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ABSTRACT

In the Sahel very high temperatures prevail in spring, but little is known about heat waves in this region at

that time of year. This study documents Sahelian heat waves with a new methodology that allows selecting

heat waves at specific spatiotemporal scales and can be used in other parts of the world. It is applied separately

to daily maximum and minimum temperatures, as they lead to the identification of distinct events. Synoptic–

intraseasonal Sahelian heat waves are characterized from March to July over the period 1950–2012 with the

Berkeley Earth Surface Temperature (BEST) gridded dataset. Morphological and temperature-related

characteristics of the selected heat waves are presented. FromMarch to July, the further into the season, the

shorter and the less frequent the heat waves become. From 1950 to 2012, these synoptic–intraseasonal heat

waves do not tend to be more frequent; however, they become warmer, and this trend follows the Sahelian

climatic trend. Compared to other commonly used indices, the present index tends to select heat waves with

more uniform intensities. This comparison of indices also underlined the importance of the heat index def-

inition on the estimated climatic heat wave trends in a changing climate. Finally, heat waves were identified

with data from three meteorological reanalyses: ERA-Interim, MERRA, and NCEP-2. The spreads in

temperature variabilities, seasonal cycles, and trends among reanalyses lead to differences in the charac-

teristics, interannual variability, and climatic trends of heat waves, with fewer departures from BEST for

ERA-Interim.

1. Introduction

From April to June, the subtropical Sahelian region

experiences very high temperature during both nighttime

and daytime, whenmonthly mean temperatures can range

up to 308 and 408C respectively. Furthermore, regional

warming over the Sahel during the past 60 years has

reached 11.58C over the April–May period (Guichard

et al. 2015). In April 2010, a huge heat wave hit the Sahel

resulting in numerous deaths, mostly among children

and the elderly (Azongo et al. 2012; Diboulo et al. 2012).

According to Mora et al. (2017), the Sahel is exposed

to deadly temperature conditions around one-third of

the year, making it one of the regions with the most

severe temperature conditions. The risk of these tem-

perature hazards is enhanced by the fact that the Sahelian

population is increasing very quickly: Nigeria should

become the third largest country in the world by 2050,

reaching 410million, and by 2100 the population of Niger

is projected to increase by at least a factor of 9, from

21 million in 2017 to 192 million in 2100 (Garenne 2016;

United Nations Department of Economic and Social

Affairs: Population Division 2017). Superimposed on this

hot climate, heat wave events in this region at this time of

the year may have particularly severe impacts on health,

and also potentially on ecosystems, transportation, or

agriculture (Sheehy et al. 2005; Sultan et al. 2013).

Impactful heat waves have been reported across the

globe, fromChicago in 1995 to southeasternAustralia in

2009. Western Europe suffered heavy human losses

during the 2003 heat wave event to which 70 000 deaths

are attributed (Coumou and Rahmstorf 2012); Russia’s

death toll reachedmore than 50 000 during the 2010 heat

wave (McMichael and Lindgren 2011). In recent years,

these events led to an increasing number of studies on

how to define, characterize, understand, and predict

heat waves. Because of climatic trends toward higher

temperatures, their observed and future changes were

also discussed: heat waves are expected to be more

frequent, longer, and hotter, and cover a larger area

(Cowan et al. 2014; Russo et al. 2014; Schoetter et al.

2015). Climate and heat wave temperature trends do notCorresponding author: J. Barbier, jessica.barbier@meteo.fr
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necessarily increase at the same rate: in their analysis of

the heat waves in a changing climate, Gershunov and

Guirguis (2012) pointed out that the ratio between the

temperature mean and extremes of California’s inlands

decreased over the period 1850–2010. In this case, the

climatic trend is thus stronger than the heat wave trend.

Argüeso et al. (2016) showed that the climatic change in

temperature variability has a major influence on the

heat wave changes over some parts of Europe and the

United States. However, they also emphasize that this

finding is not valid in tropical regions where the mean

seasonal warming explains most of these changes.

To date, most climatological heat wave studies have

focused onEurope (e.g.,Meehl and Tebaldi 2004; Fischer

and Schär 2010; Stefanon et al. 2012; Schoetter et al.

2015), Australia (e.g., Perkins et al. 2012; Nairn and

Fawcett 2013; Perkins and Alexander 2013; Cowan et al.

2014), the United States (e.g., Robinson 2001; Meehl and

Tebaldi 2004; Gershunov and Guirguis 2012; Mutiibwa

et al. 2015), or Asia (e.g., Ito et al. 2013; Lee and Lee

2016) while only very few concern the Sahel (e.g.,

Fontaine et al. 2013; Déqué et al. 2017). Some studies

assess heat waves from a global perspective; however,

they often do not show any results for West Africa

(Zhang et al. 2011; Russo et al. 2014), partly because of

the scarcity of in situ observations. Thus Sahelian heat

waves still need to be further documented and explained;

the present paper addresses this overall objective.

To be able to identify meteorological situations asso-

ciatedwith such events, the first question that arises is how

to define and detect a heat wave. A heat wave generally

corresponds to a prolonged period of particularly high or

extreme temperatures. The Expert Team on Climate

ChangeDetection and Indices (ETCCDI) published a list

of core indices (http://etccdi.pacificclimate.org/list_27_

indices.shtml) to measure temperature extremes based

on a single characteristic, for instance a frequency of oc-

currence of warm nights or an intensity of the maximum

daily maximum temperature across the year. Every met-

ric is relevant to particular applications. Other studies

make use of indices that detect ‘‘heat wave objects’’ in

space and time, and analyze the characteristics of these

objects. Each of these studies generally develops its own

specific definition. However, as highlighted by Perkins

(2015), these definitions have some common features:

temperature is always used in a raw or processed form,

most of the times combined with a percentile-type

threshold, and a minimum duration of the heat wave is

often considered. Most studies use the daily maximum

temperature (Fischer and Schär 2010; Stefanon et al. 2012;
Schoetter et al. 2015) or separately analyze daily mini-

mum and maximum temperatures, hereafter referred to

as Tmin and Tmax (Gershunov and Guirguis 2012;

Perkins et al. 2012; Fontaine et al. 2013; Perkins and

Alexander 2013; Mutiibwa et al. 2015). Robinson (2001)

and Willett and Sherwood (2012) use a heat index ac-

counting for both temperature and humidity effects (re-

spectively relative humidity and vapor pressure). The vast

majority of the studies use a percentile, very often the

90th percentile, as the lower limit over a moving time

window. By design, the methods using a moving time

window detect heat waves throughout the year in a uni-

form way. The minimum duration of heat waves is also

often defined to be 3 days.

In this study, wewill define a heat index that follows the

basicmetrics described above in order to identify Sahelian

heat waves from March to July (i.e., during the hottest

months of the year).We also aim at defining Sahelian heat

waves as large-scale meteorological events, coherent in

space and time, arising as strong and rapid departures of

temperature at synoptic–intraseasonal scales. We then

predominantly focus on meteorological scales rather than

other signals such as interannual fluctuations, annual cy-

cles and climatic trends. In other words, as in Gershunov

and Guirguis (2012) and Stefanon et al. (2012), we con-

sider heat waves as occurring in a nonstationary climate.

Onemoremotivation to remove the climatic trends is that

thresholds based directly on temperatures are expected to

be exceeded more often due to the mean climatic warm-

ing. The heat wave detection is based either on Tmax or

Tmin because processes controlling daytime and night-

time temperatures in the Sahel are likely to be distinct: for

instance, maximum temperature is often influenced by the

incoming surface shortwave radiation whereas the mini-

mum temperature is very sensitive to the amount of water

vapor during this time of the year (Guichard et al. 2009;

Slingo et al. 2009;Gounou et al. 2012; Largeron et al. 2017,

manuscript submitted to Climate Dyn.). Another note-

worthy difference for this heat index is that the percentile

is fixed over the whole March–July period instead of

over a moving window: it enables a seasonal analysis of

the heat wave occurrence. Although large-scale atmo-

spheric phenomena or modes of climatic variability are

not studied in this paper, our results should be valuable for

further studies addressing this topic, in the Sahel as well as

in other regions.

The methodology used to build our heat index and to

study meteorological heat waves over the Sahel in spring

is explained in section 2. Section 3 presents the climato-

logical characteristics of these heat waves, including their

frequency, duration, intensity, and spatial extent. Benefits

and limits of the present heat wave definition are further

discussed in section 4, via a comparison with other defi-

nitions. An assessment of the sensitivity of the results

across different temperature datasets (including three

meteorological reanalyses) is also presented. Finally,
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section 5 emphasizes the evolution of heat wave proper-

ties over the recent historical period and compares it to

regional warming. Conclusions are given in section 6.

2. Datasets and methodology

a. Datasets

We use daily minimum and maximum temperature

datasets provided by one observationally based grid-

ded product and retrieved from three meteorological

reanalyses over 08–408N, 208W–408E, hereinafter re-

ferred to as the African domain. These datasets are the

following:

d The Berkeley Earth Surface Temperature (BEST;

Rohde et al. 2013a,b), which provides data on a 18 3
18 grid from 1880 until recent years. We consider the

period 1950–2012 because observations in the Sahel

are very sparse prior to 1950.
d The European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim;

Dee et al. 2011) over 1979–2012 on a 18 3 18 grid.
d The National Centers for Environmental Prediction

(NCEP)–U.S. Department of Energy (DOE) AMIP-

II reanalysis (NCEP-2; Kanamitsu et al. 2002) over

1979–2012 on a 28 3 28 grid.
d TheModern-EraRetrospectiveAnalysis forResearch

and Applications (MERRA; Rienecker et al. 2011)

from the National Aeronautics and Space Adminis-

tration’s Global Modeling and Assimilation Office

over 1979–2012 on a 0.58 3 0.668 grid.

The use of several datasets is motivated by the fact that

data are sparse in the Sahel. The Berkeley Earth website

provides historical values of the number of stations used

in their dataset at regional, national, and local scales. For

instance, in Mali (http://berkeleyearth.lbl.gov/regions/

mali), around 10 stations from inside the country and

100 stations from neighborhood regions are used. The

numbers of stations used are not constant in time, with

fewer stations prior to 1950. Thus the influences of distinct

physical parameterizations and assimilation procedures in

the three reanalyses, as well as the interpolation method

used in BEST, are all likely to induce differences in sur-

face temperatures. The main differences are documented

in the appendix and briefly summarized below.

BEST and the three reanalyses were compared over

1979–2010 to two surface synoptic observation (SYNOP)

stations with consistent long-time temperature series:

Hombori,Mali (15.338N, 1.88E) (Guichard et al. 2015; see

Fig. A1 in the appendix), and Niamey, Niger (13.488N,

2.178W) (Leauthaud et al. 2017; not shown). Observa-

tions from both stations are included in BEST, but the

time series of Hombori used by BEST has many gaps,

especially over the recent years. The dataset we used

was enhanced and quality checked by Mougin and col-

laborators from the Mali Meteorological Agency from

paper archives (Guichard et al. 2015). In addition,

BEST, ERA-Interim, NCEP-2, and MERRA were

compared over 108–208N, 108W–208E, hereinafter re-

ferred to as the Sahelian domain (Fig. A2). Numerous

differences are found between datasets; their magni-

tudes fluctuate from month to month. As may be ex-

pected from its construction, BEST is the closest to these

two SYNOP stations in terms of monthly and seasonal

mean. BEST is constructed by kriging (interpolating)

in situ data, notably including SYNOP stations. Away

from the observations, BESTmight be less accurate. On

average, in NCEP-2 Tmax and Tmin are both too low

(e.g., by more than 38C in April for Tmin), whereas

Tmax is too high in MERRA and too low in

ERA-Interim (Figs. A1a and A2a). In NCEP-2, the

seasonal cycle is shifted by about one month (Figs. A1b

and A2b) and the Tmin variance is largely over-

estimated (Figs. A1c and A2c). The Tmax variance is

generally higher in the three reanalyses than in BEST,

without any clear link between the grid size of the re-

analysis and the magnitude of the variance (Figs. A1c

and A2c). The distributions are most of the time skewed

to the left, especially for Tmax in April and May

(Figs. A1d and A2d): this negative skewness highlights

the predominance of time sequences of relatively similar

warmer days, interrupted by less frequent but much

cooler days. It also suggests that physical and dynamical

mechanisms constrain Tmax upper extrema.

Following these comparisons, BEST is hereinafter set

as the reference. Furthermore, its historical depth, going

back to 1950, enables trend computation over longer

time periods than 1979–2012. Differences between the

various databases go further than a mean shift, and

therefore one may expect differences between detected

heat waves (see section 4b).

b. Heat wave detection

Temperature fluctuates at climatic, multidecadal, and

annual time scales as well as at intraseasonal and syn-

optic scales, and also within the diurnal cycle. We focus

on heat waves corresponding to intraseasonal fluctua-

tions of temperature, which can be defined as strong and

rapid temperature departures from its annual cycle.

Following approaches that are commonly used to de-

tect and document the synoptic and intraseasonal vari-

ability of the West African monsoon (Janicot et al. 2011;

Roehrig et al. 2011; Poan et al. 2013), our heat wave de-

tection is based on temperature anomalies from the

slow variations of the annual cycle—variations that are
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modulated by interannual, multidecadal, or longer-term

variabilities. These anomalies are computed using a

90-day high-pass spectral filter applied on the 1950–2012

temperature time series. A spectral analysis of Tmin and

Tmax time series over the Sahelian domain (not shown)

revealed three peaks of energy at the periods 365, 185,

and 123 days, consistent with the shape of the mean

annual cycle over the region having twomaxima, one in

spring and one in autumn in relation with the annual

cycle of the insolation and monsoon precipitation

(Guichard et al. 2009). The 90-day filter allows re-

moving the annual cycle of temperature, as well as its

modulation at longer time scales. The diurnal cycle is

dealt with by studying maximum and minimum tem-

peratures separately.

The heat wave detection includes four distinct oper-

ations: 1) a filtering of the low frequencies; 2) a selection

of the strongest temperature anomalies; 3) a removal of

the short-lived, small, and scattered heat waves because

we want to focus on relatively large-scale events; and

4) a geographical selection of the heat waves by keeping

only those found in the Sahel. The different steps are

detailed below and illustrated with the results obtained

for the year 1992 with Tmax at a grid point roughly lo-

cated at the center of the Sahelian domain (Fig. 1).

1) Filtering: At each grid point on the African domain

for the total period, Tmax and Tmin anomalies are

computed using a 90-day high-pass filter (Figs. 1a,b).

2) Selection of hottest days: For each grid point, a day is

considered ‘‘hot’’ if the local temperature anomaly

exceeds the 90th percentile of the distribution over

1950–2010 for March–July (red shading). Such days

are identified with a binary heat index (depicted by

red dots in Fig. 1c).

3) Removal of small and short heat waves: This is done

via the sequential application of spatial and temporal

constraints. The running order of the spatiotemporal

constraint matters, as emphasized by Schoetter et al.

(2015). Here, we chose to apply the spatial constraint

before the temporal one as this is more suitable for

studying propagating heat waves.

(i) Spatial constraint: A connectedness constraint

based on a region growing technique (Petrou

and Bosdogianni 2004; Fiolleau and Roca 2013)

is applied to identify and label each connected

element, which is discarded when its area covers

less than 60 3 104 km2. This constraint removes

numerous small-scale events. This surface thresh-

old corresponds to approximately 20% of the

Sahelian domain. For each day, the occurrence

of a heat wave in the Sahelian domain is indicated

by a black dot in Fig. 1d.

(ii) Temporal constraint: The minimum duration of

the heat waves is set to 3 days. The impact of this

constraint is illustrated in Fig. 1e with several

heat waves removed in July and a few in March,

May, and June (cf. Figs. 1d and 1e).

4) Sahel domain selection: Finally, we only keep heat

waves occurring over the Sahelian domain via the

labeling done by the connectedness constraint

(Fig. 1f) and define the month a heat wave belongs

to by its median date. An example of the spatial

structure and time evolution of a detected heat wave

is given at the bottom of Fig. 1.

The final binary heat wave index is called HImax

(HImin) for Tmax (Tmin), while the heat waves finally

detected are generically referred to asHWmax (HWmin).

The results are not very sensitive to small changes in the

prescribed criteria (not shown). Note that this meth-

odology can be applied to any region in the world

simply by changing the selected domain on the

final step.

The spatial constraint corresponds to approximately

2.5% of the large African domain, and for both heat

wave types, 55% of all the March–July periods studied

from 1950–2012 were affected. In other words, an

HWmax (HWmin) event happens every two days on

average somewhere in Africa. In theory, there can be

more than one heat wave simultaneously present in

different regions on a given day. In practice, over the

African domain, around 20% of heat wave days are af-

fected by two geographically distinct heat waves, and

around 2.5% by three or more events. The numbers of

time-overlapping heat waves are reduced substantially

when selecting heat waves over the smaller Sahelian

domain: among the total number of days during which a

heat wave was present (1007 days for HWmax and 871

for HWmin), only a very few of them were affected by

two heat waves (7 for HWmax and 4 for HWmin).

c. Other heat wave indices

To analyze the impact of the heat wave definition and

to compare our results with those obtained with indices

commonly found in the literature, three other heat wave

indices are considered. These indices differ in the first

two steps of the methodology presented above, namely

the temperature filtering and the selection of the hottest

days (definition of the 90th percentile).

d 15DW: Many heat wave studies use a relatively shorter

moving window to compute a seasonally dependent

threshold for their detection algorithm: a 5-day window

(e.g., Fontaine et al. 2013;Mutiibwa et al. 2015), a 15-day

window (e.g., Fischer and Schär 2010; Perkins et al.

2012; Perkins andAlexander 2013; Cowan et al. 2014),
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or a 31-daywindow (e.g., Russo et al. 2014).We test the

impact of a 15-daymoving window to define a seasonal-

dependent 90th percentile instead of our constant 90th

percentile. The 90-day high-pass filter is kept.
d NoFilter_15DW: As in most heat wave detection

algorithms, we use unfiltered raw temperatures and a

threshold based on the 90th percentile computed using a

15-day moving window centered on the current calen-

dar day (Fischer and Schär 2010; Perkins et al. 2012;

Perkins and Alexander 2013; Cowan et al. 2014).

d NoFilter: This uses raw temperatures and a fixed-

percentile threshold for the whole period (March–

July), as in Schoetter et al. (2015) and Ouzeau

et al. (2016).

d. Heat wave metrics

Heat wave studies commonly focus on three main

features: intensity, duration, and frequency (Perkins

2015), which can be computed based at the event scale

or for each grid point. Here we use the event-based

FIG. 1. Illustration of the methodology used to define the heat index using the example of the HImax in 1992 at Hombori (its

geographic position is indicated with a black dot in the bottom set of panels). (top) The first three lines represent time series of (a)

Tmax, (b) Tmax anomalies, and (c) with the 90th quantile superimposed (red dashed-dotted line) and the days whose temperatures

exceed this quantile (red dots). The red dots indicate the detection of heat waves at Hombori, black dots the detection of heat waves

within the African domain after (d) the spatial constraint and (e) the temporal constraint, and finally (f) the heat waves over the

Sahelian domain. Each numbered line in (top) represents a step from the initial temperature to the final heat index. There are five heat

waves in 1992 over the Sahelian domain; (bottom) the spatial extend of the third heat wave (HW3) is represented in the maps (red-

colored area) and the gray hatched boxes indicate the Sahelian domain.
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approach. We also add the spatial extension to these

usual features. Besides the frequency of events per year,

we grouped the features into two different types of

characteristics: the first one relates to morphological

properties while the other gathers the temperature-

related characteristics.

Morphological characteristics are the following:

1) duration of the heat wave in days and

2) mean area covered in the Sahelian domain, ex-

pressed as a percentage relative to this domain. It is

computed for each day of the heat wave and aver-

aged over these days.

Temperature variables are the following:

1) Tmax, Tmin, and daily mean temperature Tmean,

defined as Tmean 5 (Tmax 1 Tmin)/2,

2) Tmax and Tmin anomalies (i.e., the 90-day high-

pass-filtered temperatures), and

3) the diurnal temperature range (DTR)5 Tmax2 Tmin.

Each of these variables is averaged over the heat wave

space and time dimensions.

Trends of the heat waves’ characteristics are computed

by first averaging the heat wave characteristics each year,

either over thewhole period (March–July) or over the core

hottest spring months (April–May). The yearly mean

temperature-related characteristics of heat waves corre-

spond toweighted averages.More precisely, for each heat

wave weweighted the averaged value by the area and the

duration of the heat wave so that the contribution of heat

waves is proportional to their size and duration. Then a

linear regression analysis of the yearly mean series is

performed and the retrieved multidecadal trend is

considered significant if the associated p value is lower

than 0.05. For comparison with changes occurring at

larger scales, climatic trends of Tmin and Tmax are

computed similarly over the Sahelian domain.

3. Morphology and intensity of Sahelian heat waves

A chronology of the Sahelian heat waves detected as

described in section 2 (HWmax and HWmin) is shown in

Fig. 2 from March to July for the period 1950–2012.

About 3.3HWmax and 2.9HWmin per year are detected.

Only 20% of them occur simultaneously (crosses in

Fig. 2), meaning that in terms of Tmin and Tmax they

impact a region larger than 20% of the Sahelian domain

for more than 3 consecutive days. This underlines the

importance of distinguishing heat waves characterized by

high Tmin from heat wave characterized by high Tmax in

the Sahel. On average, HWmax events cover 42% of the

Sahelian domain or 1263 104km2, last 5 days, and reach a

FIG. 2. Chronology of the heat waves for the heat index using (left) HWmax (red) and (right) HWmin (blue),

using theBEST dataset from 1950 to 2012. Each point indicates the occurrence of a heat wave for the corresponding

day and year. The hatched areas indicate heat waves that are shared by both HWmax andHWmin, cover an area of

at least 20% of the Sahelian domain and last at least 3 days.
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mean temperature anomaly of 38C. HWmin have similar

mean characteristics except for a slightly smaller area of

118 3 104km2. HWmin and HWmax events are evenly

distributed across the 1950–2012 period, with no evident

trend of their frequency of occurrence (see section 5 for

more details) as expected from the filtering process, which

notably induces a detrending of the data.Moreover, these

frequencies of occurrence display a strong interannual

variability, up to sixfold (see, e.g., the differences between

years 1986 and 1987 for HWmax in Fig. 2).

From a seasonal point of view, the further into the

season, the shorter and the less frequent the heat waves

become (Figs. 2 and 3a,b). This result is consistent for

both heat wave types, but slightly more pronounced for

HWmin during the end of spring, in June and July.

There is on average less than one HWmin every five

years in these two months, whereas HWmax events are

twice as frequent in this period of the year even though

they are quite rare compared to early spring (Fig. 3a). In

both cases, their mean temperature anomaly is also

weaker than in March (Figs. 3d,e), consistent with lower

variability of temperatures anomalies in June–July than

in March–April (Fig. A1e and A2e).

In early spring, midlatitude synoptic disturbances,

such as cold surges (Knippertz and Fink 2006; Vizy and

Cook 2009) and the northward progression of the in-

tertropical discontinuity (ITD)—which corresponds to

the narrow interface at the surface between warm moist

southwesterly monsoon flow and the much hotter and

drier northeasterly wind from the Sahara Desert; Lélé
and Lamb 2010)—strongly modulate the amplitude of

surface air temperatures fluctuations over the Sahel

(Largeron et al. 2017, manuscript submitted to Climate

Dyn.). The decrease of Tmin anomalies during HWmin

events further continues until July (Fig. 3e), when the

ITD is generally located north of the Sahel. This is

possibly related to the establishment of a steady mon-

soon flow, as the presence of water vapor prevents

strong nighttime cooling and tends to dampen nighttime

temperature fluctuations (Guichard et al. 2009; Slingo

FIG. 3. Evolution of themorphological and thermodynamical characteristics ofHWmax (red) andHWmin (blue) fromMarch to July for

the period 1950–2012 represented by percentile box plots: (a) number of heat waves per year, (b) duration, (c) area covered, (d) Tmax

intensity, (e) Tmin intensity, (f) diurnal temperature range, (g) Tmax, (h) Tmin, and (i) Tmean. In (f)–(i) climatological values smoothed

by a moving average over 21 days are shown with gray lines.
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et al. 2009). By contrast, Tmax anomalies during an

HWmax (Fig. 3d) are slightly higher in June and July,

around theWest Africanmonsoon onset (Ali et al. 2003;

Sultan et al. 2003), than in May. This is consistent with

the increasing Tmax variability during the early monsoon.

Indeed, in the earlymonsoon phase, rain events cause sharp

drops in Tmax (Guichard et al. 2009; Schwendike et al.

2010). These Tmax drops last for several days after the rain

and aremainly due to jumps in surface evaporative fraction

(Kohler et al. 2010; Lohou et al. 2014). Such Tmax fluctu-

ations at that time are probably favored by heterogeneous

rain events (Fitzpatrick et al. 2015) and frequent dry spells

(Sivakumar 1992; Frappart et al. 2009). The impact of rain

on the surface energy budget is thus likely to increase Tmax

variability in the early monsoon phase.

The seasonal fluctuations of Tmax, Tmin, Tmean,

and DTR averaged over HWmin and HWmax events

are relatively close to their respective mean annual

cycles (Figs. 3f–i). The hottest (highest Tmax) HWmax

occur in May, around the Tmax annual cycle peak in

April–May, with 50% of HWmax having Tmax above

428C. Likewise, the hottest (highest Tmin) HWmin

occur in June, concomitant with the Tmin annual cycle

peak in May–June, with 50% of HWmin having Tmin

greater than 28.58C. Note, however, that the occur-

rence of HWmax (HWmin) events does not systemat-

ically imply that Tmin (Tmax) is higher than its climatic

value (Figs. 3g,h). As a result, the DTR tends to be well

above its climatic value during HWmax events, and

well below it during HWmin (Fig. 3f). Finally, Tmax

remains above the human body temperature of 378C
during the core spring months April–June for both

HWmax and HWmin (Fig. 3g): above this threshold,

the human body cannot dissipate heat with its envi-

ronment and cool down (Basu and Samet 2002; Kovats

and Hajat 2008; Mora et al. 2017). Thus, even if this

detection method is not specifically designed for health

impacts, the detected heat waves are expected to be

dangerous for the population health.

The impact of the criteria used for the detection of heat

waves can be seen in Fig. 3: the 3-day criterion strongly

shapes the heat wave duration (Fig. 3b), with many

only just passing this value (47% of HWmin and 44%

of HWmax last 3 days). On the contrary, the detection

method is qualitatively less sensitive to the spatial crite-

rion (Fig. 3c) and to the 90th percentile threshold

(Fig. 3d,e) as the two associated characteristics are far

above the chosen thresholds. This indicates that

Sahelian heat waves tend by essence to be large-scale

events corresponding to large deviations from the

mean annual cycle of temperature.

On average overMarch–July, heat wave characteristics

are generally not very strongly coupled. However, the

correlations R between Tmax and Tmin and between

DTR and Tmin are significant at the 95% level, being

respectively for HWmax (HWmin) 0.53 (0.78) and

20.72 (20.55).A significant correlation between the area

covered by heat waves and the duration of heat waves is

also found in March: for both HWmax and HWmin, the

correlation is close to 0.5. Note that over the Sahelian

domain, the correlations between monthly mean values

of Tmax and Tmin and betweenmonthly mean values of

DTR and Tmin are also significantly correlated for each

month (R . 0.5). This indicates that these couplings

between Tmax and Tmin and between DTR and Tmin

remain valid from the smaller scale of heat wave events

to monthly time scales.

As previously discussed, very few HWmax and

HWmin events overlap in space and time. Nevertheless,

about 20% of concomitant HWmax and HWmin events

are larger than 20% of the Sahelian domain for more

than 3 days. These events lead to particularly stressful

periods for Sahelian societies. Such heat wave events

occur about once every two years over the region, last

4.8 days on average, are slightly smaller in extent than

their parent HWmin and HWmax event (1103 104 km2

vs 118 and 126 3 104 km2, respectively) and reach a

mean value of 3.5 (3.4) 8C for Tmax (Tmin) anomalies,

compared with 38C for HWmax (HWmin). Tmax

(Tmin) values of the overlapping heat waves are not

significantly different from the HWmax (HWmin)

values at the 95% level.

4. Sensitivity of heat wave characteristics to the
definition and dataset

a. Impact of the heat wave definition

We assess the sensitivity of our heat wave definition

by comparing our results (section 3) with those obtained

with definitions that are often used in the literature

(section 2c). The heat wave characteristics obtained with

each definition are summarized in Fig. 4 and Table 1.

The 15DW set tests the impact of taking a 15-day

moving window to define a seasonally dependent tem-

perature anomaly threshold, instead of a constant per-

centile over March–July. 15DW heat wave frequency of

occurrence is now fairly constant throughout the season

(Fig. 4a): indeed, the use of a moving window for the

determination of the 90th percentile causes a fixed

number of days to be extreme for each calendar day.

Otherwise, other heat wave properties are not sig-

nificantly modified, except for a small difference in

the anomaly amplitudes (Figs. 4d,e): the temperature

anomalies are now higher in March–April and then

lower in June–July. This is related to the stronger

temperature variability in the early months, resulting
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in more heat waves found in these months with our own

definition.

The NoFilter_15DW is often used in the literature.

As for 15DW, the frequency of occurrence of heat

waves is almost constant throughout March–July. The

NoFilter_15DW heat waves last longer, are overall

larger, and their temperature anomalies are smaller,

while their mean Tmax, Tmin, and Tmean are higher

(Fig. 4). Finally, as for 15DW and the reference dataset,

the duration of both HWmin and HWmax also de-

creases markedly from March to June.

The NoFilter heat wave set is mainly driven by the

annual temperature cycle andmost heat waves occur near

itsmarked peak, inApril–May for Tmax and inMay–June

for Tmin, with very few heat waves in March and July.

Essentially, using filtered temperatures tends to increase

the heat wave temperature anomalies while using raw

temperatures tends to increase the heat wave tempera-

tures (see 15DW compared to NoFilter_15DW and the

reference data compared to NoFilter in Figs. 4d,e,g,h);

this demonstrates the result that there is no direct

correspondence between the strongest intraseasonal

and synoptic temperature fluctuations and the highest

temperatures, the latter being more controlled by

longer-term variability.

On average over the whole spring extended period, heat

waveproperties are not significantly sensitive to the chosen

approach (see Table 1), except for temperature-related

differences that are directly linked to the approach. Fi-

nally, the percentile based on a long fixed-window results

FIG. 4. As in Fig. 3, but for averaged characteristics of heat waves identified with different methodologies: Reference data (black line),

15DW (light blue line), NoFilter_15DW (green line), and NoFilter (red line). Monthly characteristics computed over less than five heat

waves are not plotted. In each panel, the curves on the left-hand side refer to HWmax and those on the right-hand side to HWmin.
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in a steady seasonal distribution over the intensities, while

the percentile based on a short moving window causes a

steady seasonal distribution over the occurrence, with the

possibility of having a wide range of heat wave intensities

fromextremeheatwaves to less extremewarm spells. Thus

the choice of approach used to detect a heat wave is im-

portant, and ideally it should be driven by the targeted

questions and applications. For instance, our ‘‘meteoro-

logical’’ approach favors the selection of heat waves of

close intensities (in terms of temperature anomaly), and

this choice is well suited for further composite studies

(Roehrig et al. 2011; Poan et al. 2013). The connectedness

constraint should also be helpful for heat wave tracking

analyses. More broadly, some applications in agricultural

and health sectors may require additional information in

the heat wave detection, for instance soil moisture, atmo-

spheric humidity or apparent temperature [such as in

the National Oceanic and Atmospheric Administration

(NOAA) heat index, http://www.nws.noaa.gov/om/heat/

heat_index.shtml], which are currently not taken into ac-

count in the indices discussed above.

b. Sensitivity to the meteorological dataset

For this study BEST is our reference dataset. In this

section, the sensitivity of heat wave properties to the

dataset is explored by applying the samemethodology to

three meteorological reanalyses, ERA-Interim, NCEP-

2, and MERRA.

As the meteorological reanalyses only cover 1979–

present, heat wave detection is restricted to their common

period 1979–2012.BESTheatwave characteristics are very

similar when detected over this shorter period (Fig. 5),

with overall no significant difference at the 95% level

for the mean morphological and temperature-related

characteristics (except for a small increase of 0.28C for

HWmin Tmin anomalies).

The four products have distinct temperature distri-

butions and annual cycles (see the appendix), which

induces differences between heat wave properties de-

tected with one or the other dataset. Their average

properties are summarized in Table 1.

For HWmax events, the frequency of occurrence is

slightly lower in ERA-Interim compared to BEST, and

much lower in NCEP-2 and MERRA, by 40% and 60%

respectively (Fig. 5a). In contrast, the frequency of oc-

currence of HWmin events is not significantly different

between BEST, ERA-Interim, and MERRA. Never-

theless, all datasets capture the annual cycle of BEST

heat wave frequency of occurrence documented above

(i.e., that the further into the spring season, the smaller

the probability of heat wave occurrence and the shorter

these heat waves; not shown). Only ERA-Interim has a

different behavior for HWmax events, which are most

frequent in July. This appears to be linked to monthly

differences in the temperature anomaly variances: in-

deed, for BEST, NCEP-2, and MERRA they slowly

decrease from March to July whereas the ERA-Interim

variances increase from June on (see the appendix).

The mean duration of HWmax events is similar in all

reanalyses compared to BEST, in terms of distribution

(Fig. 5b) and on average at the 95% level. HWmin

events have a similar behavior except for MERRA

events, which are overall longer.

Heat waves in the reanalyses cover smaller areas than

in BEST by approximately 223 104 km2 (Fig. 5c). BEST

temperatures are constructed using a kriging regression

method over station observations and are therefore

quite sensitive to the density of the observational network.

TABLE 1. Average heat wave properties obtained with our heat wave index using the BEST dataset over 1950–2012 (the reference data,

first row), with other heat wave indices, and with our heat wave index using BEST, ERA-Interim, NCEP-2, andMERRAover 1979–2012.

The first and second values in each cell correspond respectively to HWmax andHWmin properties. Boldface values indicate that they are

significantly different (Student’s t test at the 95% level) from those obtained in the reference; boldface and italic values indicate that they

are significantly different from BEST over 1979–2012 and are used when comparing to various reanalyses (ERA-Interim, NCEP-2,

and MERRA).

HWmax/HWmin

No.

per year

Duration

(day)

Area

covered (%)

Tmax

intensity (8C)
Tmin

intensity (8C) DTR (8C) Tmax (8C) Tmin (8C)

Reference 3.3/2.9 5.0/4.9 42.1/39.2 3.0/1.3 1.3/3.0 16.1/13.4 40.6/39.3 24.4/25.9

Comparison to other heat indices

15DW 3.6/2.7 4.5/4.3 42.5/38.2 2.9/1.6 1.3/2.9 15.6/12.6 40.9/39.6 25.2/27.0

NoFilter_15DW 3.4/2.7 5.3/5.3 43.8/40.8 2.4/1.2 1.1/2.3 15.5/12.4 41.5/40.1 25.9/27.7
noFilter 3.6/2.9 5.7/5.6 36.6/37.2 1.9/1.0 0.7/1.8 16.0/12.8 42.8/41.5 26.8/28.8

Impact of the meteorological dataset on the detection

BEST 1979–2012 3.5/2.5 5.1/5.4 41.9/40.9 3.0/1.5 1.5/3.2 16.0/13.3 41.0/39.7 25.0/26.4

ERA-Interim 2.8/2.2 5.0/6.3 35.2/34.9 3.6/1.3 1.5/3.3 14.9/12.8 40.0/38.8 25.1/26.0

NCEP-2 2.1/1.6 5.0/5.9 31.1/32.4 4.6/0.5 0.4/6.2 19.1/10.3 39.6/37.5 20.5/26.9

MERRA 1.4/2.4 5.1/6.8 33.3/36.9 4.4/2.2 2.9/3.2 17.3/15.4 42.9/41.6 25.5/26.2
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It is possible that the weak density of stations over the

Sahel tends to smooth BEST temperatures (Rohde et al.

2013a). In contrast, reanalyses with their higher-resolution

grids can generate smaller-scale structures, which aremore

likely to produce spatially smaller heat waves.

All reanalyses also simulate stronger HWmax events

than BEST (Fig. 5d). Tmax anomalies of HWmax are

0.68Chigher in ERA-Interim and 1.58Chigher inNCEP-

2 andMERRA. By contrast, Tmin anomalies of HWmin

are rather consistent across the datasets, except for

NCEP-2, which strongly overestimates their intensity

(on average 6.28C compared to roughly 38C). This shift
is in direct relation with the Tmin anomaly variance of

NCEP-2, which reaches more than twice the variance of

the other datasets (Figs. A1e and A2e).

The analysis of the temperature distribution discussed

in the appendix indicates that NCEP-2 and ERA-

Interim have a cold bias in Tmax while MERRA has a

warm bias. NCEP-2 has a very strong Tmin bias (up

to 238C). As a result, heat wave temperatures mostly

follow the dataset mean temperature biases (Figs. 5g–i),

except for HWmin Tmin in NCEP-2 for which the cold

bias is compensated by an overly strong high-frequency

variability of Tmin.

In summary, heat wave characteristics are quite sen-

sitive to themeteorological product used to detect them.

The main differences seem to arise from the nature of

the dataset considered (model versus interpolated local

observations) and from the differently biased tempera-

ture background. The former affects heat wave size and

duration while the latter drives differences in heat wave

temperatures. Both the synoptic and intraseasonal

variability of reanalyzed temperatures, especially for

NCEP-2, affect the occurrence of the heat waves. Fi-

nally, our results show that care should be taken

when choosing a dataset for heat wave studies, espe-

cially over regions where in situ observations are scarce,

because differences between some basic heat waves

FIG. 5. As in Fig. 3, but over the whole period March–July for different meteorological products: BEST, ERA-Interim, NCEP-2, and

MERRA over the period 1979–2012 unless indicated.
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characteristics can be quite large. Overall, ERA-Interim

appears to be the best suited meteorological reanalysis

to study heat waves when compared with local and

gridded observations over the Sahel.

5. Long-term evolution of heat waves since 1950

Since 1950, temperatures have strongly increased in

spring over the Sahel. In this section, we analyze the

links between this climatic trend and heat wave trends,

with two complementary approaches.

a. Event-based approach

The long-term linear trends (1950–2012) of the vari-

ous heat wave properties are summarized in Table 2.

HWmax event duration and area do not show any sig-

nificant trend over the period, while their frequency of

occurrence has slightly increased by 0.22 heat waves per

decade. The area covered by HWmin events has signif-

icantly increased by 1% (3 3 104 km2) per decade since

1950, while there are no significant trends for their fre-

quency of occurrence and their duration. The HWmax

and HWmin intensity, as measured by their respective

temperature anomalies, do not show any significant or

strong trend either. In contrast, heat wave mean min-

imum, maximum, and daily averaged temperatures

significantly increased between 1950 and 2010, from

0.278 to 0.58Cdecade21 depending on the heat wave

type or the considered temperature variable. Heat

wave Tmin increased faster than the corresponding

Tmax, about 0.58Cdecade21 for Tmin compared to

roughly 0.38Cdecade21 for Tmax. The fact that Tmin

increased faster than Tmax is consistent with the trends

found by Guichard et al. (2015) in the Sahel. More

broadly, this result has been highlighted worldwide and

might be related for a part to an increase in the cloud

cover (Karl et al. 1993; Easterling et al. 1997).

From 1950 to 2010, the long-term temperature trend

over the Sahel is highly variable from month to month

(Guichard et al. 2015). In April and May, monthly mean

temperatures exhibit the most robust linear trend of

around 10.38Cdecade21, and these are also the hottest

months of the year. Therefore, only April and May are

considered here to compare heat wave temperature

trends to the mean Sahelian trend. Figure 6 shows the

time series of April–May minimum and maximum tem-

perature trends over the Sahel domain and their coun-

terparts for the detected heat waves. A linear regression

indicates that Sahel April–May mean maximum tem-

peratures trends are equal to 10.258 6 0.098Cdecade21

(95% confidence level), while the minimum temperature

trend reaches 10.328 6 0.088Cdecade21. Even though

this is consistent with a mean temperature trend in

April–May of 0.38Cdecade21, this emphasizes different

rates of increase forminimumandmaximum temperature.

HWmax event maximum temperatures mostly follow the

TABLE 2. As in Table 1, but for trends of the heat wave characteristics over March–July. A trend is considered nonsignificant (NS) if the

p value is larger than 0.05.

Number

per year

per decade

Duration

(day

decade21)

Area

covered

(% decade21)

Tmax

intensity

(8C decade21)

Tmin

intensity

(8C decade21)

DTR

(8C
decade21)

Tmax

(8C
decade21)

Tmin

(8C
decade21)

Reference 1950–2012 HWmax 10.22 NS NS NS 10.13 20.23 10.27 10.5

HWmin NS NS 10.98 10.16 10.05 NS 10.35 10.44

Comparison to other heat indices

30Filter HWmax NS NS 11.1 10.04 NS NS 10.23 10.25

HWmin NS NS NS NS NS NS 10.28 10.38

15DW HWmax NS NS NS NS 10.13 NS 10.27 10.35

HWmin NS NS NS NS NS NS 10.25 10.28

NoFilter_15DW HWmax 10.92 10.42 11.37 NS NS 20.25 NS 10.35

HWmin 11.12 NS NS NS 20.16 NS 10.30 10.31

NoFilter HWmax 10.90 10.42 NS NS NS 20.28 NS 10.33

HWmin 11.16 NS 12.49 NS 20.15 10.15 NS NS

Impact of the meteorological dataset on the detection

BEST 1979–2012 HWmax NS NS NS NS NS NS 10.40 NS

HWmin NS NS NS NS NS NS 10.55 NS

ERA-Interim HWmax 20.59 NS NS 20.12 NS NS NS NS

HWmin NS NS NS NS NS NS NS NS

NCEP-2 HWmax NS 20.89 NS NS NS NS 10.66 NS

HWmin NS NS 22.13 NS NS NS NS 10.78

MERRA HWmax NS NS NS NS 20.49 NS 10.90 NS

HWmin NS NS 23.39 NS 20.13 10.26 10.86 10.60
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increase of mean maximum temperature with a trend of

0.298 6 0.148Cdecade21, and HWmin event minimum

temperatures evolve approximately at the same rate as

meanminimum temperatures (10.378 6 0.228Cdecade21).

Thus the long-term evolution of heat waves over the

Sahel appears to be mainly driven by the background

temperature trend. Changes in synoptic and intraseasonal

variability, if any, do not significantly impact heat wave

temperature trends.

The link between heat wave trends and regional or

global temperature trends has been largely addressed in

the literature. For instance, Russo et al. (2014) argued

that the global surface area impacted by heat waves sig-

nificantly increased in the last decades. Gershunov and

Guirguis (2012) found positive trends of heat wave

magnitudes over 1950–2012. They also reported that the

California inland desert heat wave temperatures are in-

creasing less rapidly than themean temperature.Argüeso
et al. (2016) showed that globally the mean climate

warming is responsible for most of the heat wave changes

in the next century except for Europe and North Amer-

ica, in agreement with Schoetter et al. (2015) for Europe.

In the tropics, the climate warming is associated with a

shift of the temperature distribution (Argüeso et al. 2016;

Déqué et al. 2017), which is consistent with our results.

The linear trends over 1979–2012 of the four datasets

(section 4b) are displayed in Table 2. The smaller number

of heat waves, in addition to the reduced time period, is

likely to increase the odds of a nonsignificant value,

and the results must be taken with care. The main re-

sult is that, when significant, the Tmax, Tmean, and

Tmin show a positive trend. Conversely, for HWmin,

there is a significant diminution of the area covered

when using NCEP-2 and MERRA. The spread of cli-

matological trends estimated with these reanalyses

is likely to be at play in the heat wave trends: Tmax

climatological trends range from 10.38Cdecade21 in

ERA-Interim to 10.558C decade21 in MERRA and

Tmin trends from 10.38C decade21 in MERRA to

10.558Cdecade21 in NCEP-2 (Fig. A3).

The heat waves detected in the present work are

Lagrangian objects and therefore the analysis of the

trends of some of their properties raises some questions.

In an environment with spatial temperature gradients,

heat wave temperature trends could involve shifts in the

areas impacted by the heat wave in association with

possibly different climatological trends over these areas.

It would thus depend on the spatial pattern of the mean

Tmin and Tmax long-term changes, which are shown in

Figs. 7a and 7b. Indeed, those climatological trends are

spatially dependent (Guichard et al. 2012; Fontaine

et al. 2013; Guichard et al. 2015; Moron et al. 2016):

both Tmin and Tmax linear trends are higher over

Mauritania, Mali, and northern and western Niger,

and decrease to the south toward the Guinean coast

and to the very east over Chad. Hence the spatial and

temporal distribution of the heat waves can influence the

above heat wave trends. To better assess the role of

FIG. 6. Time series ofApril–Maymean (top)Tmax and (bottom)Tmin for each year from1950

to 2012 on average over the Sahelian domain (solid black) and over heat waves, namely (top)

Tmax of HWmax (solid red) and (bottom) Tmin of Hwmin (solid blue); dotted–dashed lines

correspond to the associated linear trends. Heat wave curves are discontinuous since heat waves

do not occur every year. The Lagrangian approach is used to compute the heat wave trends.
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these distributions, we weighted the climatological trend

by the total number of heat wave days for each grid point

(not shown): thus an area that is affected by a great

number of heat wave days will contribute more than an

area affected by a lower number. In practice HWmax

andHWmin are located mostly in the eastern part of the

Sahelian domain; however, the weighted climatological

trends are unchanged. This nonhomogeneous spatial

distribution of the heat waves can also be time de-

pendent, so that heat wave temperature trends are then

computed over slightly different climates. To avoid the

issues linked to the Lagrangian approach, in the next

sectionwe investigate another option that uses a Eulerian

approach to study the trends.

b. Local Eulerian approach

Trends can also be computed for each grid point, by

considering the annual mean temperature for the days

when heat waves occur at that grid point. The selection

of heat waves over the Sahelian domain leads to

retaining fewer heat waves at the edge of the Sahelian

domain and thus the sample is substantially reduced.

To avoid these edge effects, all heat waves detected

over the whole African domain are accounted for, not

only those overlapping over 20% of the Sahel domain.

The maps of significant linear trends are shown in

Figs. 7c and 7d.

The Tmin trend of HWmin events is mostly uniform

over the Sahel, reaching 10.48Cdecade21 (Fig. 7d). It is

slightly lower over Burkina Faso and southernMali as well

as over northern Chad, where the trends there are

below 10.38Cdecade21. Overall Tmin trends of HWmin

events are close to the climatological April–May trends, or

slightly stronger, particularly over the southeast part of

the Sahel (Fig. 7f): HWmin are thus warming at the

same rate or slightly faster than the mean regional cli-

mate. The Tmax trend of HWmax events is maximum

over Mauritania, northern Mali, and northern Niger,

reaching 10.48Cdecade21 (Fig. 7c). It is minimum over

central Niger and central Chad. There the trend is slightly

weaker than the mean long-term warming (Fig. 7e), which

indicates that HWmax events intensify less quickly than

themean climate. This could be interpreted as a saturation

effect for maximum temperatures whose distributions are

negatively skewed (Figs. A1d and A2d) and that are al-

ready very high over the region during HWmax events

(e.g., it could involve physical mechanisms operating in

the surface energy balance at high temperature).

Interestingly, a similar result was noted by Gershunov

and Guirguis (2012) over the California desert.

FIG. 7. Maps of climatological trends of (a) Tmax and (b) Tmin computed over April–May for 1950–2012;

(c),(d) As in (a),(b), but for Tmax of HWmax heat waves and Tmin of HWmin heat waves, and (e),(f) the

difference between climatological and heat wave trends [i.e., (e)5 (c)2 (a); (f)5 (d)2 (b)]. Crosses indicate

grid points where differences are not significant at the 95% level.
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The differences between heat wave and climate trends

range between 20.28 and 0.28Cdecade21, which is close

to the confidence interval of the trends themselves.

Therefore, temperature trends at the climate and heat

wave scales over the Sahel are mostly similar, with some

spatial particularities that need to be further assessed.

6. Conclusions

This paper introduces a new heat wave detection

methodology that comprises four different steps: a tem-

perature filtering to focus on specific temporal scales, the

determination of a temperature extreme threshold based

on a March–July window 90th percentile, the application

of a spatiotemporal constraint, and finally the selection

of a particular geographic domain.

The filtering process enables us to focus on a specific

type of heat waves, without mixing different temporal

scales. Here, we focused on heat waves of synoptic to

intraseasonal scales and thus we decoupled heat wave

events from the annual cycle and long-term temperature

variabilities. The use of a fixed window provides in-

formation on the seasonal evolution of the heat wave

occurrences. The spatiotemporal constraint selects spa-

tially and temporally coherent heat waves (here they last

at least 3 days and cover more than 60 3 104 km2). The

final step of selecting a particular domain allows this

heat index to be used over any region.

This heat index was applied separately to daily maxi-

mum andminimum temperatures (Tmax and Tmin) of the

observational-based BEST dataset. We found an average

of 3.3 ‘‘Tmax heat waves’’ (HWmax) and 2.9 ‘‘Tmin heat

waves’’ (HWmin) per year. Both types of heat waves last

on average around 5 days, cover roughly 120 3 104km2

with a temperature anomaly of 138C. In May, the mean

Tmax (Tmin) of HWmax (HWmin) reaches up to

428C (288C) or more. The HWmin areas are slightly

smaller than the HWmax. Concomitant HWmax and

HWmin events happened only one-fifth of the time. This

result supports the decision to separately analyze maxi-

mum and minimum temperatures in the Sahelian region.

Heat waves also become shorter and less frequent from

March to July.HWmin events are particularly rare in June–

July. In March–April, heat wave temperature anomalies

are stronger than those in June–July, a consequence of the

temperature anomaly variance distribution of BEST.

There was no strong climatological trend of heat wave

occurrences over 1950–2012. However, their Tmax

(Tmin) significantly increased from 1950 to 2012, by 1.68C
for HWmax (2.68C for HWmin). This warming is con-

sistent with a mean shift of the temperature distribution,

in line with the results of Argüeso et al. (2016) in the

tropics; the heat waves are not intrinsically hotter, but

rather they reflect the warming climate. In the northern

Sahel, however, we found that the climatic warming trend

is stronger than the heat wave trend for the Tmax, as also

highlighted by Gershunov and Guirguis (2012) over

California deserts.

The results are quite similar when the percentile is

computed over a 15-day moving window, except for

differences over the seasonal occurrences that are di-

rectly linked to methodological choices. The constant

percentile led to a steady temperature anomaly distri-

bution throughout the season while the moving-window

produced a steady seasonal occurrence distribution, lead-

ing to a wide range of heat wave intensities. Over amoving

window without the filtering process, we found that heat

waves were longer and larger. As expected, heat waves are

also becoming more frequent by one per decade when raw

instead of filtered temperature are used.

The heat index was also computed similarly with

temperatures from three meteorological reanalyses,

namely ERA-Interim, NCEP-2, and MERRA, over

1979–2012. The heat waves were smaller than for BEST;

this could be related to the different nature of the

datasets (observationally based versus model); the heat

wave sizes in reanalyses are not smaller for the finer grid

though. Inherent biases between the distributions of

climatological means and variances resulted in signifi-

cant differences in temperature-related heat wave

characteristics. This notably affects Tmin anomalies in

NCEP-2 HWmin (they are 38C higher on average) and

to a lesser extent Tmax in MERRA HWmax, while

temperature and temperature anomalies in both heat

wave types are much closer to BEST in ERA-Interim.

Perkins (2015) identified three potential drivers of

heat waves: synoptic systems, soil moisture–atmosphere

feedbacks, and larger-scale dynamics. Fontaine et al.

(2013) studied the latter and suggested that Rossby

waves may play a role in the forcing heat waves. The

second potential driver is unlikely here since soil moisture

is very low during springtime in the Sahel. However, this

does not preclude the significance of other mechanisms of

surface–atmosphere interaction in this region. For instance,

Largeron et al. (2017, manuscript submitted to Climate

Dyn.) recently described a major water vapor impact on

nighttime temperature in a Sahelian heat wave case study.

More generally, further studies are necessary to ana-

lyze the meteorological situations associated with

Sahelian heat waves and to understand how physical

processes distinctly shape nighttime and daytime tem-

peratures during these events. The present set of de-

tected heat waves, combined with observations and

dynamical fields from reanalyses, should be useful for

such purpose. This would allow for studying composites

of these events; for instance, at a given location we could
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define composites from the time sequences associatedwith

the passages of heat waves. For the locations where in situ

data are available [e.g., those from the African Monsoon

Multidisciplinary Analysis–Couplage de l’Atmosphère
Tropicale et du Cycle Hydrologique (AMMA-CATCH)

network; Lebel et al. 2009], observations might also be

used to analyze the dynamic and thermodynamic charac-

teristics of the events at small scale.

Further studies should also investigate the causes be-

hind the distinct trends in Tmax for HWmax and Tmin

for HWmin. In particular, the strong Tmin trend raises

questions about its potential links with changes in

atmospheric water vapor or cloud cover (Karl et al. 1993;

Easterling et al. 1997). Although observations are scarce,

they are valuable for exploring relationships between

water vapor and nighttime temperature during heat

waves in a more systematic way (Evan et al. 2015).

Finally, from a modeling perspective, previous studies

(e.g., Roehrig et al. 2013) point to a large spread in CMIP5

simulations of annual cycles and mean trends of temper-

atures over the Sahel. For heat waves specifically, our

methodology applied to these simulations could document

their ability to simulate heat waves. Moreover, as heat

wave characteristics and trends may not be independent

FIG. A1. Statistical moments of the (left) minimum and (right) maximum temperature distributions of the observa-

tionally gridded dataset BEST, the reanalyses ERA-Interim, NCEP-2, andMERRA, and the SYNOP stationHombori,

Mali (15.338N, 1.88E), over 1979–2010 bymonth and over theMarch–July (MAMJJ) period: the differences between the

mean of the gridded dataset and (a) the SYNOP observations, (b) the mean of the gridded dataset, (c) the variance,

(d) the skewness, and (e) the anomaly variance. The climatic trends are removed before computing the moments. The

anomaly variances in (e) correspond to the variance of the anomaly temperatures computed with the 90-day high-pass

filter. The years 1988, 1989, and 1990 have been removed because of inconsistencies in the Tmin of Hombori.
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from the simulated mean climate and climatological

trends in the Sahel, it would be valuable to analyze

their links.
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APPENDIX

Temperature Statistics and Climatological Trends
among Datasets

The observational gridded product BEST and the

three reanalyses ERA-Interim, NCEP-2 and MERRA

were compared over 1979-2010 to two SYNOP stations

with consistent temperature time series: Hombori

(Guichard et al. 2015) and Niamey (Leauthaud et al.

2017). Figure A1 summarizes the main statistical char-

acteristics of temperature distributions at Hombori or at

the closest geographical point to this site for the data-

sets: the mean (Fig. A1b), the variance (Fig. A1c) and

the skewness (Fig. A1d), as well as the differences be-

tween the mean of the gridded datasets and the SYNOP

observations (Fig. A1a) for the maximum and minimum

temperatures. The variance of the temperature anoma-

lies are also displayed (Fig. A1e). The climatological

trends were removed before computing those statistics.

First we compared their monthly values fromMarch to

July and their March–July average (Figs. A1a,b). BEST

closely follows SYNOP data for both maximum and

FIG. A2. As in Fig. A1, but for BEST, ERA-Interim, NCEP-2, and MERRA over the Sahelian domain (108–208N,

108W–208E) over 1979–2012. The climatological trends are removed before computing the moments.
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minimum temperatures (Tmin and Tmax) whereas

NCEP-2 displays a cold bias, more pronounced in the

early season and much stronger for Tmin (reaching up

to 268C in May). The same behaviour is observed for

ERA-Interim but to a lesser extent, with biases ranging

from 218 to 238C. On the contrary, in MERRA, while

Tmin is close to SYNOP data, Tmax is globally higher by

around 128C in the early season. Figure A1b shows the

seasonal cycle of temperature: themaxima of Tmax are in

April and May for the SYNOP station, BEST, ERA-

Interim and MERRA while they are shifted to May and

June for NCEP-2. The maxima of Tmin are in May and

June for all except NCEP-2 which are again shifted later

in the season, over June–July. The spreads of the distri-

butions are quantified in Figs A1c,e with the variance.

Overall the reanalyses and BEST display a lower var-

iance values than the SYNOP data. However, NCEP-2

stands out for the Tmin anomalies with variances that

are up to twice higher than in SYNOP data, and

MERRA for the Tmax with also twice the variance of

SYNOP data over May, June, and July (Fig. A1e). The

seasonal-mean variance is also higher due to this be-

havior during these last three months. The skewness,

which measures asymmetry of the distribution, is shown

in Fig. A1d. Overall the skewness of all distributions are

negative, i.e. the distribution are skewed to the left, more

strongly for Tmax than for Tmin, and more so for

SYNOP data.

A similar analysis has been performed over Niamey

(not shown) and over the Sahelian domain (Fig. A2).

The bias of the latter are computed as differences from

BEST temperatures which were the closest to SYNOP

temperatures. The conclusions are similar except for the

biases and the Tmax anomaly variances: for Tmin, the

biases of ERA-Interim are closer to218C than238C at

Niamey and there are no biases on average over the

Sahel (Fig. A2a). The variance of Tmax anomalies on

average over the Sahel are decreasing from March to

July, except for ERA-Interim values that are higher in

July than in May–June (Fig. A2e). Finally, as may be

expected BEST is the closest to SYNOP data in terms of

mean, seasonal cycle, variance and skewness. On aver-

age, NCEP-2 temperature is too low (for both Tmin and

Tmax), this is also the case for Tmax in ERA-Interim

while MERRA Tmax is too high. NCEP-2 seasonal

maximum occurs one month too late and it exhibits a

much higher variance of Tmin anomalies. The same

applies for Tmax anomalies in MERRA.

The time series of Tmax andTmin on average over the

Sahel over April–May from 1979 to 2012 are displayed

in Fig. A3 for BEST and the three reanalyses. Correla-

tions R between BEST and the datasets, the means and

the linear trends (8C decade21) are shown in the insets.

Overall, ERA-Interim values are the closest to BEST

values, with correlations R higher than 0.8 for both

Tmax and Tmin. The reanalyses reproduce relatively

FIG. A3. Time series of Sahelian-mean Tmax and Tmin averaged over April–May. The

correlation R between BEST and the datasets and the means (8C) and the linear trends

(8C decade21) of the four datasets over April–May 1979–2012 are shown in the insets. Crosses

indicate trends that are not significant at the 95% level.
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well the distinct year-to-year fluctuations of Tmin and

Tmax, but the trends in Tmin and Tmax, both on the

order of 0.38Cdecade21 are not as well captured. In

particular, the trend in Tmin is too low in ERA-Interim,

and strongly overestimated in NCEP-2, while the trend

in Tmax is too high is MERRA and too low in NCEP-2.
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