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application is needed to be understood as a function of frequency
because the perturbing seismic wave has a given frequency range.
Hence, we are required to develop a theory for these processes that is MEASUREMENT CELLS INITIAL RESULTS
valid as a function of frequency. Such a model is not available currently
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1500 1450% 50 294.11 147.06 0.40 0.40 1.05 Angular Frequency (radls)
2000 2000z 50 392.15 196.08 0.40 0.39 1.02 The relative permittivity of a random pack of 0.418 mm diameter glass beads saturated with 0.1 M KCI as a
function of frequency measured using an impedance spectrometer together with the modeled response. The
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