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Supplementary Figure 1: SKS splitting measurements at stations MISE, Mieso, Oromia,
Ethiopia (J.O.S. Hammond, pers. comm., 2010) and NEW, Newport, Washington, USA (Liu,
2009). Shown are measurements for backazimuths 0–360◦ (left panels), and backazimuth
modulo 90◦ (right panels). Errorbars show 2σ uncertainties. Both stations show consistent
splitting parameters across a range of backazimuths, with no apparent 90◦ periodicity.
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Supplementary Figure 2: Stations used in this study, with the SKS splitting parameters
used as receiver corrections shown by red bars. Length is proportional to δt as shown by the
legend, and φ is indicated by orientation. Left: American stations from Liu (2009), apart
from: AAM (Fouch et al., 2000); DRLN (Barruol et al., 1997); SCHQ (Niu and Perez, 2004)
Right: Inset map shows location of larger-scale figure of Ethiopian stations. Stations from
J.O.S. Hammond (pers. comm., 2010), except FURI (Ayele et al., 2004). Station DRV (Base
Dumont Durville, Terre-Adelie, Antarctica) is not shown: φSKS = 88◦, δt = 1.2 s. (Barruol
and Hoffmann, 1999)
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Supplementary Figure 3: Difference between true and recovered splitting parameters
and measured initial source polarisations for synthetic shear waves with an imposed case
of two-layer splitting and a range of trial values as corrections for the second layer. The
coloured curves—where colour shows the trial receiver correction delay time, δttrial

r —are
the difference between recovered and true splitting parameters for the source, ∆(φ′′) and
∆(δt), for a range of trial receiver fast orientations, φtrial

r . The true receiver parameters are
φtrue

r = 0◦ (shown by the black square, lower left in the figures) and δttrue
r = 1.0 s (shown by

the black line). True source parameters are φ′′true
s = 20◦, δttrue

s = 1.0 s. See main text for
further information. 3
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Supplementary Figure 4: As for Supplementary Figure 3, but for a case where φ′′true
s =

45◦, δttrue
s = 1.0 s.
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Supplementary Figure 5: Variation in splitting parameters with distance from nearest
ridge segment for events classified as on transforms. Upper diagram shows the absolute
difference between the source fast orientation, φ′′, and the strike of the transform. Dark
circles show EHB relocations; light circles represent ISC locations. Error bars show published
uncertainty in earthquake locations.
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Supplementary Figure 6: Orientations of olivine a- and b-axes, and b-planes, compatible
with observations at the Doldrums Fracture Zone, Mid-Atlantic Ridge. As for Figure 7 of
main text, except shown are orientations which predict splitting within twice the errors of the
shear wave splitting measurements quoted in the main text. The a-axes still predominately
trend along an azimuth of ∼310◦, dipping about 28◦. FZ strike and TTI plane not shown.
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