x) ?

Definition of the Problem

x

f(x)

Well-behaved functions
We won't be too rigorous about what this means, but

x

f(x)1. f(x) should be single-valued:
every x gives you one and only one
value of f(x). The solid line is not
single-valued. So is e.g.

f(x) = sin-1(x)

If the function is not single valued,
restrict the range of f values, so
that the function is single valued.

2. f(x) should be continuous: the
value of f(x) doesn't change
abruptly as x is increased or
decreased. The dashed line is a
single-valued function, but it is
discontinuous.

Continuity
A continuous function can be defined mathematically by:

for all x. Example: is f(x) = sin(x) a continuous function ?
What about tan(x) ? If not, where are the discontinuities ?

In general we might classify a well-behaved function as one
that is defined everywhere, it is single-valued, continuous,
and all of its derivatives are defined and continuous.

Discontinuities can cause problems for methods that use the
slope (or gradient) of the function to extrapolate to the axis.
Note also that the gradient or first derivative f'(x) is
undefined at a point of discontinuity.

The numerical methods are robust enough to work ok if
some of these conditions are not met, but if they fail, look at
the graph of the function that you are trying to solve.
Should you expect to find a zero crossing for this function ?

() ()[] 0lim
0

=−−+
→

εε
ε

xfxf

Bracketing the solution
All numerical solution methods rely on the fact that f(x) is
defined over a domain a < x < b within which the solution
is sought. Moreover, we assume that the program can
directly compute the value of f(x) for all x in this domain.

If for two points x1 and x2, f(x1)f(x2) < 0, then either

f(x1) < 0 and f(x2) > 0, or vice versa.

Therefore computing f(x1)f(x2) and testing its sign is a way
of testing whether the points x1 and x2 bracket the solution
we seek.

What if there are more than one zero crossings between x1
and x2 ? What if there are discontinuities ?

If we evaluate f(a)f(b), does its value give us a reliable
indication that a zero exists in a ≤ x ≤ b ?

The Bisection Method

1. define x0 = (x1+x2)/2

2. if f(x0).f(x1) > 0,

then x1 = x0

else x2 = x0

Thus we have halved the
length of the bracketing
interval. We repeat these 2
steps until interval is
sufficiently small.

One way to select x1 and x2 is to plot up the graph of f(x) and
choose by visual inspection, two points that are on either
side of the zero you want to find. No particular precision is
required - so long as there is one and only one zero between
x1 and x2.

The bisection method relies on a repeated halving of the
interval that brackets the zero.

x

f(x)

x1 x2

x0

2

Iteration
Iteration is a general word, that refers to a repetitive
group of operations. In this instance, we repeat the
interpolation process, halving the width of the bracketing
range at each step, until its width is less than the required
precision on the solution estimate.

In a FORTRAN program we may use a DO loop to define
the operations of the interpolation algorithm:

Before the DO loop, we enter initial estimates of x1 and x2,
and we provide a subroutine F(x) which defines the
function we wish to solve.

At each step of the iteration, we can examine |x1 - x2| to see
how closely we have now bracketed the solution. At any
particular step, the value of x0 is the current estimate of
the solution and |x1 - x2| is the error on that estimate.

Bisection Algorithm
Within the DO loop of length N, the algorithm will require
something like the following steps (though some details
are flexible):

• evaluate f(x1), f(x2)

• confirm that f(x1)f(x2) < 0; else exit with warning #1.

• bisect interval to estimate x0, and evaluate f(x0)

• if f(x0) = 0, solution is found; exit loop and print solution

• if f(x1)f(x0) > 0, then x1 = x0; else x2 = x0

• evaluate whether |x1 - x2| < ε

• if convergence: exit loop and print solution

• if iterations reach N, exit loop with warning #2.

• return to the top and do the next iteration

Convergence
If the error |x1 - x2| decreases continuously and
monotonically, we say that the algorithm is converging. In
principle the solution is some real number that requires an
infinite number of decimal places to define it precisely.

Convergence may require an infinite number of iterations
but, in practice, we stop the algorithm after a finite
number of iterations, because:

(a) we only need the solution to some specified accuracy,

(b) a digital computer permits only a finite number of
significant figures to be stored. Once you reach this limit
this algorithm is unable to provide a better estimate.

For single precision estimate (32 bits) the solution has
about 7 significant figures. If |x1 - x2| < 10-7|x1 + x2|,
nothing more can be gained by further iteration.

Pitfalls
Things that can go wrong:

If Warning #1 is given (the current estimates of f(x1) and
f(x2) are not of opposite sign):

Why ? no solution in bracketed range;
even number of solutions in bracketed range;

If Warning #2 is detected (the upper limit of iterations is
reached):

Why ? convergence too slow;
convergence criterion too small;
too few iterations permitted.

To diagnose: examine the values at each iteration of
x1, x2, f(x1), f(x2), |x1 - x2|, x0, f(x0)

The Interpolation Method

If the zero is within the
range [x1,x2] it is
interpolated. If it is
outside that range, it is
extrapolated. It can work
in either case, though
interpolation is probably
more accurate.

x

f(x)

x1 x2

x0

The bisection method is very robust if you provide two initial
values that bracket the solution - but it does not necessarily
converge quickly (how many steps required to reduce
interval range by 100, or 1000 ?).

Faster convergence may be obtained if we draw a straight
line between the two points (x1, f(x1)) and (x2, f(x2)) then use
the zero of that straight line to provide an approximate
estimate of the zero of f(x).

Interpolation
The interpolation is made by looking at the similar
triangles formed by the dashed lines in the preceding
sketch:

solving for x0:

The interpolated point x0 is closer to the actual solution
(generally), so for the next estimate, we can set either x1
or x2 to x0

if |f(x1)| > | f(x2)| then x1 = x0, else x2 = x0.

()
()

()
()10

1

02

2

xx
xf

xx
xf

−
−=

−

() ()
() ()[]12

1221
0 xfxf

xfxxfx
x

−
−

=

3

Newton's Method
Newton's method is based on a local linearisation of the
function. It assumes that we can calculate the function f(xk)
and its gradient f'(xk) at any xk. The line that is tangent to
the curve is projected back to the point where it intersects
the x-axis: xk+1. The diagram shows the relation between
current estimate, tangent line, and new estimate. The
whole process is iterated, as before.

f(x)

xk

xk+1

or

() ()
()1+−

=′
kk

k
k xx

xf
xf

()
()k

k
kk xf

xf
xx

′
−=+1

Gradient Methods - possible problems
Newton's method is very powerful, and is the basis of a class
of inversion methods applied to multi-dimensional problems.

It may also fail however: The function is linearized at the
current estimate in order to project back along the gradient to
get the "improved estimate". Depending on the function and
the initial guess, the new estimate may not be an
improvement, and the method may not converge, or may
converge to a different, unexpected solution.

In general the method will work well if the function is well-
behaved, the initial guess is "close enough" to the solution,
and away from regions where the gradient is close to zero.

If convergence is obtained, the method is usually very efficient
and quickly obtains an accurate answer.

Evaluation of Derivatives
Newton's method requires knowledge of the first derivative,
and is most easily implemented if we have an analytic
expression for the gradient f'(x).

If this is unavailable, or difficult to evaluate, we can still
proceed by means of a numerical evaluation of the
derivative

where we increment the xk value by the small h. The
expression that we then obtain for xk+1 is exactly the same
as that given by the interpolation method, but obviously
relies on extrapolation.

Behaviour of the iterative algorithm is somewhat different
because at each stage the extrapolation is based on the
interval of length h.

() () ()
h

xfhxf
xf kk

k

−+
≈′

Other Possible Problems
"Segmentation Fault": This is the helpful label that the
computer gives you if you ask it to do something that is
inconsistent with what the compiler expects of logically
constructed code. E.g., the number and type of
parameters in a CALL statement don't match those in the
corresponding SUBROUTINE statement.

The number you print shows "Inf" or just "*********":
This is caused by the calculation overflowing the capacity
of the binary representation of a real number (around
±1038 for 32-bit variables). E.g., if |f(x0) - f(x1)| is too small,
the interpolation step may overflow.

The program starts OK, but doesn't finish; nothing appears
to happen, or if there is a print statement in the loop, the
screen is filled and refilled until you interrupt it (Ctrl-C):
The algorithm may have gone into an "infinite loop"
because it wasn't terminated properly.

