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Structure

Basics – Ignoring the difficult mathematics
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Application to the Pyrennees
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Basic Theory
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Causes in Rocks
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Fundamentals of Measurement

Electrical properties are incredibly sensitive to 
changes in the rock microstructure

Therefore, ideally suited as a probe

In-phase and out-of-phase components

Vary with frequency (Impedance Spectroscopy)

Can vary with AC amplitude (AC Voltammetry)
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Related Measured Variables

Measured Specific
In-phase impedance, Z’
Out of phase impedance, Z”
In-phase admittance, Y’
Out of phase admittance, Y”
Scaled real permittivity, e’
Scaled imaginary permittivity, e”
Length, L
Diameter, D
Permeability, k
Porosity, f
Electrical properties of fluids

In-phase resistivity, ρ’
Out of phase resistivity, ρ”
In-phase conductivity, σ’
Out of phase conductivity, σ”
Real permittivity, ε’
Imaginary permittivity, ε”
Real realtive permittivity, K’
Imag. relative permittivity, K”
Phase angle, θ
Electrical properties of fluids
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Basic Equations I
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Basic Equations II
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Response 
Functions:
Debye
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Response 
Functions: 
Cole & Cole
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Rocks – Basic Constant Frequency

Modified Archie’s Law (Glover et al., 2000)

Archie’s Law (Archie, 1942)

Simple mixing laws to account for only the conductivity of the
fluid saturating the pores of the rocks
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Archie’s 
Law
Old & 
New
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Rocks – Added Constant Frequency

Revil & Glover (1998)

Bussian (1983)

Complex theory containing surface conduction BUT still no 
frequency dependence
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Fluid Flow in Rocks

There exists:
An undisturbed central
zone of laminar flow,
and
A surface boundary 
layer of turbulent flow,
and
Zero flow at the rock 
surface
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Electrical Conduction in Rocks

There exists:
A -ve charged
rock surface,
and
A layer of +ve adsorbed
ions,
and
A net –ve diffuse layer
[thickness f(salinity)]
and
Net neutral bulk fluid
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Electrical Conduction in Rocks

Boundary of moveable
fluids is in diffuse layer
Flow separates –ve charges
to the right
and
+ve charges are left behind
this
generates a potential
difference called the 
STREAMING POTENTIAL
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Challenges
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Electrical Properties in Geosciences

Theory of bulk and surface conduction in saturated rocks
Generalisation to multi-frequency space
Improvement of interpretation and analysis of MT data
Electrical precursor signals associated with earthquakes
Electrical signals associated with volcanic activity
Fluid flow mapping in the crust using remote electrical 
tomography
Improved  borehole and remote tools for the oil and water 
industries
Characterisation of sites for nuclear waste storage
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Some Progress
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MultiSalinity Experiments (CoCw)

Prepare a range of 
solutions of different 
salinities
Measure the conductivities 
of each of the solutions
Saturate the rock with 
solution 1
Measure the conductivity 
of the rock
Replace with solution 2
Measure the conductivity 
of the rock again, and so 
on
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Confining Pressure

Saturated rocks confined in a hysrostatic oil pressure 
vessel
4 electrode Pt-blacked Pt system used
0 to 50 and 25 to 400 MPa ranges (2 vessels)
Frequency sweeps carried out
Rock containing low salinity fluids
Size of dispersion curve inflates as pore structure 
collapses with pressure
Shape of dispersion curve does not change
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The Bode Plots
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The Argand Plot
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Uniaxial Deformation

Saturated rocks confined in a load frame
4 electrode Pt-blacked Pt system used
No confining pressure, 0 to 1.5% strain at 0.0001/s
Electrical properties measured at 1000 Hz
Rock containing low salinity fluids
Shape of conductivity measurements indicate that 
they mirror two sets of microcracks closing and 
opening
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See 1 slide
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Triaxial Deformation I

Saturated rocks confined in a hydrostatic oil pressure 
vessel and load frame
4 electrode Pt-blacked Pt system used
50 MPa confining pressure, 0 to 2% strain at 0.0001/s
Electrical properties measured at 1000 Hz and 
frequency sweeps
Rock containing low salinity fluids
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Triaxial Deformation II

Size of dispersion curve changes with deformation
Initially bigger as cracks close
Then smaller as new cracks form and link
Shape is similar indicating that the dispersion 
mechanism is not changing
Single frequency measurements indicate that the 
conductivity is a direction sensitive crack damage 
parameter
This has been used to successfully reconstruct the 
measured stress-strain curve
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See 4 slides
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Developments at the
Université Montpellier II
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The New Measurement Cell
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The Cell Fully Assembled
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The Cell in its Retaining Box

Non-conducting 
materials

4 or 2 electrodes

Pt-blacked Pt Gauze

Heat-shrink 
sleeving with 
silicone

50 Ω miniature 
coaxial leads with 
SMC connectors
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Schematic Diagram of the Rig
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The Assembled Rig

Entire fluid process 
in temperature 
controlled 
environment

All measurements 
logged to PC

Shielded, low 
electrical noise 
apparatus
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Dummy Test Measurements
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New Fluid Change Experiments
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New CoCw Measurements
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New Electro-Kinetic Measurements
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New Impedance Measurements

Argand DiagramBode Diagram

Gres de Fontainebleau

No Flow
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Spectroscopy of 
Carrara Marble
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Crustal
Conductivity

Modelling



42

Location of the Study
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Questions

What are the mechanisms of the conductivities in the 
crust and mantle?
What is the mechanism of the high conductivities in 
the slab?

If the slab high conductivities are caused by partial 
melting, what is the partial melt fraction and what is 
the melt connectivity?

Why is there no surface volcanism in the Pyrenees?
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Mixing Models

6 mixing Models have been used:
Parallel model (arithmetic mean)

Hashin-Shtrikman upper bound
Waff’s model

Random model (geometric mean)

Modified Archie’s law

Hashin-Shtrikman lower bound
Perpendicular model (harmonic mean)

Well Connected
Melt

Moderately
Connected Melt

Badly Connected
Melt
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Effective
Conductivity
MT Observed 
Conductivities
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Effective
Conductivity
Hashin-
Shtrikman 
Upper 
Bound/Waff’s 
Model
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Effective
Conductivity
Hashin-
Shtrikman Lower 
Bound
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All Effective Conductivity Models
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Melt Fraction
Hashin-
Shtrikman 
Upper 
Bound/Waff’s 
Model
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Melt Fraction
Hashin-
Shtrikman Lower 
Bound
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Summary I

A two-dimensional conductivity model for the 
Pyrenees has been constructed

A good match to the conductivities observed 
by MT is possible

Aqueous fluids alone can explain the 
conductivity in most of the profile

Aqueous fluids cannot explain the conductivity 
of the subducting slab
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Summary II

Partial melting is likely to be the cause of the very 
high slab conductivities

A partial melt fraction of at least 4.7% is necessary

This is consistent with geochemical melting models

The melt must be well connected

The absence of surface volcanism is partly due to its  
compressive tectonic regime, and volcanism is likely 
in the Pyrenees if the area becomes extensive
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