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Basic Theory



* Causes In Rocks

Hydrated Amphiboles

& Clay Minerals
Electronic

Metal Oxides & Sulphides,

& Graphite
Electronic

Natural Brines
lonic

+ve ions on mineral
surfaces
lonic

lons Iin melt
lonic




* Fundamentals of Measurement

Electrical properties are incredibly sensitive to
changes in the rock microstructure

Therefore, ideally suited as a probe
In-phase and out-of-phase components
Vary with frequency (Impedance Spectroscopy)

Can vary with AC amplitude (AC Voltammetry)



* Related Measured Variables

Measured

In-phase impedance, Z’

Out of phase impedance, Z”
In-phase admittance, Y’

Out of phase admittance, Y”
Scaled real permittivity, e’
Scaled imaginary permittivity, e”

Electrical properties of fluids

Specific

In-phase resistivity, p’

Out of phase resistivity, p”
In-phase conductivity, o’

Out of phase conductivity, o”
Real permittivity, &’
Imaginary permittivity, g”
Real realtive permittivity, K’
Imag. relative permittivity, K”
Phase angle, 6

Electrical properties of fluids




* Basic Equations |

Y =Y'+iY where Y

* -

: " +
o =0c'+1oc Where o

p* =p +1 ,0" where ,0*




* Basic Equations I

*

e =& +1¢ Where
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Response
Functions:

Debye

Argand Plot

P
Bode Plot

AN

log (Frequency) 1 MHz
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Response
Functions:

Cole & Cole

Argand Plot

AN

Bode Plot

log (Frequency) 1 MHz




* Rocks — Basic Constant Freqguency

Archie’s Law (Archie, 1942)

oot = o¢ 7™ hence 7= 1™

Simple mixing laws to account for only the conductivity of the
fluid saturating the pores of the rocks

Modified Archie’s Law (Glover et al., 2000)
(log (1- 2T /log (1 71 )) m

Oeff =Omat L—1¢) + 0 xf

11



Conventional: m=1.0
—— Conventional: m=1.5
—A— Conventional: m=2.0
—@— Conventional: m=2.5

Modified: m=1.0
—O— Modified: m=1.5
—/x— Modified: m=2.0
—O— Modified: m=2.5
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* Rocks — Added Constant Freqguency

Bussian (1983)

O off Zé(ﬁf + m(F —1)03)

Complex theory containing surface conduction still no
frequency dependence

Revil & Glover (1998)

a:cz{Fﬁ;(l—g)(l—& (—§)Z+4F§ﬂ,foros(§§1,
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* Fluid Flow In Rocks

There exists:

An undisturbed central
zone of laminar flow,

and

A surface boundary
layer of turbulent flow,

and

Zero flow at the rock
surface

Rock

No Flow at
Surface

Turbulent

Turbulent
Boundary Layer

No Flow at
Surface

Rock




* Electrical Conduction in Rocks

There exists:

A -ve charged
rock surface,

and

A layer of adsorbed
lons,

and

A net diffuse layer

[thickness f(salinity)]
and
Net neutral bulk fluid

Rock Surface
Negative at pH7

Adsorbed

¥ Adsorbed

y\+ve lons

Rock Surface
Negative at pH7




* Electrical Conduction in Rocks

Boundary of moveable
fluids is in diffuse layer Immobile Fluid

Flow separates —ve charges
to the right

and
+ve charges are left behind

. ¥ Immobile Fluid
this +ve > -ve

generates a potential
difference called the

STREAMING POTENTIAL Streaming
Potential




Challenges



* Electrical Properties in Geosciences

< Theory of bulk and surface conduction in saturated rocks
% Generalisation to multi-frequency space

< Improvement of interpretation and analysis of MT data

<+ Electrical precursor signals associated with earthquakes
<+ Electrical signals associated with volcanic activity

< Fluid flow mapping in the crust using remote electrical
tomography

< Improved borehole and remote tools for the oil and water
Industries

< Characterisation of sites for nuclear waste storage
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Some Progress



* MultiSalinity Experiments (CoCw)

Prepare a range of
solutions of different
salinities

Measure the conductivities
of each of the solutions

Saturate the rock with
solution 1

Measure the conductivity
of the rock

Replace with solution 2

Measure the conductivity
of the rock again, and so
on

Clean SST (Berea)

o
=

Clayey SST
(Darley Dale)

Conductivity of Rock (S/m)

o
o
S
S
o

0.0001 0.001 0.01 0.1 1 10

Conductivity of Solution (S/m)



* Confining Pressure

< Saturated rocks confined in a hysrostatic oil pressure
vessel

“ 4 electrode Pt-blacked Pt system used

< 0to 50 and 25 to 400 MPa ranges (2 vessels)
“* Frequency sweeps carried out

“* Rock containing low salinity fluids

“» Size of dispersion curve inflates as pore structure
collapses with pressure

<» Shape of dispersion curve does not change
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* The Bode Plots
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* The Argand Plot
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* Uniaxial Deformation

<+ Saturated rocks confined in a load frame

“* 4 electrode Pt-blacked Pt system used

“* No confining pressure, 0 to 1.5% strain at 0.0001/s
<+ Electrical properties measured at 1000 Hz

“* Rock containing low salinity fluids

< Shape of conductivity measurements indicate that
they mirror two sets of microcracks closing and
opening
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* Triaxial Deformation |

< Saturated rocks confined in a hydrostatic oil pressure
vessel and load frame

“ 4 electrode Pt-blacked Pt system used
< 50 MPa confining pressure, 0 to 2% strain at 0.0001/s

< Electrical properties measured at 1000 Hz and
frequency sweeps

“* Rock containing low salinity fluids
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* Triaxial Deformation |1

<+ Slize of dispersion curve changes with deformation
< Initially bigger as cracks close
<» Then smaller as new cracks form and link

< Shape is similar indicating that the dispersion
mechanism is not changing

< Single frequency measurements indicate that the
conductivity is a direction sensitive crack damage
parameter

“* This has been used to successfully reconstruct the

measured stress-strain curve .
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Universite Montpellier 11



* The New Measurement Cell

Polyolefin Perspex Pressure Perspex End
Sleeving Vessel Closure
PTFE \ \ Perspex \
End-piece \ Sample \ Spacers |
\ \ ’ | BNC Coaxial
Connectors
. Voltage , J
onnexion ~ Voltage
Fluid Inlet 1« Connexion1
e e Fluid Outlet
Current —
nnexion2 ==
Connexio [j m ~ Current
= — K ZE COHHEXIOH 1
Confining / | LL ~— Temperature
Pressure : \ Lead-through
Inlet Filter Pt100 Porous :
Paper yjltage Electrode Sensor Disc  SMA Gold-Plated

Blacked Pt Gauze Swagelock Fittings

(Drilled-out)

Current Electrode Coaxial Connectors

Blacked Pt Gauze



* The Cell Fully Assembled




‘X’ The Cell In 1ts Retaining Box

“* Non-conducting
materials

¥ > 4 0r 2 electrodes
<+ Pt-blacked Pt Gauze

+» Heat-shrink
- sleeving with
silicone

<+ 50 Q miniature
coaxial leads with
SMC connectors
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* Schematic Diagram of the Rig

Rig In temperatures
controlled enclosure

Heater, fans and special
Temperature Controller . CO ntr0| bOX

JEAN
JJ00

Measurements made
from 10 uHz to 32 MHz

Reservoi | Solartron 1260 FRA

Logging of fluid
pressures, with back
oty pressure

Pressure




* The Assembled Rig

< Entire fluid process
In temperature
controlled
environment

<2+ All measurements
logged to PC

«» Shielded, low
electrical noise
apparatus
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* Dummy Test Measurements

Current Voltage Voltage Current
Input from Sense Sense Measurement
Generator

( ]

10 uHz to 32 MHz

Noise-free
measurements

Single dispersion curve
for 501 nF element
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* New Fluid Change Experiments

Single Frequency
200 Hz

£

Changing Fluids =

from Distilled Water z

to 1 M NaCl 3

Porosity =0.12 é

0

NaCl (M) m o

0.001 1.76 =
Distilled 1.96
0.01 1.85
0.1 2.07

1 2.27




New CoCw Measurements
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* New Electro-Kinetic Measurements

Gres de Fontainebleau
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¥ New Impedance Measurements

Gres de Fontainebleau

Bode Diagram
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Spectroscopy of | .
Carrara Marble

——Flow Stopped 1.33 hrs

— Flow Stopped 4.23 hrs
Flow Stopped 19.47 hrs

—— Flow Stopped 43.52 hrs

[(e]
o

Flow causes charge separation
that takes 2 days to relax
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Crustal
Conductivity
Modelling



* Location of the Study

[

ECORS Seismic Profile

IBERIAN X
. PENINSULA( ;< MT Profile |30

Upper Thrust Sheets
Hercynian Basement of the South Pyrenean Thrust Belt




* Questions

¢ \What are the mechanisms of the conductivities in the
crust and mantle?

¢ What Is the mechanism of the high conductivities in
the slab?

¢ If the slab high conductivities are caused by partial
melting, what Is the partial melt fraction and what Is
the melt connectivity?

¢ Why is there no surface volcanism in the Pyrenees?
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Fluid Salinity &

Conductivity

Lab. Rock
Conductivities

Thermal
Properties

Gravity

Seismic
Structure

Lithology

Lab. Melt
Conductivities

MT
Conductivity

Model Structure

Predicted
Conductivitiesor

Melt Fractions

Parallel Layer

Waff/HS Upper

Bound

Random Areas

Modified
Archie’s Law

HS Lower
Bound

Perp. Layer

For

Comparison
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* Mixing Models

6 mixing Models have been used:

¢ Parallel model (arithmetic mean)
¢ Hashin-Shtrikman upper bound Well Connected

¢ Waff’s model Melt
¢ Random model (geometric mean) Moderately
& Modified Archie’s law Connected Melt

¢ Hashin-Shtrikman lower bound Badly Connected
2 Perpendicular model (harmonic mean) Melt
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All Effective Conductivity Models
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*

Melt Fraction

Hashin-
Shtrikman
Upper
Bound/Waff’s
Model

Depthikm

100 130 200 250 300

I . e

0.0 2.0 4.0 6.0 8.0 100 12.0
Partial Melt (%)




*

Melt Fraction

Hashin-
Shtrikman Lower
Bound

Depthikm

a0 100 150 200 250
Distancelkm

40 60
Partial Melt (%)



* Summary |

A two-dimensional conductivity model for the
Pyrenees has been constructed

A good match to the conductivities observed
by MT is possible

Aqgueous fluids alone can explain the
conductivity in most of the profile

Aqgueous fluids cannot explain the conductivity
of the subducting slab
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* Summary Il

Partial melting is likely to be the cause of the very
high slab conductivities

A partial melt fraction of at least 4.7% Is necessary

This Is consistent with geochemical melting models

ne melt must be well connected

ne absence of surface volcanism is partly due to its
compressive tectonic regime, and volcanism is likely
In the Pyrenees If the area becomes extensive
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