
Practical 1: Writing xml with wxml
The aims of this exercises are to familiarize you with the process of compiling the FoX li-
brary and using its wxml API to produce simple xml documents. The tasks revolve around
producing a simple HTML document, then modifying a program that evaluates a simple
mathematical function to output HTML before finally building an HTML report containing
mathematical notation.

Exercise 1.1
In the directory “~/Practical_1/exercise_1” you should find a file named
simple.f90. As the name implies this simple fortran program is designed to produce an
equally simple XML document. Without compiling the code sketch out what you expect the
XML document produced by this code to look like.

Space for your outline of the XML document produced by simple.f90:

Before moving on and compiling the code there are some aspects you should note (you
may have already spotted some or all of these, but they are listed below anyway).

1. There are two important stylistic points to note. First most of the arguments passed to
subroutines in the FoX library make use of keywords. This is useful as it makes the
code more readable, is less likely to break if you upgrade to a new version of the FoX
library and is the only way to deal with the many optional arguments in many of the
subroutines. Second, it is worth noting the indentation scheme used. Whenever a new
element is opened the level of indentation is increased, as if the call was opening an if
or do block. This helps prevent the creation of code that leads to the production of un-
balanced or overlapping tags (things that are forbidden in XML).

2. There are two calls to xml_AddAttribute, one for each “MyXMLElement” element
and they are passing different data types as the value argument of the call. To anybody
versed in Fortran 77 it may come as a surprise that this can be done in Fortran, but it is
permitted for many attributes of the subroutines in FoX. If you are interested in know-

 1-1

ing how this works you could take a look at ‘module’, ‘generic’ or ‘type bound’ proce-
dures in a Fortran 90 reference book.

3. Take a close look at the string passed to the second xml_AddAttribute call. Some
of these characters are not permitted within an XML document (at least not permitted
outside of CDATA) as they have special meanings. The problematic characters are “<”
and “&” - both of these are correctly escaped by FoX so they can be passed in as part
of the string.

Exercise 1.2
Now it is time to compile simple.f90, link it against the FoX library and see if it produces
the results you expect. To do this you will need to download, configure and make FoX (see
the reminder below). We suggest that this is done in your homespace or on the desktop so
it can be accessed easily for the whole practical.

Once you have compiled the code you can able to run it by typing “./simple” at the
command prompt. A new file should be produced called simple.xml. Look at this file -
does it look like the outline you sketched in exercise 1? There are a couple of things you
should note related to the calls to xml_AddAttribute. The floating point number “2.0”
is expressed in scientific notation, FoX does this by default for all floating point numbers it
writes out, and the problematic characters in the second call have been encoded.

Reminder - compiling and linking FoX
1) Download the latest FoX source code from:

http://www.uszla.me.uk/software/source/FoX/

2) Uncompress to your home directory, and build the libraries:

cd ~
tar xzf FoX-3.1.2.tgz
cd FoX-3.1.2
./configure
make

3) For a single file, the compiler command to compile and link while including FoX is:

g95 -o simple simple.f90 `~/FoX-3.1.2/FoX-config`

4) Or, compiling and linking in separate steps: first compile source code with relevant
include flags:

cd Practical_1/exercise_1
g95 -c `~/FoX-3.0/FoX-config --fcflags` simple.f90

5) Then link source code with library and library search flags:

g95 simple.o `~/FoX-3.0/FoX-config --libs` -o simple

 1-2

http://www.uszla.me.uk/software/source/FoX/
http://www.uszla.me.uk/software/source/FoX/

Exercise 1.3
Before moving on to write your own fortran program it’s worth looking to see what FoX
does when a program attempts to output XML that is not well formed. There are many
ways that an XML document can be badly formed and the aim of this exercise is to write a
fortran code that can be compiled, but that produces badly formed XML. Modify
simple.f90, recompile the code and run it to see what happens in the following cases:

1. Closing an unopened tag. What happens if you attempt to close an element that has
not been opened. It may be particularly instructive to change the case of the string rep-
resenting the final element name from “MyXmlRoot” to “MyXMLRoot”?

Answer: __

2. Unbalanced tags. What happens when an element is closed before an element that it
encloses is closed (change the order of the last two xml_EndElement calls, for ex-
ample).

Answer: __

3. Unclosed tags. What happens if a program terminates correctly without closing all the
tags (remove the last two xml_EndElement calls, for example).

Answer: __

4. Adding elements to an unopened file. What happens when you attempt to create a new
element before calling xml_OpenFile.

Answer: __

Exercise 1.4
Write a fortran program to produce a simple home page in html. The code should be sim-
ple (a single program block without flow control) and use FoX’s wxml interface to output
XHTML. You could use simple.f90 as a starting point. There should be an <html> root
element with two children, <head> and <body>, the <head> element should have at least
a <title> child while the <body> element should contain one or more <p> and <h1>
elements. Compile the code and link it to the FoX libraries.

Confirm that the code writes a valid html file and check that you see the expected render-
ing when it is loaded into a web browser (use the “File → Open File” menu in Firefox). The
example solution produces XHTML like that shown in the “quick introduction to HTML”, on
the next page.

You should also check that your file declares the correct namespace - you should see
xmlns=’http://www.w3.org/1999/xhtml’ within the root <html> tag. If not you will
need to add a namespace declaration with a call to the xml_DeclareNamespace subrou-

 1-3

tine immediately before your first xml_AddElement call. The meaning and usefulness of
XML namespaces will be explained later in the course.

Quick guide to (x)html
HTML is the markup language used to encode the structure and to a lesser extent
the meaning of pages on the web. Web browsers load, parse and render a page for
display based on content of the document. There are several versions of HTML and
one of these (XHTML) is strictly an XML language. XHTML documents have
<html> as the document root, one <head> element and one <body> element. The
document head contains metadata about the document and the body contains the
data that will actually be displayed by the browser. A (very) simple example looks
like this:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head>
 <title>Andrew's home page</title>
 </head>
 <body>
 <h1>Andrew's home page</h1>
 <p>I'm a postdoctoral research fellow and was
 involved in the <i>e</i>Minerals project. This is not
 my web site.</p>
 </body>
</html>

Note that this is a well-formed XML document. Other tags to note are <p>, which
delimits a paragraph, <i> which marks text to be italicized and , marking bold
text. In order to make sure that Firefox correctly understands the document is
XHTML, files loaded from the local machine should have a ‘.xhtml’ extension and
the xmlns attribute should be included as shown above.

Exercise 1.5
The files for exercise 1.5 and 1.6 can be found in “~/Practical_1/exercise_5”. The Fortran
program contained in the file erf.f90 calculates the error function:

using the Taylor series expansion:

for input values of the argument (x) and the truncation of the expansion (n). The series it-
self is implemented in function erf_loop.

Currently the program only writes output to the standard output stream (you should see it
in the terminal when you compile and run the program). Your task for this part of the exer-

 1-4

cise is to have the program output an XHTML file containing the same data as is currently
output to the terminal in addition to the current output. You should be able to view the re-
sult in a web browser.

Exercise 1.6
The aim of this exercise is to write an (XML encoded) record of the actual calculation used
to produce the result of the error function. Ideally we would like to write this record in a
format that can be ‘understood’ by a computer in a way that simply writing the appropriate
symbols into an HTML file is not. For example, we may like a computer to be able to parse
the XML document and extract the expression then produce some executable code to en-
able the expression to be evaluated. In short, the aim is to encode the semantics of the
summation into the XML document. Do this by modifying the erf_loop functions to write
content MathML to the same file as the HTML is being written to. Content MathML is an
XML standard for expressing
the meaning of a mathemati-
cal expression - and Firefox
is capable of parsing MathML
and producing human read-
able output.

A short guide to MathML is
provided over the page. A
good starting point is to write
a small standalone Fortran
program to write some of the
MathML you will need to form
the full expression. For ex-
ample 2n+1 should be en-
coded as shown on the right.

I’m not going to write very much more in the way of explicit instructions for this exercise -
the information below and over the page should help get you started and you should feel
free to ask one of us if you are having trouble.

A short guide to content MathML
Perhaps the best way to explain how content MathML works is by starting with an ex-
ample of the encoding for (a+b). The MathML to express this is

<apply>
 <plus/>
 <ci> a </ci>
 <ci> b </ci>
</apply>

We use reverse polish notation and embed operations within <apply> elements. The
fragment says “apply the addition operator (plus) to the variables (ci) a and b”. Expres-
sions can be embedded within other expressions - so x2n+1 can be expressed:

continued over...

 1-5

<math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <plus/>
 <ci>
 <apply>
 <times/>
 <cn> 2 </cn>
 <ci> n </ci>
 </apply>
 </ci>
 <cn> 1 </cn>
 </apply>
</math>

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

<apply>
 <power/>
 <ci> x </ci>
 <ci>
 <apply>
 <plus/>
 <ci>
 <apply>
 <times/>
 <cn> 2 </cn>
 <ci> n </ci>
 </apply>
 </ci>
 <cn> 1 </cn>
 </apply>
 </ci>
</apply>

Note that <ci> represents a variable and <cn> represents a number. You can find a list
of the other elements you will need to use are over the page. In order to put mathemati-
cal expressions within an XHTML document, you must embed them as shown below,
and, just before you start adding MathML elements, do:

call xml_DeclareNamespace(xf, “http://www.w3.org/1998/Math/MathML”)

You will also need to include a reference to an XML style sheet at the top of the docu-
ment. The style sheets are included in the exercise_5 directory. To do this include:

call xml_AddXMLStylesheet(xf, type="text/xsl", href="MathML_XSLT/mathml.xsl")

between opening the XML document and writing any XML tags. You should end up with
a document something like this:

<?xml-stylesheet type="text/xsl" href="MathML_XSLT/mathml.xsl"?>
<html xmlns="http://www.w3.org/1999/xhtml”>
 <head>
 <title>MathML in an HTML document</title>
 </head>
 <body>
 <p> Expressing (a+b) is easy:</p>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <plus/>
 <ci> a </ci>
 <ci> b </ci>
 </apply>
 </math>
 </body>
</html>

continued over...

 1-6

The mathML elements you will need to use are:

<math>: This must be the root element of any MathML fragment.

<root>: the nth root of a is is given by:
<apply>
 <root/>
 <degree><ci type='integer'> n </ci></degree>
 <ci> a </ci>
</apply>
<power>: The power element is a generic exponentiation operator. That is, when ap-
plied to arguments a and b, it returns the value of ab.
<apply>
 <power/>
 <ci> a </ci>
 <ci> b </ci>
</apply>
If this were evaluated at a= 5 and b=3 it would yield 125.

<factorial>: n! would be represented by:
<apply>
 <factorial/>
 <ci> n </ci>
</apply>
If this were evaluated at n = 5 it would evaluate to 120.

<minus>: This can be used as a unary arithmetic operator (e.g. to represent “-x”) or a
binary arithmetic operator (e.g. “x-y”). These examples would be:
<apply>
 <minus/>
 <ci> x </ci>
</apply>
and:
<apply>
 <minus/>
 <ci> x </ci>
 <ci> y </ci>
</apply>
respectively.

<pi/>: represents π.

A much longer list of operators can be found in the MathML specification at:
http://www.w3.org/TR/2003/REC-MathML2-20031021/chapter4.html

 1-7

http://www.w3.org/TR/2003/REC-MathML2-20031021/chapter4.html
http://www.w3.org/TR/2003/REC-MathML2-20031021/chapter4.html

