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A B S T R A C T

Background: There is an extensive literature describing temperature-mortality associations in developed regions,
but research from developing countries, and Africa in particular, is limited.
Methods: We conducted a time-series analysis using daily temperature data and a national dataset of all 8.8
million recorded deaths in South Africa between 1997 and 2013. Mortality and temperature data were linked at
the district municipality level and relationships were estimated with a distributed lag non-linear model with 21
days of lag, and pooled in a multivariate meta-analysis.
Results: We found an association between daily maximum temperature and mortality. The relative risk for all-
age all-cause mortality on very cold and hot days (1st and 99th percentile of the temperature distribution) was
1.14 (1.10,1.17) and 1.06 (1.03,1.09), respectively, when compared to the minimum mortality temperature.
This “U” shaped relationship was evident for every age and cause group investigated, except among 25–44 year
olds. The strongest associations were in the youngest (< 5) and oldest (> 64) age groups and for cardior-
espiratory causes. Heat effects occurred immediately after exposure but diminished quickly whereas cold effects
were delayed but persistent. Overall, 3.4% of deaths (~ 290,000) in South Africa were attributable to non-
optimum temperatures over the study period. We also present results for the 52 district municipalities in-
dividually.
Conclusions: An assessment of the largest-ever dataset for analyzing temperature-mortality associations in
(South) Africa indicates mortality burdens associated with cold and heat, and identifies the young and elderly as
particularly vulnerable.

1. Introduction

There is an extensive literature describing temperature-mortality
associations in developed regions, but research from developing coun-
tries, and Africa in particular, is limited (Basu, 2009; Benmarhnia et al.,
2015; Gasparrini et al., 2015b; Ryti et al., 2016). Furthermore, the few
studies from Africa report results for only one or a few cities and over
relatively short time periods (Azongo et al., 2012; Diboulo et al., 2012;
Egondi et al., 2012; McMichael et al., 2008; Wichmann, 2017).

There are several reasons that the relationship between ambient
temperature and mortality in Africa may differ when compared to
wealthier regions. Populations often have distinct mortality profiles
(cause/age of death) and age distributions, while climatic factors may

also differ. Additionally, large segments of the population live in
dwellings that do not adequately protect against heat and cold (Makaka
and Meyer, 2006; Scovronick and Armstrong, 2012; United Nations
Human Settlements Programme, 2011). All of these factors are known
or putative modifiers of the effect of temperature on mortality (Basu,
2009; Benmarhnia et al., 2015; Ryti et al., 2016; Scovronick and
Armstrong, 2012).

The urgency to better understand temperature-health relationships
in developing regions is heightened when considering the near-term
opportunities for intervention; rapid rates of economic development
and demographic change, combined with explicit government pro-
grams aimed at infrastructure upgrading and poverty alleviation may
all affect vulnerability to ambient temperature. Examples in South
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Africa include government programs to help provide ~ 1.5 million
homes to low-income households over the coming years as well as
household energy and water supply projects (Department of Energy
(Republic of South Africa), 2015; Department of Human Settlements
(Republic of South Africa), 2016; Department of Water and Sanitation
(Republic of South Africa), 2014).

The shortage of information on how temperature affects health in
South Africa is of extra concern in the context of climate change. Mean
warming has increased at least 50% faster in South Africa compared to
the global average and (like for much of the continent) this trend is
expected to continue (Niang et al., 2014; Ziervogel et al., 2014). As a
result, there is strong consensus that adaptation will be key to protect
populations in Africa from future climate impacts and that early action
is needed (Niang et al., 2014; Schaeffer et al., 2013). However, the
Intergovernmental Panel on Climate Change, along with independent
researchers and the South African government have all pointed to a lack
of research on climate- and weather-health relationships as a barrier to
climate-informed decision-making (Government of the Republic of
South Africa, 2011; Niang et al., 2014; Smith et al., 2014; Wright et al.,
2014; Ziervogel et al., 2014).

Accordingly, in this study we analyze the association of temperature
and mortality in South Africa using a national dataset that includes all
8.8 million recorded deaths between 1997 and 2013. This is the first
study to employ such a large-scale dataset from anywhere in Africa, and
to our knowledge no comparable study exists from any country at a
similar level of economic development.

2. Methods

We conducted a time-series regression analysis of the temperature-
mortality relationship in South Africa using a national mortality dataset
and two independent sources of temperature data.

2.1. Mortality dataset

We obtained a dataset of all recorded deaths (n = 8,814,625) in
South Africa from 1997 to 2013, inclusive (17 years). The information
is from the country's civil registration system, the only national source
of mortality statistics. The dataset was provided by Statistics South
Africa, which estimates that death registration for adults is ~ 89%
complete early in the study period, rising to ~ 94% by the end (com-
pleteness of child records has not been reported) (Statistics South
Africa, 2014a, 2014b). Anonymized individual data reported where
each death occurred at the level of the district municipality (there are
52 in South Africa and we refer to them hereafter as “districts”). District
sizes range from relatively small urban areas to much larger areas lo-
cated in the more unpopulated regions of the country (Fig. 1). In ad-
dition to death district, individual data included cause and age of death.
Data on district of residence was not available.

After dropping records for stillbirths (n = 226,593), deaths with
incomplete district information (n = 82,154) and with an incorrect
(nonsensical) date of death (n = 49), the final all-cause, all-age dataset
consisted of 8,509,130 records. The number of all-age all-cause deaths
for each district can be found in Table S1 of the Supplementary mate-
rial.

2.2. Temperature dataset

We obtained daily minimum and maximum temperature data from
two sources: the National Oceanographic and Atmospheric Association
(NOAA) of the United States and South Africa's Agricultural Research
Council. The NOAA dataset included 63 daily series covering a subset of
30 districts, while the Agricultural Research Council dataset included
50 series, one for each district except the City of Johannesburg and
Nelson Mandela Bay. There was no overlap in measurement points
(stations) between the two sources.

We carried out a three-step quality control procedure on all tem-
perature series from both sources to exclude values resulting from ei-
ther erroneous transcription or instrument malfunction (Aguilar et al.,
2003; Alexander and Herold, 2016; Perkins et al., 2012; Zhang et al.,
2011). First, we removed records where the maximum temperature was
lower than the minimum. Second, we compared every series with
corresponding data from two or more nearby weather stations, selected
for proximity and data correlation with the reference series (Milewska
and Vincent, 2016; Venema et al., 2012). If the reference series re-
corded an outlier (values above/below the 90th/10th percentiles), that
outlier was removed if the difference with the comparison series
was± two root root-mean-square errors. The root-mean-square error
between the reference and comparison series was calculated daily.
Additionally, we removed all duplicate sets – defined as periods with at
least five consecutive days recording the same temperature. And third,
for series exhibiting a break in recording or where metadata indicated a
change or relocation of the instrument, the series was tested for
homogeneity and corrected if necessary (Fortin et al., 2016; Wang and
Feng, 2010; Wang, 2008a, 2008b; Wang et al., 2010, 2007). Only one
district (Buffalo City) required an adjustment.

After the quality control procedure, we assembled a final composite
dataset consisting of one representative station for each district (Fig. 1),
selected for the length of the series and fewest missing data points. In
the first year of the study period, there was temperature data available
for 29 districts, rising to cover all 52 by 2007 (Fig. S1). For each series
in the final dataset, we reconstructed missing data if the data gap was
less than or equal to six days in length, using information from the
nearby comparison stations (Acquaotta et al., 2009, 2016; Eischeid
et al., 2000).

Overall, seven percent of values were reconstructed for the daily
maximum and 12% for the daily minimum temperature. Due to the
higher number of missing values and because improper instrument
management generally has a greater impact on minimum temperature
recordings (Acquaotta et al., 2015; Caussinus and Mestre, 2004; Nigrelli
et al., 2015; Rangwala and Miller, 2012; Trewin, 2010; Vincent et al.,
2009), all subsequent analyses in this paper use the daily maximum
temperature.

2.3. Statistical approach

We applied a two-stage time-series modeling strategy, described in
several recent methodological papers and previously applied in both
multi-city and multi-country contexts, thus allowing for consistency
and comparability between studies (Gasparrini, 2011; Gasparrini et al.,
2012, 2015a, 2016, 2015b). We briefly describe the modeling stages
below and also refer readers to these prior publications for more details
(Gasparrini, 2011; Gasparrini et al., 2012, 2015a, 2016, 2015b).

In the first stage, we applied standard time-series quasi-Poisson
regression models separately for each district to derive estimates of
location-specific temperature-mortality associations. For this step, we
modeled the exposure-response association with a natural cubic spline
with three internal knots at the 10th, 75th and 90th percentiles of lo-
cation-specific temperature and the lag-response association using a
natural cubic spline with an intercept and three knots equally spaced on
the log scale. We controlled for season and trend with a natural cubic
spline with eight degrees of freedom per year and also for day of the
week.

In the second stage, we reduced the association in two dimensions:
first to the overall temperature-mortality association, cumulating the
risk over a 21-day lag period to account for the delayed effects of cold
and for potential short-term mortality displacement; then to the lag-
response associations corresponding to the 99th and 1st percentiles
using the district-specific minimum mortality temperature (MMT) as a
reference. We pooled the estimated location-specific estimates using a
multivariate meta-analytical model, controlling for location-specific
average (maximum) temperature and temperature range. The fitted
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meta-analytical model was used to derive the best-linear unbiased
prediction of the overall cumulative exposure-response association in
each district.

We quantified the total attributable number of all-cause deaths as-
sociated with non-optimum temperatures, which is given by the sum of
the contributions from all days in the series, and its ratio with the total
number of deaths provides the total attributable fraction. We calculated
the components attributable to cold and heat by summing the subsets
corresponding to days with temperatures below or above the MMT
using the district-specific temperature distributions. To explore the ef-
fect of extreme cold and heat specifically, we also report attributable
mortality due to temperatures below and above the 2.5th and 97.5th
temperature percentiles, respectively.

We calculated empirical confidence intervals for the exposure-re-
sponse curves using Monte Carlo simulations assuming a multivariate
normal distribution of the best linear unbiased predictions of the re-
duced coefficients. Confidence intervals for the MMTs were determined
using an approximate parametric bootstrap estimator (Tobías et al.,
2016).

The modeling strategy described above was selected from several
potential approaches and therefore we conducted sensitivity analyses
on key modeling choices including the lag period, the degrees of
freedom used for seasonal control and in the lag-response association,
and the type of spline and knot location for the exposure-response as-
sociation.

All analyses were conducted with the R software packages dlnm and
mvmeta, which have been used extensively and are documented in de-
tail elsewhere (Gasparrini, 2011; Gasparrini et al., 2012, 2015b).

3. Results

The mean daily maximum temperature for South Africa as a whole
during the study period was 25.3 °C. District-level means ranged from
15.8 °C (Buffalo City) to 30.6 °C (Vhembe) (Fig. 1, Table S1), with an
interquartile range between 21.7 °C and 29.2 °C. In total, 89% (n =
7,576,674) of all deaths in the database had matching temperature data
and could therefore be included in the temperature-mortality analyses
(Table 1).

Fig. 2 displays pooled results for the overall cumulative exposure-

response curves by age and cause groupings. The all-age all-cause curve
shows elevated mortality on both sides of the temperature distribution,
with relative risks of up to ~ 20% at the extreme ends when compared
to the minimum mortality temperature. Heat and cold effects are evi-
dent for all the age and cause groupings, with the exception of 25–44
year olds. The steepest curves are found in the youngest and (in par-
ticular) oldest age groups. Cardiovascular and respiratory diseases also
exhibited higher risks from cold and heat, respectively.

The best-linear unbiased predictions of the overall cumulative ex-
posure response associations for all-age all-cause mortality in each of
the 52 districts are presented in Fig. S2. Like for the pooled results, most
districts show evidence of a ‘U’ shaped curve, although several do not
have clear cold and/or heat effects, the latter including some of the
most populous urban districts (e.g. City of Cape Town and City of Jo-
hannesburg). There is evidence of moderate heterogeneity across dis-
tricts (Cochran Q p-value<0.001, I2 = 41.9%).

The proportion of deaths nationally attributable to low and high
temperatures combined was 3.0% and 0.4%, respectively, for a total
attributable fraction from non-optimum temperatures of 3.4%. The
district range was 1–6% (Fig. 3, Table S1). Only a small percentage (~
13%) of the attributable mortality was due to extreme temperatures
(Table S2).

The high proportion of total temperature-attributable deaths related
to cold is a function of the cold slope and the relatively high minimum
mortality temperature (Table 1). High minimum mortality tempera-
tures were also evident in the other age- and cause-groups, with the
exception of the youngest groups (Table 1). A total mortality burden of
3.4% is equivalent to ~ 290,000 deaths, or an average of ~ 17,000 per
year, over the study period.

The timing of risk differed for exposure to cold and heat. The cold
effect peaked on the second or third day after exposure and persisted at
a low level for two weeks or more (Fig. 4). In contrast, the strongest
heat effects occurred immediately but diminished quickly, followed by
an extended period of slightly negative risk that may suggest (marginal)
mortality displacement (Fig. 4).

Changing modeling assumptions generally had a modest impact on
results, with attributable fractions remaining between 2.5% and 5.0%
(Table S3). Of the parameters tested, the length of the lag had the
largest influence, with a shorter lag reducing the size of the effect and

Fig. 1. Mean maximum temperature for each district, location of
the weather monitoring station, and source of the data. ARC =
Agricultural Research Council (South Africa), NOAA = National
Oceanographic and Atmospheric Administration (USA).
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Table 1
Deaths analyzed and results from pooled analyses including minimum mortality temperature percentiles (MMP) and relative risks at select temperatures compared to the minimum.

Age/cause group Deathsa MMP Relative risk

Total Includedb 1st percentile 99th percentile

All-cause, all-age 8,509,130 7,576,674 84 (56,89) 1.14 (1.10,1.17) 1.06 (1.03, 1.09)
Cardiovascularc 1,299,688 1,154,896 80 (64,89) 1.33 (1.24,1.42) 1.08 (1.02, 1.14)
Respiratoryd 1,046,914 931,556 84 (60,90) 1.16 (1.07,1.25) 1.10 (1.03,1.18)
Other causes 6,162,528 5,490,222 84 (27,90) 1.09 (1.06,1.12) 1.05 (1.01,1.09)
< 5 years 800,268 700,088 26 (1,44) 1.08 (0.99,1.18) 1.24 (1.15,1.34)
5–24 years 623,687 553,088 19 (9,99) 1.10 (1.00,1.20) 1.10 (1.00,1.20)
25–44 years 2,665,115 2,382,762 95 (1,99) 1.02 (0.97,1.06) 1.00 (0.97,1.04)
45–64 years 2110,984 1,889,622 81 (47,99) 1.16 (1.09,1.22) 1.04 (0.99,1.08)
65+ years 2,265,979 2,016,041 85 (74,88) 1.34 (1.28,1.41) 1.13 (1.07,1.20)

MMP: Minimum mortality temperature percentile.
a Excludes stillbirths, deaths without location information and nonsensical dates of death.
b Deaths were included for all days with temperature data.
c ICD-10: I00-I99.
d ICD-10: J00-J99.
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Fig. 2. Pooled overall relative risks of mortality associated with maximum daily temperature cumulated over a 21-day lag period for different cause and age groups. Dotted vertical line
show the minimum mortality temperature percentile.
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vice versa.

4. Discussion

This is the first long-term, national-level study of temperature-
mortality associations in South Africa or anywhere on the African
continent. Our findings provide evidence of an increased risk of death
from both cold and heat, and suggest that approximately 3.4% of the
total mortality burden in the country was related to non-optimum
temperatures over the 17-year study period. The majority of the burden
(almost 90%) was from cold, defined as days with temperatures below
the optimum, and most was from moderate rather than extreme cold,
which is in line with previous research (Gasparrini et al., 2015b).

A total attributable mortality of 3.4% is at the lower end of the
levels recently reported in a 13-country analysis using related methods
(Gasparrini et al., 2015b). In that study, the two countries (Brazil and
Thailand) with the most similar overall attributable mortality were also
two of the most similar to South Africa in national-level indicators of
economic development, such as GDP per capita and income inequality
(World Bank, 2017). How these factors relate to temperature vulner-
ability may warrant additional study.

We found a MMP of 84, which is higher than what is often reported
in multi-country studies (Guo et al., 2014). However, we use the daily
maximum rather than daily mean temperature, making direct com-
parisons difficult. In terms of lag-response relationships, our finding of a
relatively immediate and short-lived heat effect, but a delayed and
persistent cold effect is commonly reported (Braga et al., 2002; Guo
et al., 2014).

In sub-group analyses, we found evidence of elevated risks from
cardiovascular and respiratory diseases and in the oldest and youngest
age groups. Though not universal, these results are consistent with
studies from around the world, including in parts of Africa (Basu, 2009;
Benmarhnia et al., 2015; Diboulo et al., 2012; Egondi et al., 2012; Ryti
et al., 2016; Wichmann, 2017). Higher risks amongst the elderly and for
cardiorespiratory causes may have important implications for how the
temperature-mortality association in South Africa may evolve over time
as the population continues to age and mortality further transitions
away from infectious causes and towards chronic disease (Mayosi et al.,
2009; United Nations, 2015).

The ability to investigate temperature effects in children<5 years
is a particular strength of the study, as there are relatively few papers
reporting results in such young age groups. We found evidence of a

Fig. 3. Attributable fraction for heat and cold by district. Exact values available in Table S1.
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heat- and cold-effect, though the former was more definitive. Heat
vulnerability in young children has been reported in systematic reviews
and several individual studies in developing regions (Azongo et al.,
2012; Basu, 2009; Diboulo et al., 2012; Geruso and Spears, 2017; Xu
et al., 2012).

There is only one previously published time-series study on tem-
perature-related mortality in South Africa, which analyzes data from
Cape Town between 1996 and 1999. Similar to our study, they reported
evidence of cold-related mortality but no clear heat effect in Cape Town
(McMichael et al., 2008). A similar result was also found in an un-
published time-series analysis of Cape Town using newer data
(2001–2004) (Kovats, 2010). In contrast, a recent case-crossover study
based on data from 2006 to 2010 did find an association between all-
age all-cause mortality and heat in Cape Town, but using an alternative
temperature metric (apparent temperature) and different analytical
method (Wichmann, 2017). Like our results, that study did not report
significant associations in the other two cities investigated (City of
Johannesburg and Durban). All four studies relied on the same source
of mortality data, albeit for different (but partially overlapping) time
periods.

The mortality dataset itself is a potential source of error, as Statistics
South Africa estimates that up to 11% of deaths may not have been
captured by the national registry early in our study period, declining to
around 6% by the end (Statistics South Africa, 2014a, 2014b). External
mortality estimates suggest the incompleteness may be larger (Institute
for Health Metrics and Evaluation, 2015). If missing death records are
random, they would likely have little impact on our relative risk esti-
mates, but if exclusions were somehow systematically related to tem-
perature, they could be meaningful.

The temperature dataset also posed certain challenges and limita-
tions. The most obvious is that we did not have data for all days in all
districts, with much of the missing data concentrated in the early per-
iods. Specifically, 11% of deaths had no corresponding temperature
data, although this varied across districts. For many districts and time
periods however, we were able to obtain data from multiple stations,
helping us conduct a quality control procedure that was based in part
on comparisons with nearby locations. This process allowed us to select
the best available dataset for each district and to exclude problematic
data points (duplicates and false outliers). Ultimately, we selected the
maximum daily temperature as our metric of choice, instead of the
minimum or mean, because the minimums had substantially more
missing data (12% vs 7%). Previous analyses indicate that, on average,
different temperature measures have similar predictive abilities, due
largely to their strong correlation, and therefore practical concerns like
data completeness should be the determining factor (Barnett et al.,
2010; Basu et al., 2008). A final limitation with regard to temperature is
that for some larger districts, the use of a single station may not ade-
quately capture all local weather conditions, though this issue was
somewhat tempered by the fact that total mortality was more con-
centrated in the smaller districts; for example, only 14% of deaths oc-
curred in the largest 25% of districts.

Some researchers investigating temperature-mortality relationships
include ambient air pollution as a potential confounder a priori, since it
can be correlated with temperature, while others argue that such con-
trol is inappropriate because air pollution is on the causal pathway
(McMichael et al., 2008). We did not have air pollution data, but note
that large-scale studies exploring the issue generally find that it has
only a small influence on effect estimates and may even strengthen the
temperature association (Basu et al., 2008; Gasparrini et al., 2015b;
McMichael et al., 2008). Accordingly, a previous study from Cape Town
reported that controlling for ozone had a very small impact overall
while controlling for particulate air pollution increased the heat effect
(McMichael et al., 2008).

In conclusion, our work provides valuable insights into tempera-
ture-mortality relationships in a country and region that is under-
studied and underrepresented in the literature. The results can help

inform early warning systems and heat-health action plans and be used
to project future mortality impacts under climate change.
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