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Chapter 1

The Two-Stream Radiation Code

1.1 Formulation of the Core Radiation Scheme

1.1.1 Overview

The purpose of the radiation code is to calculate radiative fluxes, from which heating rates
and related quantities may be determined. In this radiation scheme these fluxes are deter-
mined by summing the results of a number of quasi-monochromatic calculations, each carried
out using a two-stream approximation (in which the angular variation of the radiance field is
represented simply by an upward and a downward diffuse flux, together with a direct solar flux
in the shortwave region). The algorithm can perhaps most clearly be explained by describing
first the spectral integration in broad terms, then the treatment of the quasi-monochromatic
calculations in an atmospheric column composed of homogeneous layers, working backwards
to the original physical inputs, before passing on to a discussion of the treatment of overlap-
ping gaseous absorption and the treatment of fractional cloudiness.

Spectral data for the parametrizations used and the decomposition of each spectral region
into bands are stored in a spectral file, generated by a pre-processing package (see section 3 for
further discussion of spectral files). It is important to note that parametrizations which require
spectrally dependent data may be selected only if such data are present in the spectral file,
and therefore that parametrizations must be selected with due consideration to the spectral
data available. Once created, a spectral file may be used with any subsequent version of the
radiation code.

1.1.2 Spectral Integration

In this section F will denote any flux, whether direct, diffuse or net. The spectral region
under consideration is divided into a number of spectral bands within which all quantities
except the gaseous mass absorption coefficient are treated as independent of frequency. The
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6 Chapter 1. The Two-Stream Radiation Code

total flux is then the sum over the partial fluxes, F
(b)
j , in each of the bands:

F =
∑

j

F
(b)
j (1.1)

The flux in a band is calculated by dividing the band into a number of quasi-monochromatic
regions in each of which the gaseous absorption coefficients for the active absorbing gases
within the band have fixed values. A weight, wk, is assigned to the kth region, and the flux,
taking the appropriate values of the gaseous absorption coefficients into account, is calculated
for this region. The flux in the band is then a weighted sum of these quasi-monochromatic

fluxes, F
(qm)
k

F
(b)
j =

∑

k

wkF
(qm)
k (1.2)

The number of quasi-monochromatic calculations and the weights are determined by the
method adopted for treating overlapping gaseous absorption and the data in the spectral file.

1.1.3 The Calculation of Monochromatic Fluxes

To calculate monochromatic fluxes the atmosphere is divided into N layers which are treated
as homogeneous. The layers are numbered from 1 to N , starting at the top. The boundaries
of these layers, referred to as levels, are numbered from 0 to N , again starting at the top;
so that the ith level marks the base of the ith layer (see Fig.1.1). The layers match those
adopted elsewhere in the model, with the interior boundaries corresponding to the ρ-levels
2, . . . , N , although inverted; the first ρ-level is omitted on the physics grid. Increments to the
heating rates are applied on θ-levels. In order to minimize the execution time, it is convenient
to choose the upward flux, U , the total downward (diffuse plus direct) flux, V , and the
direct solar flux, Z , as the primary variables in the solar region (notice the non-standard
choice of the total rather than the diffuse downward flux which allows a slight reduction
of the operation count). In the infra-red it is convenient to use the upward and downward
differential fluxes (the actual upward and downward fluxes less πB ), which we here denote
as U and V to achieve a unified description valid in both spectral regions. For applications
where only heating rates or net fluxes are required, it is often convenient to work with the
net flux N = V − U . The fluxes in a column consisting of homogeneous layers are then
determined from the equations:

Ui−1 = TiUi + RiVi−1 + S+
i

Vi = TiVi−1 + RiUi + S−
i (1.3)

Zi = T0iZi−1

T and R are the diffuse transmission and reflection coefficients and T0 is the direct transmis-
sion coefficient. The subscripts on fluxes refer to levels and those on T , R , T0 and S refer
to layers. At the top of the atmosphere there is no incident diffuse flux, so the boundary
condition for solar radiation is V0 = Z0 = Φ0/χ0 where Φ0 is the solar irradiance in the band
at the top of the atmosphere and χ0 is the secant of the solar zenith angle. In the infra-red,
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Figure 1.1: Vertical Resolution of Atmosphere

the boundary condition is V0 = 0 . At the surface the appropriate boundary condition on the
shortwave fluxes is

UN = (αs − αd)ZN + αdVN

= αsZN + αD(VN − ZN ) (1.4)

where αs and αd are the surface albedos for direct and diffuse radiation. In the infra-red

UN = αdVN + ǫ∗πB∗ (1.5)

where ǫ∗ is the emissivity of the surface and B∗ is the corresponding Planckian function.

The source terms, S±, are related to the direct solar flux (scattering of the direct beam
into diffuse radiation) or to variations in the Planckian source function across the layer, as
appropriate to the spectral region. In the solar spectrum,

S+
i = c1iZi−1 and S−

i = c2iZi−1 (1.6)

where the cj depend on the properties of the layer and are considered below. In the infra-red

S+
i = c1i∆1i + c2i∆2i and S−

i = −c1i∆1i + c2i∆2i (1.7)

where ∆1 and ∆2 are related to the first and second differences of the Planck function across
the layer, and terms involving ∆2 are present only if the Planckian source function is assumed
to vary quadratically across the layer. Explicitly,

∆1i = Bi − Bi−1

∆1i = 2(Bi + Bi−1 − 2B
(m)
i ) (1.8)
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where B denotes the Planckian function integrated across the band at the appropriate level

in the atmosphere and B
(m)
i denotes the Planckian function at the middle of the ith layer. B

is given by a polynomial:

B =
n

∑

k=0

βk(θ/θR)k (1.9)

where the order of the polynomial, n, the coefficients βk and the reference temperature, θR,
are determined externally.

Note: In stand-alone radiation codes, it is usual to take the variation of the Planckian
as linear across layer. In the Unified Model, because of the way in which temperatures are
interpolated to the edges of layers and the weakness of non-radiative damping in the strato-
sphere, this led to the build up of two-grid-length waves on the timescale of about a month.
The quadratic variation was introduced to allow these to be damped in climate integrations.

1.1.4 The Calculation of Fluxes

T , T0, R and the cj are related to the optical properties of the layer. Since each layer may be
considered independently, the subscript i will be dropped in this section. The fundamental
single scattering properties of a layer are the optical depth, τ , the albedo of single scattering,
ω, and the asymmetry g . The precise way in which these determine the overall transmission
and reflection coefficients depends on the actual two-stream approximation selected (there are
several two-stream approximations: see, for example, Zdunkowski et al. [1980]). Here they
determine two quantities s and d in the first instance. Usually the two-stream equations are
expressed in terms of the diffuse fluxes, F± as

dF+

dτ
= α1F

+ − α2F
− − Q+ (1.10)

dF−

dτ
= α2F

+ − α1F
− − Q− (1.11)

where Q± are source terms: In terms of the variables used here, s = α1 +α2 and d = α1−α2.

In the Eddington approximation,

s =
3

2
(1 − ωg)

d = 2(1 − ω) (1.12)

Using the approximation given by Zdunkowski and Korb [1985], which we denote as PIFM85,

s = D − 3

2
ωg

d = D(1 − ω) (1.13)



1.1. Formulation of the Core Radiation Scheme 9

where D is the diffusivity factor, which is taken as 2 by these authors, though 1.66 is more
commonly used in the infra-red to agree with Elsasser’s value. The original version of the
approximation given by Zdunkowski et al. [1980] is

s = 2 − 3

2
ωg − 1

2
ω

d = 2(1 − ω) (1.14)

This approximation follows less naturally from the derivation, but agrees more closely with
reference results in the solar region. Using discrete ordinates,

s =
√

3(1 − ωg)

d =
√

3(1 − ω) (1.15)

Under the Hemispheric mean approximation,

s = 2(1 − ωg)

d = 2(1 − ω) (1.16)

These quantities determine the diffuse transmission and reflection coefficients:

λ =
√

sd

p = e−λτ

Γ =
s − λ

s + λ

T =
p(1 − Γ2)

1 − p2Γ2

R =
Γ(1 − p2)

1 − p2Γ2
= Γ(1 − pT ) (1.17)

In the infra-red,

c1 =
1 − T + R

sτ

c2 = − 1

sτ

[

1 + R + T − 2
1 − T − R

τd

]

(1.18)

It will be noticed that these expressions become indeterminate in the limit τ → 0 . This
indeterminacy is removed by adding a small tolerance (the square root of the precision of the
machine) to the terms sτ , dτ , 1 − T + R, and 1 + R + T . However, when τ is very small we
prefer to use the asymptotic form for the second term within square brackets in c2 viz.:

2
1 − T − R

τd
≈ 2 − τd (1.19)

To define the cj in the solar region we introduce the quantity ξ0, where

ξ0 =
3g

2χ0
(1.20)
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for all the above two-stream approximations, except the discrete ordinate approximation, for
which

ξ0 =

√
3g

χ0
(1.21)

In this spectral region we now define

f = ω
χ0

2
(1.22)

ν+ = f(s − χ0 − ξ0(d − χ0))

ν− = f(s + χ0 + ξ0(d + χ0)) (1.23)

Then,

c1 = (ν+ − R(1 + ν−)) − ν+TT0

c2 = T0(1 + ν− − Rν+) − (1 + ν−)T (1.24)

1.1.5 Rescaling of the Single Scattering Properties

The rather crude representation of the angular variation of the radiance in the two-stream
equations causes unacceptable inaccuracies in the representation of scattering. However, these
errors can be substantially reduced by the δ-rescaling transformation (Joseph et al. [1976])
which allows for the strong forward scattering exhibited by most atmospheric scatterers. A
forward scattering fraction, f , is defined, using the standard prescription f = g2 , and the
single scattering properties are rescaled using the transformation

τ → τ(1 − ωf)

ω → ω(1 − f)/(1 − ωf)

g → (g − f)/(1 − f) (1.25)

1.1.6 The Calculation of the Single Scattering Properties

The single scattering properties most easily related to the physical sources are the mass
extinction and scattering coefficients, k(e) and k(s), and the asymmetry g. When a number
of optical processes are active in a region the contributions from each of them are combined
in accordance with the formulae:

k(e) =
∑

j

k
(e)
j ,

k(s) =
∑

j

k
(s)
j ,

g =
∑

j

k
(s)
j gj/

∑

j

k
(s)
j

f =
∑

j

k
(s)
j fj/

∑

j

k
(s)
j (1.26)
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where, for each process, indexed by j, fj = g2
j . The optical depth and single scattering albedo

are then determined from the formulae:

τ = k(e)∆m

ω =
k(s)

k(e)
(1.27)

where ∆m is the column mass in the layer.

1.1.7 The Representation of Single Scattering Properties for Individual
Processes

Gaseous Absorption

If there are M active absorbing gases, j = 1, . . . , M in a band, each will enter a single quasi-
monochromatic calculation with mass extinction coefficients appropriate for the conditions
of temperature and pressure at each layer of the atmosphere. The total contribution to the
mass extinction coefficient is then

k(e,g) =
M
∑

j

K
(g)
j qjfj(p, θ) (1.28)

where K
(g)
j is a mass extinction coefficient at reference pressure and temperature, qj is the

mixing ratio of the jth gas and fj is the scaling function, which allows for variations in the
pressure, p, and the temperature, θ. The scaled extinction coefficients may be interpolated
directly from a look-up table in the spectral file which is now the preferred method. Alterna-
tively, scaling functions may be used of which two forms for f are allowed within the code:

f =

(

p + ∆

p0 + ∆

)α(

θ

θ0

)β

(1.29)

f =

(

p + ∆

p0 + ∆

)α[

1 + A

(

θ − θ0

θ0

)

+ B

(

θ − θ0

θ0

)2]

(1.30)

The second form is generally preferred as being more flexible and cheaper to compute. The
free parameters α, β, ∆, A and B are determined by fitting to gaseous transmission data and
are chosen such that if they are given values of 0 then f = 1. p0 and θ0 are the reference
pressure and temperature. ∆ represents the effects of Doppler broadening. A different scaling
function may be used for each k-term, or one value may be used across the band; the latter
is faster and originally was commonly used, but we now tend to use separate scaling for each
term since this more accurate. All these choices are determined from the data in the spectral
file.

Self-broadening of gases

If the mixing ratio of a gaseous absorber is close to unity, pressure broadening due to collisions
between molecules of the same species will become important. The pressure-broadened width
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of a line will depend on the volume mixing ratio of the gas, which is in the code termed the
gas fraction, and can be derived from the mass mixing ratios.

If dry mixing ratios are provided to the radiation code, then the gas fraction of species i
is given by

ni

ntot
=

ni

ntot, dry + nH2O
=

ni

ntot, dry

1 +
nH2O

ntot, dry

=
ζi

mair, dry

mi

1 + ζH2O
mair, dry

mH2O

, (1.31)

where ni is the number density of species i, ntot and ntot, dry are the total air and dry air
number density, respectively, ζi is the mass mixing ratio of species i, respectively, mi is the
molar weight of species i and mair, dry is the mean molar weight of dry air.

If mixing ratios include water vapour in the total density, then the gas fraction is given
by

ni

ntot
= ζi

mair, wet

mi
, (1.32)

where mair, wet is the mean molar weight of wet air. It is given by

mair, wet =
ntot, dry

ntot
mair, dry +

nH2O

ntot
mH2O =

mair, dry

1 +
(

mair, dry

mH2O
− 1

)

ζH2O

. (1.33)

Continuum Absorption

Theoretical models of gaseous absorption agree well with observations at frequencies close
to the centres of lines, but there remain some discrepancies far from the centres which are
represented by a smoothly varying continuum in radiation codes. Continua are not signifi-
cant for all gases and two continua are normally included in radiative calculations: the self
and foreign-broadened continua of water vapour. Their contribution to the mass extinction
coefficient is

k(e,c) = K
(c)
f qwffnbf + K(c)

s qwfsnbs (1.34)

where qw is the mixing ratio of water vapour, f is the scaling function and nb is the molar
density of the appropriate broadening species; the subscripts f and s stand for the foreign

and self-broadened continua respectively. The coefficients K
(c)
f and K

(c)
s are determined

externally by fitting and the coefficients are read from the spectral file. For the self-broadened
continuum, the broadening species is water vapour, and for the foreign-broadened continuum
it comprises all other species except water vapour. The same functional forms for the scaling
function that were used in the treatment of gaseous absorption are employed here. In the
Unified Model it is often convenient to combine the line data and the foreign continuum data,
making use of the fact that in practice nbf is almost exactly a function of the pressure and the
temperature. k-terms are then determined for the combined transmission: this is discussed
further in section 3.

There are a number of models for the continuum. The one used here is originally based
on the CKD model of Clough et al. [1989], which has been developed as new observations to
constrain it become available. The updating of this model is an issue in the generation of
spectral files, rather than in the radiation code itself.
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A more general continuum absorption parametrisation, which also supports collision-
induced absorption (CIA), is also available. Continuum k-terms are derived in the same
way as gaseous absorption k-terms. These are tabulated as a function temperature only in
units of absorption per mass density of each of the two continuum gases [m5/kg2]. Overlap-
ping absorption between different continua, and continua and gaseous absorption is treated
as overlapping gaseous absorption, however, a continuum absorption spectrum can also be as-
sumed to be perfectly correlated to that of a particular gas. The latter assumption is generally
more accurate for the water vapour continua than random overlap. The overlap treatment
for a particular continuum is specified in the spectral file, and defaults to that selected for
gases.

Absorption and Scattering by Aerosols

The radiation code contains provision for treating aerosols. This section is concerned only
with the description of the radiative treatment of aerosols within the code. The specification
of mixing ratios and aerosol models is described in the UM documentation.

For each species of aerosol in each spectral band the contributions to the total and scattering
extinctions are simply set proportional to the mass mixing ratio of the aerosol: the constants
of proportionality and the asymmetry are determined externally and read from the spectral
file. There is no allowance for variations in the shape of the size distribution within the model.
Hence,

k(e,a) =
∑

j

K
(e,a)
j qj ,

k(s,a) =
∑

j

K
(s,a)
j qj ,

g(a) =
∑

j

K
(s,a)
j qjgj/k(s,a) (1.35)

where the sum is taken over all the species of aerosols present and the mixing ratios are denoted
by qj . Parametrizations of the influence of humidity on the optical properties hygroscopic
aerosols are included by the use of a look-up table in the humidity. This look-up table is read
from the spectral file.

Rayleigh Scattering

Rayleigh scattering is represented by adding to the scattering and total extinctions a constant
value for each spectral band, again determined externally and read from the spectral file. The
asymmetry for Rayleigh scattering is 0.
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Absorption and Scattering by Water Droplets

The single scattering properties in a cloud clearly depend on the mass mixing ratio of water
L and of ice I, but they also depend critically on the size of cloud particles, which can vary
considerably. It is therefore important that the radiation code should include a treatment of
the effect of particle size. A full scattering calculation for the whole size distribution is not
possible, so a parametrization in terms of a radiatively appropriate size is used. For water
droplets the effective radius is always used.

The properties of water droplets, then, are determined from the mass mixing ratio of liquid
water, L, and the effective radius of the droplets, re, using an appropriate parametrization,
which may take various different forms. With the parametrization of Slingo and Schrecker
[1982],

k(e) = L(a + b/re)

k(s) = k(e)(1 − c − dre)

g = e + fre (1.36)

where the constants a, . . . , f are determined externally and vary with spectral band. An
alternative is the parametrization of Ackerman and Stephens (Ackerman and Stephens [1987])
as extended by Hu and Stamnes [1993]:

k(e) = L(a1r
b2
e + c1)

k(s) = k(e)(1 − a2r
b2
e − c2)

g = a3r
b3
e + c3 (1.37)

Again, the aj , bj and the cj are determined externally by fitting and are read from the spectral
file. Note: Whilst this parametrization is more flexible than that of Slingo and Schrecker
[1982], we have not used in practice because of the expense of calculating exponentials.

For fitting over a wide range of sizes, a parametrization with more free terms is required.
A scheme based on the use of Padé approximants has therefore been introduced

k(e) = L
p1 + p2re + p3r

2
e

1 + p4re + p5r2
e + p6r3

e

k(s) = k(e)

(

1 − p7 + p8re + p9r
2
e

1 + p10re + p11r2
e

)

g =
p12 + p13re + p14r

2
e

1 + p15re + p16r2
e

(1.38)

Section 3 should be consulted for information on the fits available in the spectral files.

Absorption and Scattering by Ice Crystals

Conceptually, the treatment of scattering by ice crystals is similar to that used for water
vapour, but there are complexities because of the irregular shape of crystals. From the point
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of view of parametrizations, it is important to be aware that a number of different measures
of crystal size are in use, and that different schemes are based on different measures. Thus, if
the prediction of crystal size in the model is altered, it is important to be sure what is used
by the radiation scheme.

The simplest scheme is to proceed by analogy with water clouds and to use a parametriza-
tion similar in form to that of Slingo and Schrecker [1982]:

k(e) = I(a + b/re)

k(s) = k(e)(1 − c − dre)

g = e + fre (1.39)

where the constants a, . . . , f are determined externally. We stress that this scheme is based
on the use of re to measure the size. Schemes of this form were used in HadAM3.

A more elaborate and better scheme is based on the modified anomalous diffraction ap-
proximation (Mitchell et al. [1996]). In this scheme, the size of crystals is specified using the
mean maximum dimension of the large mode, D̄l. D̄l is not a natural measure of size for
radiative purposes, but in this scheme, the underlying (bimodal) size distribution is charac-
terized by a single free parameter, for which D̄l is an acceptable choice, since once a particle
shape is specified there is a bijective relationship between D̄l and re. D̄l varies by over two
orders of magnitude in this scheme so a fairly elaborate fit is required. This has been done
in two ways. The original form consists of two quartic polynomials for the small and large
ranges of D̄l. We define x = log(D̄l/DT ) where DT is a transitional dimension, supplied with
the parametrization. Then,

k(e) = I exp





4
∑

j=0

a±j xj





k(s) = k(e)



1 −
4

∑

j=0

b±j xj





g =
4

∑

j=0

c±j xj (1.40)

where a±j , b±j and c±j are constants supplied with the parametrization, the sign being chosen
according as x > 0 or x < 0.

For the published comparison of the scheme with runs in CCM3 (Kristjánsson et al. [1999],
Kristjánsson et al. [2000]) a slightly different form based on tenth order polynomials in D̄l

was developed. This scheme represents the same data and, numerical differences in the fit
aside, is identical to the matched quartic scheme.

Different crystal shapes may be represented within this same methodology, but data in
the standard spectral files are based on planar polycrystals as these are the single most
representative shape available amongst those to which Mitchell’s scheme is applicable.

A number of parametrizations for the single scattering properties of ice crystals have been
suggested by various authors, based on an effective dimension, De or Dge, as the measure
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of size. These are proportional to the ratio of volume to projected area, and, for a sphere,
De is equal to the diameter. A parametrization in De based on both the SW and LW
parametrizations of Fu [1996] and Fu et al. [1998] has been developed:

k(e) = I
2

∑

j=0

aj/Dj
e

k(s) = k(e)



1 −
3

∑

j=0

bjD
j
e





g =

3
∑

j=0

cjD
j
e (1.41)

To some extent, using De obviates the need to know the crystal shape (but see Mitchell
[2002]); however, one may need to know the crystal shape to determine De.

The specification of crystal size is an important issue in these parametrizations. The
size is supplied as an input field to the radiation code. In the Unified Model it is generally
parametrized as a function of temperature only.

Baran et al. [2009] and Baran [2012] argue that ice crystal optical properties should be
linked directly to GCM prognostic variables rather than indirect diagnosed quantities such
as De. Three such parametrizations are available; the first relates the optical properties to
ice water content and temperature as described by Baran et al. [2013]. The second depends
on ice water content only as described by Baran et al. [2014]. The third is based on the
same ensemble of ice crystals used by Baran et al. [2014], but reintroduces a temperature
dependence.

The spectral file may contain data for a number of types of ice crystal, and the types used
may be selected at runtime. For a given type, the form of parametrization is determined by
the spectral file. Further discussion of types in particular files is given in section 3.

1.1.8 The Treatment of Overlapping Gaseous Absorption

If several gases absorb in a spectral band which does not cover too large a range of frequencies,
their spectral lines may be taken to overlap randomly. In representing this absorption using
k-terms it is necessary to consider the overlap of each k-term for one gas with each k-term for
every other gas active in the band. This full treatment of random overlap is available within
the code, but it is computationally expensive, and computationally faster approximations to
it are provided.

Equivalent extinction is an extension of the method of FESFT (Ritter and Geleyn [1992]) in
which the effects of minor gases are represented by a single absorption coefficient within the
band, but that coefficient is determined for the local atmospheric conditions by a subsidiary
calculation. In the infra-red region, supposing a minor gas to have k-terms Kr, r = 1, . . . , n



1.1. Formulation of the Core Radiation Scheme 17

the net flux, Nr , including just absorption by the rth k-term of the gas (and any non-cloudy
grey absorption) is calculated. The equivalent extinction is then defined as

K̄ =
∑

r

wrKrNr/
∑

r

wrNr (1.42)

where the wr are the corresponding weights. A practical point concerning the numerical
implementation of this approximation is that fluxes are calculated on levels, whereas the
extinction coefficient must be a representative value in a layer. The equivalent extinction is
therefore calculated using the mean net flux in the layer, which is taken as a simple average
of the values at the boundaries. This is described more fully in Edwards [1996].

Two further variations of this method are available: the modulus (absolute value) of the layer
incident fluxes may be used in place of the net fluxes in equation 1.42. This should lead to
increased accuracy around temperature inversions where the net flux may change sign. Where
each k-term has different scaling characteristics a correction to the method is also required so
that the scaled values are used before the meaning is done (this method also uses the modulus
of the incident fluxes to weight the k-terms in the LW).

In the solar region it is less easy to define an equivalent extinction, since the character of
downwelling radiation may be quite different from that of upwelling radiation, and the scheme
adopted is provisional. For each minor gas the direct transmission through any atmospheric
layer may be calculated and these transmissions are multiplicative, so the direct flux may be
calculated precisely and efficiently at all atmospheric levels. The calculation of diffuse fluxes
is less straightforward, but also much less critical, given the particular spectral characteristics
of the SW overlaps. It is assumed that the absorption by the minor gas falls into weak and
strong parts, so that radiation which is scattered into the diffuse beam will be effectively
denuded in parts of the band where absorption is strong. If the remaining absorption is weak
it may be treated as grey. The equivalent extinction for diffuse radiation is therefore taken
to have a uniform value

K̄ =
∑

r

wrKrZ∗r/
∑

r

wrZ∗r (1.43)

where Z∗r is the direct flux at the surface for the rth k-term. One further approximation
is necessary to fit in with the calculation of cloudy transmission and reflection coefficients:
in the calculation of source terms across a cloudy layer the direct flux is taken to vary from
its true value at the top of the layer with the effect of minor gases being represented by the
direct transmission calculated using the equivalent extinction.

1.1.9 The Treatment of Clouds

Two schemes are available for the treatment of cloud. In the original scheme, a fairly general
prescription is adopted where fluxes are solved for a single column with fraction cloud cover.
Within any atmospheric layer, i, a fractional cloud cover, Wi, may be specified. This cloud is
divided into NT types, each constituting a fraction, φj , of the total amount of cloud. Each of
these sub-clouds is made up of mixtures of various components. The rule which determines
how the components are partitioned between the types of cloud is termed a representation.



18 Chapter 1. The Two-Stream Radiation Code

For use in the Unified Model three representations are provided, depending on the treatment
of ice and water clouds. Clouds consist of four components: stratiform water and ice and
convective water and ice. Mixed-phase clouds may be represented as homogeneous, in which
case there are two types, stratiform and convective, with homogeneous mixtures of water and
ice in each; as segregated, in which case there are four types of clouds, each consisting of a
different component; or as segregated for a single cloud type in which case we have two types,
ice and liquid.

A second scheme involves the sampling of a generated field of cloudy sub-columns. The Monte
Carlo Independent Column Approximation (McICA) Pincus et al. [2003] is used to sample a
different cloud profile for each spectral integration point. Both these options are described in
more detail below.

Single Column Approach

The geometry of the clouds affects the radiative fluxes. In this code there is no allowance
for three-dimensional effects since clouds are treated as plane parallel. Geometrical consid-
erations are therefore restricted to the overlapping of clouds in the vertical. The overlap-
ping algorithm is a generalization of that described by Geleyn and Hollingsworth [1979] and
Zdunkowski et al. [1982]. For reasons of numerical efficiency we do not consider the overlap
between each individual type of cloud in a layer, but aggregate them into regions. Within
each region the fluxes are considered to be horizontally uniform and at the boundaries be-
tween layers the fluxes are transferred from one region to another in accordance with a rule
determined by the assumption regarding overlaps. There are two methods of decomposing
the layer into regions at present. All cloud may be aggregated into one region (the original
scheme), thus splitting the layer into clear and cloudy parts, or the convective and strati-
form clouds may be aggregated into separate regions, thus giving three regions in the layer
and maintaining the vertical coherence of convective cloud. (From the algorithmic point of
view, this aggregation is performed implicitly in the original scheme, but explicitly in the new
scheme).

The overlapping is represented by the coefficients used to couple fluxes at the boundaries of
layers. For the upward flux we write:

Û+
i,j =

∑

k

ui,j,kǓ
+
i,k (1.44)

where Uij denotes the upward flux in the jth region at the ith level, with the circumflex
denoting a value just above the boundary and the háček a value just below it. Similarly, for
the downward flux we write

V̂i,j =
∑

k

vi,j,kV̌i,k (1.45)

with an identical equation for Z. Let Xi,j denote the area within the ith layer covered by
the jth region and Yi,j,k denote the area on the ith level where the jth region overlies the kth.



1.1. Formulation of the Core Radiation Scheme 19

Then, generally, we have
ui,j,k = Yi,j,k/Xi+1,k (1.46)

and
vi,j,k = Yi,j,k/Xi,k (1.47)

In the case where Xi,j = 0, ui,j,k is undefined, and its value does not affect the radiative
fluxes, but it is necessary to assign a legitimate value for the execution of the subsequent
algorithm. In such cases we set ui,j,k to 1 if j = k and 0 otherwise; a similar rule is applied
to vi,j,k.

The assumption regarding the overlap determines the Yi,j,k. If random overlap is assumed

Yi,j,k = Xi,jXi+1,k (1.48)

If maximum-random overlap is assumed, similar regions are maximally overlapped, but dis-
similar ones are randomly overlapped, so we take

Yi,j,j = min(Xi,j , Xi+1,j) (1.49)

and if k 6= j

Yi,j,k =
(Xi,j − Yi,j,j)(Xi+1,k − Yi,k,k)

1.0 − ∑

k Yi,k,k
(1.50)

A third option is exponential-random overlap Hogan and Illingworth [2000]. Here random
and maximum-random overlap are combined linearly so that

Yi,j,j = α min(Xi,j , Xi+1,j) + (1 − α)Xi,jXi+1,j (1.51)

while if k 6= j, Yi,j,k is given by equation 1.50. α is called the overlap coefficient and is given
by

α = EXP

(−δp

p0

)

(1.52)

where δp is the distance between the layers and p0 is a constant called the decorrelation
length. This is set separately for stratiform and convective cloud.

The radiative effect of sub-grid scale water content variability can be included by multiplying
the water content by a constant value, known as a scaling factor, which may be set separately
for each cloud type.

Monte Carlo Independent Column Approximation

The main purpose of McICA is to allow the radiative effects of sub-grid scale cloud water
content variability to be represented. However it also has the advantage of separating the
description of cloud from the radiation scheme, which makes coding and development easier.

McICA is a efficient approximation to the full independent column approximation (ICA)
calculation Barker et al. [1999]. Each atmospheric column is represented by a field of sub-
columns. Each layer in each sub-column is either overcast or cloud-free (i.e. sub-columns
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cannot be partially cloudy) and when the sub-columns are averaged together they have the
same properties as the original atmospheric column. In a full ICA calculation the radiative
profile is calculated by performing the calculation for each sub-column and then averaging
the results together. In MCICA, a different randomly chosen sub-column is used for each
spectral integration point. Thus the resulting radiative profile is unbiased with respect to the
full calculation but includes noise.

The sub-columns required for McICA are provided by a stochastic cloud generator based on
Räisänen et al. [2004]. The water content in each layer in each sub-column is a random sample
from a gamma distribution with mean equal to the mean cloud water content and standard
deviation determined by the fractional standard deviation (standard deviation divided by the
mean), which may be set to a constant global value or parametrized from resolution and other
cloud properties (e.g. Hill et al. [2012], Boutle et al. [2013]).

Hill et al. [2011] describes the implementation of McICA in Edwards-Slingo and describes the
effect of the associated noise and methods for reducing this noise that have been applied.
McICA is currently only available when the cloud representation is segregated by phase, but
not by type (i.e. no convection).

1.1.10 Algorithmic Details

The foregoing sections describe the scientific basis of the scheme, but do not touch on questions
of computational efficiency. Here we are concerned with the principal issues of efficiency.

Overview of the algorithm

On entry into the radiation code, a number of spectrally independent calculations are carried
out, addressing such considerations as cloud overlap and the properties of moist aerosols.
The fluxes in each spectral band are then calculated in turn and the broad-band fluxes are
incremented. Within each band, the single scattering properties of radiatively active species
other than gases are calculated first, since they are uniform across the band. Gaseous scaling
functions may be calculated if they are independent of the k-term. A separate routine is
called for each option for treating overlapping gaseous absorption; these routines are focused
on generating a set of pseudo-monochromatic calculations, where the branches of the code
come together again. In each such calculation, the final single scattering properties, including
gaseous contributions are assembled and the code branches again, depending on the treatment
of cloud overlaps. At this level, the linear two-stream equations are assembled and solved.

The Solution of the two-stream equations

The two-stream equations generate a set of linear simultaneous equations which may be solved
by any standard algorithm of linear algebra. Whilst the method of solution of these equations
is not strictly part of the physical basis of the scheme, it is useful to comment on the efficiency
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of the method of solution adopted. Coding the equations for the fluxes generates a banded
matrix containing a significant proportion of zeros even along those diagonals in which every
element is not zero. It therefore turns out that the most efficient and accurate method to
solve these equations numerically is not to generate a full banded matrix and employ a stan-
dard algorithm directly, but rather to construct a set of algebraic recurrences which follow
the pattern of Gaussian elimination, but take full account of the position of zero entries in
the matrix, thus reducing the operation count to a minimum.

The first stage of this reduction is to generate a set of relations between the upward flux just
above the boundary of a layer and the downward fluxes just below it. Using the notation of
the earlier section on cloud properties we write

Ûij =
∑

k

αi+1,jkV̌ik + G+
i+1, j (1.53)

where α is a generalized albedo and G+ is independent of U and V . The boundary condition
at the surface is of this form with G+ including the solar term. It is convenient to work with
Û and V̌ , so the diacritical marks on the fluxes may now be dropped. To form the recurrence
we take the preceding equation and substitute for V , thus obtaining

Uij =
∑

k

αi+1,jk

[

∑

l

vikl(TilVi−1,l + RilUil + S−
ik)

]

+ G+
i+1,j (1.54)

We define

θijl =
∑

k

αi+1,jkvikl (1.55)

so that
∑

l

(δjl − θijlRil)Uil =
∑

l

θijlTilVi−1,k +
∑

l

θijlS
−
il G

+
i+1,j (1.56)

which is of the form
∑

l

βijlUil =
∑

l

γijlVi−1,l + H+
ij (1.57)

and by taking linear combinations of these equations as necessary we can ensure that βijl = 0
whenever l > j . We now take the equation for the upward fluxes

Ui−1,j =
∑

k

ui−1,jk(TikUik + RikVi−1,k + S+
ik) (1.58)

and observe that this is of the form

Ui−1,j =
∑

k

ζijkUik +
∑

k

αijkVi−1,k + G+
ij (1.59)

By using the previous equation but one U may be eliminated from the right to give us an
equation of the original form with i replaced by i− 1. In layers above clouds this scheme can
be simplified for efficiency.
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Back substitution proceeds easily. Suppose that at the ith level we know the downward
fluxes just above the boundary, V̂ij , then we may calculate the downward fluxes just below
the boundary using the coefficients vijk. The upward fluxes just below the boundary may be
determined from

∑

l

βijlUil =
∑

k

γijlVi−1,l + H+
ij (1.60)

The downward fluxes at the base of the layer may now be determined from the equations of
transfer, thus completing the recurrence.

Technical Note: No pivoting is done. Given that ω is perturbed away from 1 to avoid
singularity on rescaling and that elimination proceeds from the ground upwards, starting with
an albedo that is less than 1, pivoting should not be necessary.

Approximate Scattering in the Longwave Region

This scheme may be applied in both spectral regions, but in the longwave region scattering
is not so important as in the shortwave region and its effects may be treated approximately.
The transmission and reflection coefficients of the layers are calculated including the effects
of scattering, but the equations of transfer are solved using the first two stages of an iterative
scheme. Recall that the code is formulated in terms of differential fluxes in this spectral region.
Thus if we assume that the upward flux at a level in the atmosphere is Planckian at the local
temperature we may calculate the downward differential flux setting the upward differential
flux to 0 and therefore these fluxes may be calculated by transmitting them down from the
top of the atmosphere. Knowing the downward differential fluxes at each level we may then
work upwards through the atmosphere calculating the upward fluxes. This procedure includes
the effect of scattering in reducing the upward radiation from the top of clouds by reducing
the emissivity, but it does not represent the increased downward emission from the base of a
cloud through the direct reflection of radiation when it overlies a warmer surface. However,
the former effect is the main result of including scattering and for most purposes it will be
found preferable to approximate scattering in the longwave in order to reduce the execution
time of the code.

Other Fast Algorithms

LW scattering may be ignored entirely, which enables faster calculation of the single scattering
properties and the use of a faster procedure to calculate the fluxes, for if scattering is neglected,
the equations for the fluxes reduce to problems of transmission. This is not recommended
where clouds and aerosols such as dust can cause significant scattering in the LW. A hybrid
scattering method is also available which allows a different treatment of scattering for each
monochromatic calculation (i.e. per k-term). The specified methods are read from the spectral
file and so require a compatible spectral file to be used. This restricts the expensive scattering
calculations to those wavelengths where the atmosphere is optically thin and scattering is
important, resulting in a significant decrease in computation time for only a small increase in
bias.
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The Magnification Factor

The radiation arriving at a point on the Earth’s surface from the Sun has travelled along
a straight path through the atmosphere. Allowing for the curvature of the Earth, the local
zenith angle at any point in the atmosphere increases as one traces the ray back towards the
Sun. Thus, to calculate the total column absorption, the local zenith angle should be used,
or alternatively, the zenith angle at the surface point should be scaled by a magnification
factor to represent this effect. However, in a GCM one requires not only the surface flux, but
also a profile of radiative heating rates, and this extends vertically from the surface point.
Yet, as one moves up vertically, the local zenith angle does not change. Without proper
treatment of the spherical geometry, a consistent treatment of the effects of curvature is not
possible. Whilst some radiation codes do include a magnification factor, the view taken here
is that errors in local heating rates high in the atmosphere are more undesirable than errors
in surface fluxes, so the magnification factor is omitted.
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Chapter 2

The Spherical-Harmonic Radiance
Code

2.1 Fundamentals of Solving for Radiances

The monochromatic equation of transfer is used in the form

(n.∇)I(x,n) = −(k(s) + k(a))I(x,n)

+
k(s)

4π

∫

Ω
I(x,n′)P (n′,n) dω

n
′ + j(x,n)

(2.1)

The phase function can be rescaled using the standard prescription

k(s) → (1 − f)k(s), (2.2)

P (n′,n) → P (n′,n) − 4πfδ(n′ − n)

1 − f
(2.3)

i. e.

P (n′,n) − 4πδ(n′ − n) → P (n′,n) − 4πδ(n′ − n)

1 − f
. (2.4)

Since this does not alter the functional form of the equation no further reference to rescaling
wil be made here.

The phase function may be expanded in Legendre polynomials:

P (n′,n) =
∞

∑

l=0

(2l + 1)glPl(n
′.n) (2.5)

25
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We make use of the standard results

Pl(n
′.n) =

4π

2l + 1

l
∑

m=−l

Y m
l (n)Y m∗

l (n′) (2.6)

δ(n′ − n) =
∞

∑

l=0

l
∑

m=−l

Y m
l (n)Y m∗

l (n′) (2.7)

It is useful to keep the direct solar beam separate, so we write:

I(x,n) =
∞

∑

l=0

l
∑

m=−l

Ilm(x)Y m
l (n) + I⊙δ(n′ − n⊙) (2.8)

It now follows that
∑

lm

Y m
l (n)(n.∇)Ilm(x) + (n.∇)I⊙(x)δ(n′ − n⊙)

= −(k(s) + k(a))

(

I⊙(x)δ(n′ − n⊙)

+
∑

lm

Ilm(x)Y m
l (n)

)

+
∑

lm

jlm(x)Y m
l (n)

+ k(s)

∫

Ω

{

∑

lm

Ilm(x)Y m
l (n′) + I⊙(x)δ(n′ − n⊙)

}

{

∑

l′m′

gl′Y
m′∗
l′ (n′)Y m′

l′ (n)

}

dω
n
′

(2.9)

We separate the singular terms involving exposed δ-functions to get

(n.∇)I⊙(x) = −(k(s) + k(a))I⊙(x). (2.10)

which may be integrated directly.

Making the assumption that the atmosphere is plane-parallel,

(n.∇)I(x) = n0 dIlm/dz, (2.11)

where n0(= nz) is the zeroth component of n in the spherical basis (the others are n± =
∓(nx ± iny)/

√
2, so that n =

∑1
j=−1 njǫ

∗
j where ǫ±1 = ∓(ex ± iey)/

√
2). Hence, using the

orthogonality of the Y m
l ,

∑

lm

n0Y
m
l (n)

dIlm(z)

dz
= −(k(s) + k(a))

∑

lm

Ilm(z)Y m
l (n) +

∑

lm

jlmY m
l (n)

+ k(s)

{

∑

lm

Ilm(z)glY
m
l (n)

+ I⊙(z)
∑

lm

glY
m∗
l (n⊙)Y m

l (n)

}

(2.12)
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The left-hand side of this equation can be expressed as a pure function of spherical har-
monics using the recurrence

n0Y
m
l (n) = c+

lmY m
l+1(n) + c−lmY m

l−1(n) (2.13)

where

c+
lm =

√

(l + 1 − m)(l + 1 + m)

(2l + 1)(2l + 3)
(2.14)

and

(2.15)

c−lm =

√

(l − m)(l + m)

(2l − 1)(2l + 1)
(2.16)

are the Clebsch-Gordan coefficients, 〈l + 1, m|1, 0, l, m〉 and 〈l − 1, m|1, 0, l, m〉

By forming the inner product of this equation with Y m
l the individual spherical harmonics

may be separated. At the same time we introduce the optical depth, τ , and the albedo of
single-scattering, ω:

dτ = −(k(s) + k(a)) dz (2.17)

and

(2.18)

ω = k(s)/(k(s) + k(a)). (2.19)

For a Planckian source jlm(x,n) = k(a)
√

4πB(x)δl0δm0 where B(x) is isotropic. The equation
therefore becomes:

c+
l−1,m

dIl−1,m(τ)

dτ
+ c−l+1,m

dIl+1,m(τ)

dτ
=

slIlm(τ) − s0

√
4πB(τ)δl0δm0

− ωglY
m∗
l (n⊙)I⊙(τ)

(2.20)

where sl = 1 − ωgl. For conservative scattering s0 = 0, which case will require some special
treatment. To solve these equations we divide the atmosphere into N homogeneous layers
with optical thicknesses τi, i = 1, . . . , N and boundaries at optical depths ∆i, i = 0, . . . , N
in each of which the optical properties are constant: τ will be used as a local optical depth
when considering a single layer. As these equations are linear the solution is the sum of a
particular integral and a complementary function.

2.1.1 The Complementary Function

Since the equation is linear the complementary function will consist of a sum of exponentials
of the form Hlm(µ)eτ/µ for µ ∈ R. For any value of µ and a fixed value of m, a recurrence
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relation may be established for the coefficients Hlm, starting from Hmm. The expansion of
the radiance in spherical harmonics is truncated at an odd order L, so this recurrence must
terminate with HL′+1,m = 0 where L′ = L if m is even and L′ = L+1 if m is odd (the reason
for this is explained below). This imposes a constraint on the permissible values of µ and
defines an eigenvalue problem.

c−m+1,mHm+1,m = smµHmm, (2.21)

c+
l−1,mHl−1,m + c−l+1,mHl+1,m = slµHlm, m < l < L′, (2.22)

and

c+
L′−1,mHL′−1,m = sL′µHL′m (2.23)

This may be cast in a more usual form by defining Klm =
√

slHlm so that

L
∑

l=m

CqlKlm = µKlm, m 6 q 6 L′, (2.24)

where the non-zero entries in the matrix C are given by:

Cl−1,l = c+
l−1,m/

√
slsl−1 and Cl,l+1 = c−l+1,m/

√
slsl+1, (2.25)

where m 6 l 6 L′. In fact, since c+
lm = c−l+1,m the matrix C is symmetrical. As it is also

tridiagonal, the eigenvalues could be found directly using the QR-algorithm, though it is
possible to reduce the size of the problem as discussed below. Once the eigenvalues have been
determined the recurrence relation may be used to determine the Klm.

Care is needed with the recurrence. As l → ∞ c±l,m ∼ 1/2 and sl ∼ 1. Hence, the
recurrence approaches the form

Hl−1,m + Hl+1,m = 2µHlm, (2.26)

When |µ| > 1 this has growing solutions, which will be triggered by rounding errors in
numerical practice. Physically, we seek a solution which decays as l → ∞, so the recurrence
must be used in the direction of decreasing l, in which direction the desired solution grows
and will swamp the error. When |µ| < 1 recurrence in the upward or downward direction is
stable, so for algorithmic convenience downward recurrence is used consistently. (Note that
Benassi et al. [1984] use upward recurrence in this case, but it is not necessary to do so).
One further refinement is required in practice. When scattering is almost conservative, one
eigenvalue is very large and traversing the sequence in the downward direction terms increase
by a factor of about 2µ at each stage. When the order of truncation is large enough this
can lead to numerical overflows. The recurrence itself is therefore recast in the quantities
H ′

lm = σ−lHlm, where σ = 1/ max(1, 2µ−1), to separate the overflowing behaviour while not
affecting behaviour for small values of µ.

(Note: For comparison with the program we can define

Ej = c+
m−2+j,m/

√
sm−1+jsm−2+j 2 6 j 6 L + 1 − m (2.27)
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as the subdiagonal element on the jth row of the matrix. Because the optical properties
of the layer do not depend on direction we might expect that if eτ/µ is an eigensolution,
e−τ/µ should also be. This is seen to be so by observing that if µ is an eigenvalue with an
eigenvector Klm(µ), a vector for which every other element of Klm(µ) is changed in sign will
be an eigenvector for an eigenvalue −µ as Cij = 0 unless |i − j| = 1. This explains why
odd and even orders are truncated separately: if the eigenproblem is of an odd size µ = 0
will be an eigenvalue, causing numerical overflows in evaluating the exponential. Writing the
eigenvector for the eigenvalue µ as Ke + Ko, where the first term contains the even entries
and the second the odd entries, it follows that

C(Ke + Ko) = µ(Ke + Ko) (2.28)

and

C(Ke − Ko) = −µ(Ke − Ko) (2.29)

from which

CKe = µKo (2.30)

and

CKo = µKe (2.31)

so that
C2Ko = µ2Ko (2.32)

By direct calculation the (C2)ij = 0 if i − j is odd. This means that even rows and columns
can be deleted from C2 to halve the size of the eigenproblem. Indexing the rows of this matrix
with j and denoting the main diagonal elements by dj and the sub-diagonal elements by ej ,

dj = E2
2j−1 + E2

2j (2.33)

and

ej = E2j−2E2j−1 (2.34)

for 1 6 j 6 (L′ + 1 − m)/2: here E1 = 0)

The eigenvalues are of the form ±µk, k = 1, . . . (L′ + 1 − m)/2, so the complementary
function may be written as

Ilm(τ) =
∑

k

H−
lmke

−τ/µk +
∑

k

H+
lmke

−(τi−τ)/µk (2.35)

where we follow Stamnes et al. in using only negative exponentials so as to avoid overflows
when τi is large. The coefficients H±

lmk are determined by the eigenvectors, Kk of the matrix
C. In fact,

H±
lmk = u±

mks
−1/2
l (±1)(m+l)Kklm (2.36)

It is now convenient to define Vk so that Vklm = Kklm/
√

sl.

Conservative scattering poses a certain difficulty. As ω → 1, the matrix C becomes
singular in the case where m = 0. Then, C has two eigenvalues of O((1 − ω)−1/2) with
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eigenvalues K = (1,±1, 0, . . . , 0) + O((1 − ω)−1/2) and eigenvalues of O(1) with eigenvectors
K = (O((1−ω)−1/2), O((1−ω)−1/2), O(1), . . . , O(1)). When ω = 1 a solution linear in τ must
be sought. Since we may want to solve for a number of atmospheric columns simultaneously
it is desirable to avoid special pleading for singular cases, so for the present we artificially
reduce ω to avoid ill-conditioning: this seems to preform well enough in practice, but it may
be undesirable in extremely optically thick conservative layers.

2.1.2 The Particular Integral for Thermal Radiation

In the infra-red region is is most convenient to reformulate the equation of transfer in terms
of differential radiances. We write

I = I ′ + B (2.37)

so that the equation of transfer becomes

(n.∇)I ′(x,n) = −(k(s) + k(a))I ′(x,n)

+
k(s)

4π

∫

Ω
I ′(x,n′)P (n′,n) dω

n
′ − (n.∇)B(x).

(2.38)

Introducing the optical depth, τ

n0
dI ′(τ,n)

dτ
= I ′(τ,n) − ω

4π

∫

Ω
I ′(x,n′)P (n′,n) dω

n
′ − n0

dB(τ)

dτ
(2.39)

Now, n0 =
√

4π/3.Y 0
1 (n), so on expanding this in spherical harmonics,

∑

lm

n0Y
m
l (n)

dI ′lm(τ)

dτ
=

∑

lm

I ′lm(z)Y m
l (n)

− ω
∑

lm

I ′lm(z)glY
m
l (n)

−
√

4π/3δl1δm0Y
m
l (n)

dB(τ)

dτ

(2.40)

Proceeding as before,

c+
l−1,m

dIl−1,m(τ)

dτ
+ c−l+1,m

dIl+1,m(τ)

dτ
=

slIlm(τ) −
√

4π/3δl1δm0
dB(τ)

dτ
.

(2.41)

The simplest case to consider is that when B is linear in τ . The particular integral then
becomes

Ii,lm =
1

s1i

√

4π

3

∆Bi

τi
δl1δm0 (2.42)

where ∆Bi is the difference in the Planckian across the ith layer in the direction of increasing
τ .
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We also consider the case where the variation of the Planckian is quadratic across the
layer. In this case we have

Ii,10 =
1

s1i

√

4π

3

∆Bi

τi
− 2

s1i

√

4π

3

∆2Bi

τ2
i

τ (2.43)

Ii,00 = −
2c−1,0

s0is1i

√

4π

3

∆2Bi

τ2
i

(2.44)

and

Ii,20 = −
2c+

1,0

s2is1i

√

4π

3

∆2Bi

τ2
i

(2.45)

with Ii,lm = 0 otherwise.

Small Optical Depths

The solutions will clearly fail in the case when τ = 0, but even when τ is not quite 0 ill-
conditioning will arise; this could theoretically be overcome by increasing τ to some mimimum
value, but in practice such a value would be unacceptably large. Conditioning is therefore
restored by adding to the particular integral a solution of the homogeneous system which
exhibits the same singularity as τ → 0. We consider only the case of linear variations in τ for
now. Restricting ourselevs to the relevant case m = 0 the foregoing particular integral can
be written as

Il0 = q0δl1, (2.46)

where q0 is a constant. As the optical depth tends to 0, the homogeneous solution becomes

Il0 =
∑

k

{

u+
k Vkl + u−

k (−1)lVkl

}

+ O(τ/µk). (2.47)

Since C is real and symmetric its eigenvectors, Kk, are orthogonal and may be normalized.
We therefore have

∑

l

VklVk′lsl = δkk′ (2.48)

and
∑

l

VklVk′l(−1)lsl = 0 (2.49)

We immediately find that

u+
k = −q0s1Vk1 (2.50)

and

u−
k = q0s1Vk1 (2.51)

so the homogeneous solution to restore conditioning becomes

Il0 = q0s1

∑

k

VklVk1

{

(−1)le−τ/µk − e−(τi−τ)/µk

}

. (2.52)
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2.1.3 The Solar Particular Integral

Using the standard notation µ0 = − cos θ⊙ the direct solar beam in a layer may be written as

I⊙i(τ) = I⊙(∆i−1)e
−τ/µ0 (2.53)

Provided that µ0 6= µk for any eigenvalue µk a particular integral of the form Iilm(τ) =
Zilme−τ/µ0 may be sought. This gives

c+
l−1,mZi,l−1,m + c−l+1,mZi,l+1,m = −µ0sliZilm + µ0I⊙(∆i−1)ωigliY

m∗
l (n⊙). (2.54)

A truncation is imposed by setting Zi,L′+1,m = 0. Noting that ωgl = 1 − sl and that µ0 =
−(n⊙)0, it follows on using the recurrence relation that

c+
l−1,m(Zi,l−1,m + I⊙(∆i−1)Y

m∗
l−1(n⊙))

+ c−l+1,m(Zi,l+1,m + I⊙(∆i−1)Y
m∗
l+1(n⊙))

= −µ0sli(Zilm + I⊙(∆i−1)Y
m∗
l (n⊙))

(2.55)

This admits a solution

Zilm = −I⊙(∆i−1)Y
m∗
l (n⊙) + γVilm(µ0) (2.56)

with
γ = I⊙(∆i−1)Y

m∗
L′+1(n⊙)/Vi,L′+1,m(µ0) (2.57)

where V(µ0) is defined by the recurrence

c+
l−1,mVi,l−1,m + c−l+1,mVi,l+1,m = −µ0slVilm (2.58)

starting from Vimm = 1.

The issue of ill-conditioning must be addressed here. If µ0 is close to one of the eigenvalues
of the linear system ill-conditioning will arise, with a singularity in the case when equality
obtains. This can be removed by finding the eigenvalue closest to µ0 and subtracting from the
particular integral a multiple of the coressponding eigensolution which cancels the singularity
in the limit. Instead of implementing this using an IF-test, it is applied using a weighting
involving the separation of µ0 and the eigenvalue and so removes ill-conditioning at nearby
values.

2.1.4 Interior Boundary Conditions

On interior boundaries we must apply the conditions

Iilm(τi) = Ii+1,lm(0), 1 6 i 6 N, ∀l, m. (2.59)

We write the particular integral in the ith layer as Ĝilm at the top and as Ǧilm at the bottom.
Then,

0 =
∑

k

{

u−
mik(−1)l+mVlmikϑik + u+

mikVlmik + Ǧlmi

− u−
m,i+1,k(−1)l+mVlm,i+1,k − u+

m,i+1,kVlm,i+1,kϑi+1,k − Ĝlm,i+1

}

(2.60)

for l = m, . . . , L′.
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2.1.5 The Upper boundary Condition

At the top boundary of the atmosphere the radiance must be specified in downward direc-
tions. Typically, the indicent radiation will comprise only the direct solar beam, but we shall
formulate the boundary condition more generally to allow for possiblities such as the use of
differential radiances in the infra-red. The condition is then

I(n) = I(0)(n), n ∈ Ω−. (2.61)

where I(0) =
∑

lm I
(0)
lm Y m

l (n). As I(0) is specified only on Ω−, the coeffieicnts I
(0)
lm are not

uniquely defined, but they can be made so by making I(0) symmetric or antisymmetric.

In a truncated system it is not possible to impose the boundary condition for every n ∈ Ω−.
The simplest possibility is to specify that I(n) = I(0)(n) for a finite number of n, but most
authors prefer Marshak’s conditions

∫

Ω−

(I(n) − I(0)(n))Y m′∗
l′ (n) dωn = 0 (2.62)

for those Y m′

l′ with odd parity. The equation becomes trivial if m′ 6= m, so considering a fixed
value of m, this restricts us to l′ = m + 1, . . . , L′. The boundary conditions are therefore

∑

l

κll′m(Ilm − I
(0)
lm ) = 0 (2.63)

for the given l′, where,

κll′m =

∫

Ω−

Y m
l (n)Y m∗

l′ (n) dωn. (2.64)

Substituting the expression for Ilm we obtain the equation

∑

l

κll′m(I
(0)
lm − Ĝlm1) =

∑

k

{

u−
m1k

(

∑

l

κll′mVlm1k(−1)l+m

)

+ u+
m1k

(

∑

l

κll′mVlm1k

)

ϑ1k

} (2.65)

Turning to the calculation of κll′m note that
∫

Ω−

Y m
l (n)Y m′∗

l′ (n) dωn =

∫

Ω+

Y m
l (−n)Y m′∗

l′ (−n) dωn

= (−1)l+m+l′+m′

∫

Ω+

Y m
l (n)Y m′∗

l′ (n) dωn

(2.66)

A number of simplifications may now be made. If l + l′ is even, the integrand is even and will
have the same value on Ω+, so extending the integral and applying orthogonality,

κll′m = 1/2 δll′ (2.67)

if l + l′ is even.
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If l + l′ is odd, the evaluation of κll′m is not so trivial. ? give results for the case m = 0.
To derive the more general results required here, it seems easiest to follow the procedure given
in ? for Legendre polynomials and proceed from the basic differential equation. Defining

Y m
l ≡ Υm

l eimφ ≡ Ξm
l Pm

l eimφ, (2.68)

it follows that
∫

Ω+

Y m
l Y m∗

l′ dωn = 2π Ξm
l Ξm

l′

∫ 1

0
Pm

l (x)Pm
l′ (x) dx (2.69)

By definition,
d

dx

[

(1 − x2)
dPm

l

dx

]

+

[

l(l + 1) − m2

1 − x2

]

Pm
l = 0. (2.70)

Multiplying by Pm
l′ , subtracting Pm

l multiplied by the corresponding differential equation for
Pm

l′ , and integrating by parts,

(l − l′)(l + l′ + 1)Pm
l Pm

l′ =
d

dx

[

Pm
l (1 − x2)

dPm
l′

dx

]

− (1 − x2)
dPm

l

dx

dPm
l′

dx

− d

dx

[

Pm
l′ (1 − x2)

dPm
l

dx

]

+ (1 − x2)
dPm

l′

dx

dPm
l

dx
.

(2.71)

Hence,

∫ 1

0
Pm

l Pm
l′ dx =

(1 − x2)
{

Pm
l

dP m
l′

dx − Pm
l′

dP m
l

dx

}

∣

∣

∣

∣

1

0

(l − l′)(l + l′ + 1)
(2.72)

Only the lower limit gives a contribution. To evalaute this note that when x is small

Pm
l (x) ∼ (−1)m+l

2ll!

[

1 − m

2
x2 + . . .

] dl+m

dxl+m

l
∑

r=0

(

l

r

)

(−1)rx2r (2.73)

When x = 0 the only contribution arises from the term of the final series with 2r = l + m, so
l + m must be even.

∴ Pm
l (0) =

(−1)
m+l

2

2ll!

(l + m)!
(

l+m
2

)

!
(

l−m
2

)

!
. (2.74)

Similarly, the only contribution to dPm
l /dx arises from the term with 2r = l+m+1, so l+m

must be odd.

∴
dPm

l (0)

dx
=

(−1)
m+l−1

2

2ll!

(l + m + 1)!
(

l+m+1
2

)

!
(

l−m−1
2

)

!
. (2.75)

From a numerical point of view, these are easiest to evaluate using recurrences:

Pm
l (0) = − l + m − 1

l − m
Pm

l−2(0) (2.76)

with Pm
m (0) = (−1)m/2m.(2m)!/m! when l + m is even and

dPm
l (0)

dx
= − l + m

l − m − 1

dPm
l−2(0)

dx
(2.77)
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with Pm
m+1(0) = (−1)m/2m+1.(2(m + 1))!/(m + 1)! when l + m is odd. Finally, it is useful to

express these in terms of Υm
l to keep terms closer to 1:

Υm
l (0) = −

√

(2l + 1)

(2l − 3)
.
(l + m − 1)

(l + m)
.
(l − m − 1)

(l − m)
Υm

l−2(0) (2.78)

with Υm
m(0) = (−1)m/2m · 1/m! ·

√

(2m + 1)!/4π when l + m is even and

dΥm
l (0)

dx
= −

√

(2l + 1)

(2l − 3)
.

(l − m)

(l − m − 1)
.

(l + m)

(l + m − 1)

dΥm
l−2(0)

dx
(2.79)

with Υm
m+1(0) = (−1)m/2m.1/m!.

√

(2m + 3).(2m + 1)!/4π when l + m is odd.

Finally, therefore,

κll′m =

∫

Ω−

Y m
l (n)Y m′∗

l′ (n) dωn = (−1)l+l′δmm′

∫

Ω+

Υm
l (n)Υm

l′ (n) dωn

= 2π(−1)(l+l′+1) Υ
m
l (0)dΥm

l′ (0)/dx − Υm
l′ (0)dΥm

l (0)/dx

(l − l′)(l + l′ + 1)

(2.80)

(Note: For comparison with the program Υm
l (0) = 0 if dΥm

l (0)/dx 6= 0, so only one array
is required to hold both quantities. Also, only one term in the numerator of the preceeding
equation can be non-zero.)

2.2 Boundary Conditions at the Surface

To define the surface characteristics we must use a bidirectional reflectance, function γr, so
that the reflected ray in the direction n ∈ Ω+, is given by

I(n) =

∫

Ω−

γr(n,n′)I(n′)(n′. − ez) dω
n
′ (2.81)

where the geometrical factor n′.−ez accounts for the projected area of the horizontal surface
seen by the incident beam. In the case of a Lambertian surface γr is a constant and may be
related to the albedo of the surface by γr = α/π, which follows directly from the definition.
(For scattering into finite solid angles a biconical reflectance is defined as

R(n,n′) =

∫

Ωr

∫

Ωi
γr(n,n′)I(n′)(n′. − ez)(n.ez) dω

n
′dωn

∫

Ωr

∫

Ωi

1
π I(n′)(n′. − ez)(n.ez) dω

n
′dωn

(2.82)

where the factor of 1/π in the denominator represents the BRDF of a white Lambertian
surface.)

For use in a spherical harmonic procdure, the BRDF may be expanded in a double spher-
ical harmonic series:

γr(n,n′) =
∑

l,m

∑

l′,m′

Γlml′m′Y m
l (n)Y m′∗

l′ (n′) (2.83)
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where the use of complex conjugates in the second sum is for convenience. Various constraints
on the coefficients Γlml′m′ must be imposed, limiting the number of free coefficients. Firstly,
γr ∈ R so

∑

l,m

∑

l′,m′

Γlml′m′Y m
l (n)Y m′∗

l′ (n′) =
∑

l,m

∑

l′,m′

Γ∗
lml′m′Y m∗

l (n)Y m′

l′ (n′)

=
∑

l,m

∑

l′,m′

Γ∗
lml′m′(−1)mY −m

l (n)(−1)m′

Y −m′∗
l′ (n′)

=
∑

l,m

∑

l′,m′

Γ∗
l,−m,l′,−m′(−1)(m+m′)Y m

l (n)Y m′∗
l′ (n′)

(2.84)

Hence,
Γl,−m,l′,−m′ = (−1)(m+m′)Γ∗

lml′m′ . (2.85)

Helmholtz’s principal of reciprocity imposes a requirement that

γr(n,n′) = γr(n
′,n); (2.86)

hence,
∑

l,m

∑

l′,m′

Γlml′m′Y m
l (n)Y m′∗

l′ (n′) =
∑

l,m

∑

l′,m′

Γlml′m′Y m
l (n′)Y m′∗

l′ (n)

=
∑

l′,m′

∑

l,m

Γl′m′lmY m′

l′ (n′)Y m∗
l (n)

=
∑

l′,m′

∑

l,m

Γl′m′lm(−1)(m+m′)Y −m
l (n)Y −m′∗

l′ (n′)

=
∑

l′,m′

∑

l,m

Γl′,−m′,l,−m(−1)(m+m′)Y m
l (n)Y m′∗

l′ (n′)

(2.87)

whence,
Γl′,−m,l,−m′ = (−1)(m+m′)Γlml′m′ . (2.88)

In addition to these general properties we impose the specific constraints of rotational and
reflectional symmetry:

γr(R(n),R(n′)) = γr(n
′,n) (2.89)

and

γr(I(n), I(n′)) = γr(n
′,n) (2.90)

(2.91)

for any rotation R about a vertical axis and any inversion I in a vertical plane. Since

Y m
l (R(n)) = eimφRY m

l (n), (2.92)

we have,

γr(R(n),R(n′)) =
∑

l,m

∑

l′,m′

Γlml′m′Y m
l (R(n))Y m′∗

l′ (R(n′))

=
∑

l,m

∑

l′,m′

Γlml′m′eimφRY m
l (n)e−im′φRY m′∗

l′ (n)

=
∑

l,m

∑

l′,m′

Γlml′m′Y m
l (n)Y m∗

l (n′)

(2.93)
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which can be true only if

Γlml′m′ = Ψll′mδmm′ (2.94)

for suitable Ψ. Now, to impose reflectional symmetry, it suffices to consider inversion in the
plane φ = 0:

γr(I(n), I(n′)) =
∑

l,m

∑

l′,m′

Γlml′m′Y m
l (I(n))Y m′∗

l′ (I(n′))

=
∑

l,m

∑

l′,m′

Γlml′m′Y m∗
l (n)Y m′

l′ (n′)

=
∑

l,m

∑

l′,m′

Γl,−m,l′,−m′(−1)(m+m′)Y m
l (n)Y m′∗

l′ (n′)

(2.95)

from which it follows that

Γl,−m,l′,−m′ = (−1)(m+m′)Γlml′m′ . (2.96)

Together with the condition the imposed by γr ∈ R, this shows that Γlml′m′ ∈ R.

Collecting these results, we find that

Ψll′m ∈ R; (2.97)

Ψl′lm = Ψll′m (2.98)

and

Ψll′−m = Ψll′m (2.99)

Since the BRDF is defined only for n ∈ Ω+ and n′ ∈ Ω− the Ψll′m are not uniquely
defined. We can, hwoever, coplete the specification by demanding that Ψll′m = 0 if l = m or
l′ + m is odd. This is the natural choice since a Lambertian surface is then characterized by
one value of Ψ: namely that with l = l′ = m = 0.
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2.2.1 The Relation between the BRDF and the Albedo

In some instances it is useful to know the relationship between the BRDF and the albedo for
isotropic incident radiation. This may be derived as follows.

αi =
1

π

∫

Ω+

∫

Ω−

γ(n′,n)(−n′.êz)(n.êz) dωn dωn′

=
1

π

∑

ll′m

Ψll′m

∫

Ω+

∫

Ω−

Y m
l′ (n′)Y m

l (n)(−n′.êz)(n.êz) dωn′ dωn

=
1

π

∑

ll′m

Ψll′m

∫

Ω+

Y m
l (n)(n.êz) dωn.(−1)

∫

Ω−

Y m
l′ (n′)(n′.êz) dωn′

=
1

π

∑

ll′m

Ψll′m(−1)l+m

∫

Ω+

Y m
l (n)

√

4π

3
Y 0

1 (n) dωn

∫

Ω−

Y m
l′ (n′)

√

4π

3
Y 0

1 (n′) dωn′

=
4

3

∑

ll′

(−1)lΨll′κl10κl′10.

(2.100)

2.2.2 Specification of Real BRDFs

Various analytic expressions for BRDFs have been proposed. These typically represnt a
blend of physical reasoning and fitting to experimental data. An example is provided by
Roujean et al. [1992] who considers the effect of geometric irregularities on the surface which
produce shadowing effects and of radiative transfer in the medium below the surface which
is treated by solving the equation of transfer with a highly truncated phase function. The
model gives a BRDF of the form

γr(θs, θv, φ) = k0 + k1f1(θs, θv, φ) + k2f2(θs, θv, φ) (2.101)

where k0, . . . k2 are fitted constants, f1 and f2 are prescribed functions and θs and θv are the
polar angle of incident radiation and the viewing angle. f1 and f2 have the following forms:

f1(θs, θv, φ) =
1

2π
[(π − φ) cos φ + sin φ] tan θs tan θv −

1

π

(

tan θs (2.102)

+ tan θv +
√

{tan2 θs + tan2 θv − 2 tan θs tan θv cos φ}
)

.

and

f2(θs, θv, φ) =
3

4π

1

cos θs + cos θv

[(π

2
− ξ

)

cos ξ + sin ξ
]

− 1

3
(2.103)

where

cos ξ = cos θs cos θv + sin θs sin θv cos φ (2.104)

Legendre expansions for f1 and f2 can be precalculated, so this model is fairly easy to imple-
ment: Roujean et al.’s paper gives coefficients for some land surfaces. This has a convenient
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functional form consisting of a linear combination of angularly dependent functions. To sim-
plify the treatment of the surface it will be assumed that the BRDF may be expanded in the
form

γr(n,n′) =
∑

j

ρjfj(n,n′) (2.105)

where the ρj are functions of the surface type and the functions fj (not necessarily equal
to those above are known). It is then possible to precalculate the expansion of each fj in
spherical harmonics:

fj(n,n′) =
∑

ll′m

Fjll′mY m
l (n)Y m∗

l′ (n′) (2.106)

so that

Ψll′m =
∑

j

ρjFjll′m. (2.107)

2.2.3 The Optical Properties of the Ocean Surface

Perhaps frustratingly, there is apparently no directly applicable reference which provides a
BRDF of the ocean surface. To provide such an entity the radiance code itself can be used to
calculate the radiatiance in the ocean, with special upper boundary conditions to deal with
refraction at the surface. In order to implement such a capability the optical properties of
the ocean must be specified; these are greatly influenced by particulate matter – indeed, this
is the basis of ocean colour sensing – and very considerable variations occur. An extremely
useful review of this field is provided by Mobley [1994]: a very brief discussion of ocean optics
for use in the present version of the code, based on this book, is now presented.

The Optical Properties of Oceanic Waters

Rayleigh scattering occurs in the oceans just as it does in the atmosphere and is described
by a phase function

Pw(θ) =
3

4π(3 + p)
(1 + p cos2 θ) (2.108)

where p is the polarization factor, which is taken as 0.835. The scattering coefficient (m−1)
has the wavelength dependence

k(s)
w (λ) = KR(λ0/λ)4.32 (2.109)

where λ0 = 550nm and KR = 0.93 for pure water and KR = 1.21 for sea water. The
dependence on wavelength is steeper than λ−4 because of the effect of dissolved ions on the
refractive index. (Note: the values given in Table 3.8 of Mobley [1994] do not exactly follow
this realationship, which is presumably only applicable locally in frequency space).

Scattering by particulate matter is much more important than Rayleigh scattering in
almost all waters. Petzold [1972] has investigated the phase function in various waters: to
some extent, particulate scattering can be represented by a Henyey-Greenstein phase function
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with an asymmetry factor of 0.924, though this does not capture the full forward peak. The
scattering coefficient (m−1) of particulates is often related to the concentration of chlorophyll,
C (mgm−3) using the fitted formula:

k
(s)
P =

(

550

λ[nm]

)

0.3C0.62 (2.110)

In the UM oceanic waters are assumed to be of type IB in Jerlov’s classification for radiative
purposes; it would seem sensible to assume the same here and thus to take C ≈ 0.1 mgm−3.

Absorption by oceanic waters is complicated by the presence of various dissolved organic
compounds which can give the water a yellow tinge and are therefore often referred to as
yellow matter. By making the questionable assumption the concentration of yellow matter
is correlated with that of phytoplankton Prieur and Sathyendranath [1981] produced an ex-
pression for the absorption coefficient (m−1) of oceanic water that was simplified by Morel
[1991] to give

k(a) =
(

k(a)
w (λ) + 0.66a∗

′

c (λ)C0.65
)

[1 + 0.2 exp(−0.014(λ[nm] − 440))] . (2.111)

Here, k
(a)
w is the absorption coefficient of pure water and a∗

′

c is the dimensionless absorption
coefficient of chlorophyll.

Conditions at the Oceanic Surface

A discussion of conditions at the oceanic surface is presented by Mobley [1994] who discusses
level surfaces and also explains how waves can be treated. The influence of waves on the BRDF
is not negligible, but we do not currently include a representation of waves in the specification
of the albedo in the UM and inclusion of such effects is by no means simple. Moreover,
most current published work on reflection from the ocean surface (Morel and Gentili [1993],
Morel et al. [1995] and Yang and Gordon [1997]) does not include such effects.

Transfer across the surface into the ocean is governed by Snell’s Law:

sin θi = n sin θt (2.112)

where n is the real part of the refractive index and is quite close to 1.34 for oceanic waters at
frequencies of interest. For unpolarized light Fresnel’s formulae may be combined to give an
overall reflection coefficient:

raw =
1

2

{

[

sin(θi − θt)

sin(θi + θt)

]2

+

[

tan(θi − θt)

tan(θi + θt)

]2
}

. (2.113)

The radiance of the transmitted ray is then obtained from the fundamental theorem of ra-
diometry as

It = n2(1 − r)Ii. (2.114)

For rays travelling upward in the ocean similar considerations apply, but with n replaced by
1/n. Principally, however, we are concerned with the reflection coefficient in the water rwa:



2.2. Boundary Conditions at the Surface 41

for glancing incidence total internal reflection occurs and rwa = 1, but generally it is given
by Fresnal’s formula. The appropriate boundary condition is

I(n) = rwaI(nr) + (1 − raw)n2Ia(na), n ∈ Ω−. (2.115)

where nr is the direction which is reflected to n in the water and na is the direction in the
air which is refrected to n. For the purposes of determining a BRDF, we need consider only

Ia(n) = δ(n − n0). (2.116)

The effect of reflection is to cahnge the polar angle θ to π − θ, so since

I =
∑

lm

IlmY m
l (n), (2.117)

we have

I(nr) =
∑

lm

IlmY m
l (nr) =

∑

lm

Ilm(−1)l+mY m
l (n) (2.118)

Fresnel’s coefficient rwa is axially symmetric so it may be written as

rwa =
∑

λ

ρλY 0
λ (n). (2.119)

Since the boundary condition applies only on Ω−, we must apply Marshak’s procedure and
form the inner product with Y M

L for those spherical harmonics with odd parity. This leads
to the condition

∑

l

κLlMIlM =
∑

lλ

rλIlMCLM
lMλ0 + [1 − raw(n0)] n

2Y M∗
L (n′

0). (2.120)

where n′
0 is the direction into which n is refracted on entering the ocean and CLM

lMλ0 is the
Clebsch-Gordan coefficient. Note here the general expression for the Clebsch-Gordan coeffi-
cient (Brink and Satchler [1968])

Ccγ
aαbβ = δ(α + β, γ)∆(a, b, c)

× [(2c + 1)(a + α)!(a − α)!(b + β)!(b − β)!(c + γ)!(c − γ)!]1/2

×
∑

ν

(−1)ν
[

(a − α − ν)!(c − b + α + ν)!(b + β − ν)!

(c − a − β + ν)!ν!(a + b − c − ν)!
]−1

(2.121)

where the sum is taken over values of ν which lead to non-negative factorials and

∆(a, b, c) =

[

(a + b − c)!(b + c − a)!(c + a − b)!

(a + b + c + 1)!

]1/2

(2.122)
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2.2.4 Implementation of BRDFs

Including the source term of the surface the condition to be applied is

I(n) =

∫

Ω−

γr(n,n′)(I(n′) + I⊙δ(n′ − n⊙) − B∗)(n
′.−ez) dω

n
′ + B∗ (2.123)

for n ∈ Ω+. Here, B∗ is the isotropic Planckian radiance that is emitted by a blackbody at
the surface temperature. The form of the surface emission term is a direct consequence of
Kirchoff’s law.

Expanding this equation in spherical harmonics,

∑

lm

IlmY m
l (n) =

∫

Ω−

∑

lm

∑

l′m′

Γlml′m′Y m
l (n)Y m′∗

l′ (n′)(n′.−ez)



I⊙δ(n′ − n⊙) +
∑

λµ

IλµY µ
λ (n′) − B∗



 dω
n
′ + B∗

(2.124)

As this covers only the upper hemisphere Marshak’s procedure should be applied, so inner
products with

∫

Ω+
Y M∗

L . . . dωn are formed. It is easiest to consider each term separately, so
noting the symmetries of κll′m as defined above,

∫

Ω+

Y M∗
L (n)

∑

lm

IlmY m
l (n) dωn =

∑

l

IlM (−1)L+lκLlM (2.125)

For the solar term,
∫

Ω+

Y M∗
L (n)

∫

Ω−

∑

lm

∑

l′m′

Γlml′m′Y m
l (n)Y m′∗

l′ (n′)(−n′.ez) I⊙δ(n′ − n⊙) dω
n
′ dωn

= I⊙(−n⊙.ez)
∑

lm

∑

l′m′

Γlml′m′Y m′∗
l′ (n⊙)

∫

Ω+

Y M∗
L (n)Y m

l (n) dωn

= I⊙µ⊙

∑

l

∑

l′

Y m′∗
l′ (n⊙)Ψll′M (−1)L+lκLlM .

(2.126)

For reflected diffuse radiation
∫

Ω+

Y M∗

L (n)

∫

Ω−

∑

lm

∑

l′m′

Γlml′m′Y m
l (n)Y m′

∗

l′ (n′)(−n′.ez)
∑

λµ

IλµY µ
λ (n′) dωn

′ dωn

=
∑

lm

∑

l′m′

∑

λµ

Γlml′m′Iλµ.

∫

Ω+

Y M∗

L (n)Y m
l (n) dωn

.

∫

Ω−

(−n′.ez)Y
m′

∗

l′ (n′)Y µ
λ (n′) dωn

′

=
∑

l

∑

l′

∑

λ

Ψll′MIλM (−1)L+lκLlM

.

∫

Ω−

Y M
λ (n′)(−1)

[

c+
l′MY M∗

l′+1(n
′) + c−l′MY M∗

l′−1(n
′)

]

dωn
′

=
∑

λ

IλM

∑

l

∑

l′

Ψll′M (−1)L+l+1κLlM

[

c+
l′Mκl′+1,λ,M + c−l′Mκl′−1,λ,M

]

.

(2.127)
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For the Planckian term coupled to the BRDF,

∫

Ω+

Y M∗

L (n)

∫

Ω−

∑

lm

∑

l′m′

Γlml′m′Y m
l (n)Y m′

∗

l′ (n′)(−n′.ez)B∗ dωn
′ dωn

= B∗

∑

lm

∑

l′m′

Γlml′m′ .

∫

Ω+

Y M∗

L (n)Y m
l (n) dωn.

√

4π

3

∫

Ω−

−Y 0
1 (n′)Y m′

∗

l′ (n′) dωn
′

=

√

4π

3
B∗

∑

l

∑

l′

Ψll′M (−1)L+l+1κLlMκl′10δM0.

(2.128)

Finally, the black-body term gives

∫

Ω+

Y M∗
L (n)B∗ dωn =

√
4πB∗κL00δ0M (−1)L. (2.129)

Now note that c−l,m = c+
l−1,m, that Ψll′m =

∑

j ρjFjll′m, and that each term contains a factor

of (−1)L, which may be cancelled, so collecting terms,

∑

λ

IλM

{

(−1)λκLλM +
∑

j

ρj

∑

l

∑

l′

(−1)lFjll′MκLlM

.
[

c+
l′,Mκl′+1,λ,M + c+

l′−1,Mκl′−1,λ,M

]

}

= I⊙µ⊙

∑

j

ρj

∑

l′

Y M∗

L (n⊙)

[

∑

l

(−1)lκLlMFjll′M

]

= B∗δ0M





√
4πκL00 +

√

4π

3

∑

j

ρj

∑

l′

κl′10

∑

l

(−1)lκLlMFjll′M



 .

(2.130)

We define,

ΞjLl′M =
∑

l

(−1)lκLlMFjll′M (2.131)

ΦjLλM =
∑

l′

ΞjLl′M

[

c+
l′,Mκl′+1,λ,M + c+

l′−1,Mκl′−1,λ,M

]

(2.132)

and

(2.133)

ΛjL =

√

4π

3

∑

l′

κl′10ΞjLl′0. (2.134)
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Hence,

∑

l

IlM







(−1)lκLlM +
∑

j

ρjΦjLlM







= I⊙µ⊙

∑

j

ρj

∑

l′

Y M∗
l′ (n⊙)ΞjLl′M

+ B∗δ0M







√
4πκL00 +

∑

j

ρjΛjL







(2.135)

When multiple calculations are performed within the same band (so that the constants ρj

remain fixed) it is useful to simplify a little further by writing the equation as

∑

l

IlMM
(1)
LlM = I⊙M

(2)
LM + B∗δ0MM

(3)
L (2.136)

where M (1,2,3) are defined by the obvious identifications.

Now, the components of the spherical harmonics at the bottom of the lowest layer will be
given by

INlm(τN ) =
∑

k

{

u−
mNk(−1)l+mVlmNkϑNk + u+

mNkVlmNk

}

+ ǦlmN (2.137)

Substituting into the boundary condition and replacing M by m and L by l′ to match the
normal notation used at the top boundary,

∑

k

u−

mNk

[

ϑNk

∑

l

M
(1)
l′lm(−1)(l+m)VlmNk

]

+ u+
mNk

[

∑

l

M
(1)
l′lmVlmNk

]

= I⊙M
(2)
l′m + B∗δ0mM

(3)
l′ −

∑

l

M
(1)
l′lmǦlmN

(2.138)

2.3 Numerical Implementation

In principle, the coefficients Ilm must be calculated for the range 0 ≤ l ≤ L and −l ≤ m ≤ l;
moreover, these coefficients are complex. In practice, the storage required can be reduced by
making use of the various symmetries of the coefficients.

First note that I ∈ R, so that I = I∗ and
∑

IlmY m
l =

∑

I∗lmY m∗
l =

∑

I∗lm(−1)mY −m
l =

∑

I∗l,−m(−1)−mY m
l (2.139)

whence
Il,−m = (−1)mI∗lm, (2.140)

so coefficients with m < 0 may be found by symmetry.

The complex nature of Y m
l appears only through the factor eimφ, so we may define Y m

l =
Υm

l eimφ where Υm
l ∈ R. With the restrictions imposed on the BRDF above which forbid the
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coupling of harmonics with different azimuthal orders, the complex nature of Ilm appears only
through a factor e−imφ⊙ , so we write Ilm = Clme−imφ⊙ (in the case of IR radiation where the
radiance is azimuthally symmetric the value of φ⊙ is immaterial). Hence, if m > 0

IlmY m
l + Il,−mY −m

l = Clme−imφ⊙Υm
l eimφ

+ (−1)mClmeimφ⊙Υm
l (−1)me−imφ

= 2ClmΥm
l cos m(φ − φ⊙)

(2.141)

2.4 Increasing the Speed of Computation

So far, we have described the method of calculating the amplitudes of the spherical harmonics.
This is perfectly adequate to calculate fluxes, but it converges very slowly when calculating
radiances. The source function technique, due originally to Kourganoff (1955), can be used
to circumvent this problem. In this technique, the radiance is calculated by integrating along
a ray, using the direct solution by spherical harmonics to represent the scattered radiation
(the term in the equation of transfer involving an integral over the phase function): this can
be looked upon as a kind of iterated solution of the problem. This technique has many points
in common with a technique for reducing the number of harmonics required to obtain a given
accuracy, as described next.

When the equation of transfer is solved using spherical harmonics, a high order of trun-
cation may be required to represent the radiance field. These higher orders are principally
required to represent singly scattered radiation; but singly scattered radiances can be calcu-
lated more simply than the multiply scattered radiances, so it is sensible to examine ways of
separating the singly scattered component of the radiance so that a rather lower order of trun-
cation can be used to calculate the multiply scattered radiances. Nakajima and Tanaka [1988]
have considered various approximations of this form, particularly for the case of optically thin
layers. They eventually derived a method they refer to as IMS, but this is insufficiently gen-
eral for optically thick layers because it exhibits an instability, and is therefore inappropriate
for use in a code that will be used in a GCM. We will therefore adopt the method which
they refer to as TMS, which performs almost as well as IMS except very close to the forward
direction. They present only a very sketchy derivation of the method and no justification,
so it is useful to derive it more fulsomely here. The idea is to retain the full phase function
in the calculation of single scattering, but to use the rescaled truncated phase function for
multiple scattering. In this section we shall use the caret to denote rescaled quantities. Under
rescaling the phase function is rewritten as

P (n′,n) = 4πfδ(n′ − n) + (1 − f)P̂ (n′,n) (2.142)

Splitting the diffuse and direct beams as usual we obtain the following equation for the diffuse
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radiance, I,

(n.∇)I(n) = −(k(s) + k(a))I(n)

+
k(s)

4π

∫

Ω
I(n′)

(

4πfδ(n′ − n) + (1 − f)P̂ (n′,n)
)

dω
n
′

+
k(s)

4π

∫

Ω
I⊙(n′)P (n′,n) dω

n
′

(2.143)

Notice here that I⊙ refers to the true solar beam, calculated without rescaling, since we have
not used a rescaled phase function for single scattering. Writing this equation in terms of the
rescaled optical propeties we have

µ
dI

dτ̂
= I − ω̂

4π

∫

Ω
IP̂ dω′

n
− ω̂

4π(1 − f)

∫

Ω
I⊙P dω′

n
(2.144)

To obtain the exact approximation of Nakajima and Tanaka [1988] we replaceI in the first
integral with ÎT , the truncated diffuse radiance and P̂ with P̂T , the truncated rescaled phase
function.

This sits very easily with the method of solution for radiances originally suggested by ?, in
which we regard the spherical harmonic solution as defining the source function for the diffuse
radiation in the above equation, but it is actually more convenient to proceed very slightly
differently from Nakajima and Tanaka [1988]. To be precise, we first solve the truncated
rescaled equation using spherical harmonics to get a rescaled truncated diffuse radiance, ÎT ,
and a rescaled direct radiance, Î⊙. Our first approximation to the true (unrescaled) diffuse
radiance is thus

Ĩ = ÎT + Î⊙ − I⊙, (2.145)

allowing for the change in the definition of the direct beam when switching from rescaled to
unrescaled radiances. Now, it is necessary to be very careful in the treatment of the direct
terms: errors may arise either in the form of δ-functions in the solar direction, or as diffused
errors at other angles. These fast methods are not accurate close to the solar direction, so in
practice it turns out to be better to drop the contribution to the diffuse radiance from the
change in the definition of the solar beam, which concentrates errors around the solar peak,
rather than concentrating some there and diffusing others, so we take just ÎT as the diffuse
radiance.

Substituting this into the second term of the above equation we get

µ
dI

dτ̂
= I − ω̂

4π

∫

Ω
ÎT P̂ dω′

n
− ω̂

4π

∫

Ω
I⊙

P

(1 − f)
dω′

n
(2.146)

ÎT involves only harmonics up to the order of P̂T , so we may use the truncated phase function
when multiplying it, hence

µ
dI

dτ̂
= I − ω̂

4π

∫

Ω
ÎT P̂T dω′

n
− ω̂

4π(1 − f)

∫

Ω
I⊙P dω′

n
(2.147)

From the algorithmic point of view, we initially solve the rescaled problem and finally perform
a separate calculation of the unrescaled solar contribution.
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To develop the mathematics for this carefully, we introduce the sets of spherical orders F
and T , for the full set of spherical orders used in the final expression and for the truncated
set used in the direct solution, which is written

ÎT (n, τ) =
∑

(l,m)∈T

Ql,m(τ)Y m
l (n) (2.148)

Moreover,

P̂T (n′,n) = 4π
∑

(l,m)∈T

ĝlY
m∗
l (n′)Y m

l (n) (2.149)

and

P̂ (n′,n) = 4π
∑

(l,m)∈F

ĝlY
m∗
l (n′)Y m

l (n) (2.150)

(2.151)

Substituting these expressions into the equation of transfer we obtain

µ
dI

dτ̂
= I − ω̂(τ̂)

∑

T

ĝl(τ̂)Qlm(τ̂)Y m
l (n)

− ω̂(τ̂)Î⊙(τ̂)
∑

F

ĝl(τ̂)Y m∗
l (n⊙)Y m

l (n)
(2.152)

Integrating with respect to optical depth between ∆̂− and ∆̂+, we obtain

I(n, ∆̂+) = I(n, ∆̂−)e(∆̂+/µ−∆̂−/µ)

− 1

µ
e∆̂+/µ

∑

(l,m)∈T

Y m
l (n)

∫ ∆̂+

∆̂−

ω̂(τ̂)ĝl(τ̂)Ql,m(τ̂)e−τ̂ /µ dτ̂

− 1

µ
e∆̂+/µ

∑

(l,m)∈F

Y m∗
l (n⊙)Y m

l (n)

∫ ∆̂+

∆̂−

ω̂(τ̂)ĝl(τ̂)Î⊙(τ̂)e−τ̂ /µ dτ̂

(2.153)

In the code the integrals on the right will be evaluated separately for each layer, in which the
optical propeties will be taken as fixed, so if I denotes the set of those layers that contain
regions of optical depth between ∆̂− and ∆̂+ we may write

I(n, ∆̂+) = I(n, ∆̂−)e(∆̂+/µ−∆̂−/µ)

+
∑

i∈I

∑

(l,m)∈T

ω̂iĝliY
m
l (n)Ailm +

∑

i∈I

∑

l∈FL

(2l + 1)

4π
ω̂iĝliPl(n⊙.n)Bi

(2.154)

where Ailm and Bi denote the contributions from the individual layers with the obvious
identifiation. In the case of Bi we have used standard results to reexpress the spherical
harmonics as Legendre polynomials. Each of these contributions is evaluated separately,
setting the limits of integration to ∆̂−

i and ∆̂+
i which will normally mark the edges of the
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layer, though not in the case of the layer containing the level where we seek the radiance may
be within it. Now,

Qilm(τ̂) = Zilme−(τ̂−∆̂i−1)/µ0

+
∑

k

[

u+
mikVikle

−(∆̂i−τ̂)/µmik

+u−
mikVikl(−1)(l+m)e−(τ̂−∆̂i−1)/µmik

]

(2.155)

so the contribution to the first integral from the ith layer is

Ailm = − 1

µ
Zilme(∆̂i−1/µ0+∆̂+/µ)

∫ ∆̂+
i

∆̂−

i

e−τ̂(1/µ+1/µ0) dτ̂

− 1

µ

∑

k

u+
mikVikle

(∆̂+/µ−∆̂i/µmik)

∫ ∆̂+
i

∆̂−

i

eτ̂(−1/µ+1/µmik) dτ̂

− 1

µ
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k

u−
mikVikl(−1)(l+m)e−(∆̂+/µ+∆̂i−1/µmik)

∫ ∆̂+
i

∆̂−

i

e−τ̂(1/µ+1/µmik) dτ̂

= Zilm
µ0
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i

µ
+

∆̂i−1 − ∆̂−
i

µ0
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+
∑
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ikmVikl

µmik
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∆̂+ − ∆̂+
i

µ
+

∆̂+
i − ∆̂i

µmik
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∆̂+ − ∆̂−
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µmik
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+
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k

u−
ikm(−1)(l+m)Vikl

µmik
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∆̂+ − ∆̂+
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+
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µmik

)

− exp

(

∆̂+ − ∆̂−
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µ
+
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µmik
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Likewise, from the second term we obtain a contribution

Bi = − 1

µ
Î⊙i−1e

(∆̂i−1/µ0+∆̂+/µ)
∫ ∆̂+

i

∆̂−

i

e−τ̂(1/µ+1/µ0) dτ̂

= Î⊙i−1
µ0

µ + µ0

{

exp

(

∆̂+ − ∆̂+
i

µ
+

∆̂i−1 − ∆̂+
i

µ0

)

− exp

(

∆̂+ − ∆̂−
i

µ
+

∆̂i−1 − ∆̂−
i

µ0

)}

(2.157)

There is a problem with ill-conditioning when µ → µ0 or µ → ±µmik. Each geometrical
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factor which may produce ill-conditioning is of the form

G =
µ̃

µ̃ − µ

{

e(−sn+τ̂i/µ̃ − e−sf

}

= µ̂e−sn
eτ̂i/µ̃ − eτ̂i/µ

µ̃ − µ

(2.158)

where µ̃ stands generically for µ0 or ±µmik and sn and sf represent the slant depths from the
observing level to the nearer and farther boundaries of the layer. As µ → µ̃,

G → µ̃

µ̃ − µ
e−sn+τ̂ /µ̃

(

1 − e−τ̂(1/µ−1/µ̃)
)

→ τ̂

µ
e−sn+τ̂ /µ̃

(2.159)

Now reacall L’Hôpital’s rule that if limx→0 f(x), g(x) = 0 then

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
. (2.160)

Consequently,

lim
x→0

(f(x) + η(x)f ′(x))

(g(x) + η(x)g′(x))
= lim

x→0

f(x)

g(x)
. (2.161)

Supposing that g′(0) 6= 0, it follows that if we arrange that η(x) is small compared to g(x)
except in the neighbourhood of x = 0, we have an expression for the quotient which does not
become indeterminate as x → 0 and will be approximately accurate for all values of x. One
possible choice for η is η(x) = ǫ/(x +

√
ǫ) where ǫ is the smallest number such that 1− ǫ 6= 1

to the computer’s precision. This will introduce errors of O(
√

ǫ) when x = O(
√

ǫ). In the
present case we define

η =
ǫ

(µ̃ − µ) + sgn(µ̃ − µ)
√

ǫ
(2.162)

and put

G ≈ µ̃

(

1 − ητ
µµ̃

)

e−(sn+τ̂ /µ̃) − e−sf

µ̃ − µ + η
(2.163)

2.5 Fast Solution of the linear equations

This algorithm has not yet been coded into the radiance code, but represents a more efficient

treatment of the core of the algorithm.

We start from the expression for the amplitude of each spherical harmonic for a fixed
azimuthal order m in a layer of optical dept τ̄ in the form

Il =
N

∑

k=1

u−
k (−1)l+mVlke

−τ/µk + u+
k Vlke

−(τ̄−τ)/µk + Gl (2.164)
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where τ is the local optical depth extending from 0 at the top to τ̄ at the bottom. G is the
source function and 2N polar orders are retained, starting with l =. Introducing the reduced
index r = l + 1 − m, r = 1, . . . , 2N , the equations may be reindexed as

Ir =

N
∑

k=1

u−
k (−1)r+1Vrke

−τ/µk + u+
k Vrke

−(τ̄−τ)/µk + Gr. (2.165)

Collecting alternate terms of the eigenvector, we define

Wsk = {Vrk : r = 2s − 1, s = 1, . . . , N} (2.166)

and
Usk = {Vrk : r = 2s, s = 1, . . . , N}. (2.167)

Defining θk = e−τ̄ /µk , the amplitude at the top of the layer is

Ir =
N

∑

k=1

u−
k (−1)r+1Vrk + u+

k Vrkθk + Ĝr, (2.168)

where the hat on G denotes its evaluation at the top of the layer; while at the bottom of the
layer

Ir =
N

∑

k=1

u−
k (−1)r+1Vrkθk + u+

k Vrk + Ǧr, (2.169)

where the haček denotes a value at the bottom of the layer.

The orthogonality relations between the eigenvectors give

2N
∑

r=1

srVrkVrk′ = δkk′ (2.170)

and
2N
∑

r=1

sr(−1)r+1VrkVrk′ = 0. (2.171)

By taking the sum and the difference we deduce that

2N
∑

r odd

srVrkVrk′ = δkk′ , (2.172)

or with the obvious identifications:

N
∑

s=1

ρsWskWsk′ = δkk′ . (2.173)

Similarly, from the even terms
N

∑

s=1

σsUskUsk′ = δkk′ . (2.174)
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At the top we impose Marshak’s condition, that the inner product with harmonics of odd
parity, taken over the downward hemisphere, should vanish if there is no incident radiation:

∑

l

∫

Ω−

Y m∗
L IlmY m

l dω = 0 (2.175)

where L + m is odd. This gives

1

2
IlδLl +

∑

l

1

2
M̃LlIl = 0 (2.176)

where
1

2
M̃Ll =

∫

Ω−

Y m∗
L Y m

l dω. (2.177)

Defining Msp = M̃2s+1−m,2p−m we have

N
∑

k=1

[

u−
k (−1)Usk + u+

k Uskθk

]

+ ˆ̄
sG

+
N

∑

p=1

Msp

{

N
∑

k=1

[

u−
k (−1)Wpk + u+

k Wpkθk

]

+ Ĝ′
p

}

,

(2.178)

where Ḡ denotes even terms of G and G′ odd terms.

The equations may then be cast in a block matrix form:



















−U1 + MW1 (U1 + MW1)θ1 0 0 0 0 . . .
W1θ1 W1 −W2 −W2θ2 0 0 . . .
−U1θ1 U1 U2 −U2θ2 0 0 . . .

0 0 W2θ2 W2 −W3 −W3θ2 . . .
0 0 −U2θ2 U2 U3 −U3θ2 . . .

. . . . . . . . . . . . . . . . . .
. . .
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h3
...























(2.179)

The second and third rows refer to conditions at the bottom of the first layer and may
be simplified to eliminate elements most distant from the diagonal. After premultilpying the
second row by θ−1

1 W T
1 ρ1 and the third by U1θ1, subtraction gives









. . . . . . . . . . . . . . .

1 θ−1
1 −θ−1

1 W T
1 ρ1W2 −θ−1

1 W T
1 ρ1W2θ2 . . .

0 2U1 U2 − U1W
T
1 ρ1W2 −(U2 + U1W

T
1 ρ1W2)θ2

. . . . . . . . . . . . . . .









[

...

]
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...

θ−1
1 W T

1 ρ1h1

g1 + U1W
T
1 ρ1h1

...













(2.180)
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Premultiplying the new form of the third row by (1/2)UT
1 σ1 we obtain





. . . . . . . . . . . . . . .
0 1 1

2(UT
1 σ1U2 − W T

1 ρ1W2) −1
2(UT

1 σ1U2 + W T
1 ρ1W2)

. . . . . . . . . . . . . . .
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...

]
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...
1
2(UT

1 σ1g1 + W T
1 ρ1h1)

...









(2.181)
Similarly, by eliminating the fourth entry of the original second row we obtain





. . . . . . . . . . . . . . .
−1

2(W T
2 ρ2W1 + UT

2 σ2U1) −1
2(W T

2 ρ2W1 − UT
2 σ2U1) 1 0

. . . . . . . . . . . . . . .
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...

]
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...
−1

2(W T
2 ρ2h1 + UT

2 σ2g1)
...









(2.182)

Coding these equations in reversed order yields two rows of the form









. . . . . . . . . . . . . . .
0 1 A1 B1

D1 C1 1 0
. . . . . . . . . . . . . . .









[

...

]

=













...
x1

y1
...













(2.183)

where

A1 =
1

2
(P − Q) B1 = −1

2
(P + Q)θ2 (2.184)

C1 =
1

2
(R − S) D1 = −1

2
(R + S)θ1 (2.185)

x1 =
1

2
(UT

1 σ1g1 + W T
1 ρ1h1) y1 = −1

2
(W T

2 ρ2h1 + UT
2 σ2g1). (2.186)

where in turn

P = UT
1 σ1U2 Q = W T

1 ρ1W2 (2.187)

R = UT
2 σ2U1 S = W T

2 ρ2W1 (2.188)

(2.189)

Furthermore,
R = P−1 S = Q−1 (2.190)

From the recurrence relation for the eigenvalues it may also be shown that

P = diag(µ−1
11 , µ−1

21 , µ−1
31 , . . . , µ−1

N1)S
T diag(µ12, µ22, µ32, . . . , µN2) (2.191)

where the first suffix refers to the eigenvector and the second to the layer. Hence,

R = diag(µ−1
12 , µ−1

22 , µ−1
32 , . . . , µ−1

N2)S
−T diag(µ11, µ21, µ31, . . . , µN1) (2.192)

This is efficient computationally, since the the direct evaluation of P, . . . , S would require
about 4N3 multiplications, but using these formulae finding P and R requires 4N2 multi-
plications. Finding Q by inversion of S is about equally as expensive as direct calculation,
unless further advantage can be taken of the structure of the matrices.
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A recurrence representing Gaussian elimination can now be defined:

Zn = Cn − DnXn−1 (2.193)

Yn = (Z−1
n − An)−1 (2.194)

Xn = −YnBn (2.195)

zn = Qn

[

Z−1
n (yn − Dnzn−1) − xn

]

(2.196)

starting with the definitions

X0 = −(1 − UT
1 σ1MW1)

−1(1 + UT
1 σ1MW1)θ1 (2.197)

z0 = −(1 − UT
1 σ1MW1)

−1UT
1 σ1g0. (2.198)

After forward elimination the equations reduce to
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z0
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(2.199)

establishing a recurrence for back substitution of the form

u+
n = xn − Anu−

n+1 − Bnu+
n+1 (2.200)

u−
n = zn − Xnxn. (2.201)

Direct solution of the original block matrix using a banded solver with partial pivoting
on rows would have a operation count of the order of 18N3L, where L is the number of
layers. The dominating operation count for this scheme is 6N3L (comprising two matrix
multiplications to find S and Q and two matrix multiplications and two inversions in the
forward recurrence). Since we need keep only the matrices A, B and X at each level for
backward substitution, the memory requirement is also reduced by a factor of three.



54 Chapter 2. The Spherical-Harmonic Radiance Code



Chapter 3

The Spectral Files

3.1 Introduction and General Remarks

To cover the broad range of frequencies encountered in atmospheric radiation, discretization
in frequency or wavelength must be considered carefully. The approach adopted in all codes
for use in general circulation models (GCMs) is to divide the solar or infra-red spectral region
into a number of bands, across which all radiative quantities, except the absorption coefficients
of gases, may be considered uniform. More accurate computations can be made if more bands
are used; but this comes at increased computational expense, and the balance to be struck
between the two requirements will depend on the application. For operational use in GCMs
only a small number of bands can be used.

The Edwards-Slingo radiation scheme was developed to meet a range of varied require-
ments for radiative modelling, extending beyond the demands of the Unified Model itself. To
meet this need for flexibility, the discretization in frequency within this radiation code is not
fixed, but is set by an external file supplied by the user when the code runs: this file is known
as the spectral file. This flexibility facilitates assessment of the files used in the UM itself
against reference data in controlled experiments.

The generation of spectral files requires a detailed knowledge of radiative transfer and
judgements about efficiency for the application in question. It is therefore not envisaged that
users of the code within the Unified Model in particular will generate their own files, unless
they have this knowledge and are developing a specific new application. Instead, standard
spectral files, appropriate for use in the Unified Model are provided in a central directory,
$UMDIR/vn$VN/ctldata/spectral. When a new requirement arises, such as the need to
model the radiative effects of a new gas, users should contact the radiation group to discuss
the requirement.

The following general points should be noted.

1. A spectral file is not an ancillary file: it contains no geographical information, but refers
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to the discretization in frequency.

2. A spectral file released with a certain version of the Unified Model will normally be
compatible with future releases (but the reverse is not generally true because of the
possible addition of data to deliver new functionality). This makes upgrading to newer
releases of the Model simpler than it would otherwise be. A caveat to this point is that
at version 8.6 of the Unified Model the format of the spectral files was changed from
a namelist to a readable text file as used by the offline Edwards-Slingo radiation code
suite. Utilities are available within the offline suite to convert between namelist and
text versions of the spectral files.

3. Naming Convention

Although there is no formal requirement to adopt a particular naming convention, the
names of shortwave spectral files begin with the string sp sw and those of longwave
spectral files with the string sp lw. (Spectral files in namelist format as used with the
UM prior to version 8.6 begin with the string spec or spec3a .) When a new release of
the model is prepared, the UM team copy all existing spectral files from the old release
to the new one without change, unless advised differently by the radiation group.

As new functionality is developed, it is sometimes necessary to change spectral files,
either by adding new material or by replacing old material. If new material is added,
in such a way that the results of existing runs are unchanged at the new release, the
name of the file is not changed; but if existing data are altered, a new name is used.
An example may make this clearer. Suppose that at version 5.11 of the UM we have a
file spec3a sw orig and that for version 5.12 a new scheme is to be added to the UM
which requires the radiative modelling of volcanic ash. This would require the addition
of information to the spectral file, but the new material would not change the results of
any run which could be carried out at both versions 5.11 and 5.12: to allow for simple
upgrading, the new material would be added to the spectral files for 5.12 without any
change of name. Suppose now that for version 5.13 improvements to the modelling of
ash had been made and that the data in the spectral file needed to be changed. This
would represent a modification to an existing capability, so the old spectral file would be
copied to the new directory for 5.13 without new data to allow existing configurations
to continue, but a new spectral file with the revised data and a new name would be
introduced. If the old file were revised without a change of name it would be possible to
upgrade an existing experiment and get different results: that would be unacceptable.

4. Generation of and Additions to Spectral Files

As noted before, the generation or alteration of spectral files requires expertise in radia-
tive transfer. The responsibility for changes to the standard files lies with the radiation
group. Most users will never need to alter a spectral file, but it is possible that some
users of the portable model with expertise in radiative transfer may wish to generate
files for their own specific purposes and the next paragraph is addressed to them.

Spectral files are generated using the pre-processing suite in the off-line version of the
radiation code, which is maintained by the radiation team. It is possible to generate a
spectral file form scratch, but more usually, the requirement is to add to or modify an
existing file. Prior to version 8.6 spectral files were read into the UM as namelists. The
current UM along with the off-line code uses a more readable text format. Conversion
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from a namelist to the text format is carried out with the program nml spec of the
external suite and in the reverse direction with the program spec nml.

Data on aerosols are generated in consultation with the aerosol modelling group.

3.2 The Structure of Spectral Files

The file consists of a number of blocks of data, each referring to a different physical process.
The flag l present(i) is set to .TRUE. if a block of type i is present: not all possible blocks
are required for all calculations.

Block 0 contains the number and physical natures of gases and aerosols. There are a vast
number of gases and aerosols in the atmosphere, not all of which are relevant in all
applciations. In each spectral file a subset of all the gases is selected and indexed
1, . . . , n. This number is referred to as the indexing number and is used internally by
the radiation code. There is still a need to know the physical nature of each species, and
this is recorded by the type number. The array TYPE ABSORB holds the type numbers for
gaseous absorbers. The meaning of these numbers is set in the module gas list pcf.
Aerosols are indexed in a similar way, the type numbers for these being recorded in
rad pcf.

Block 1 contains the limits of the spectral bands used as wavelengths in metres. Note: UM
standards require the use of SI units. In a number of UM shortwave files, it will be
observed that some bands have the same limits: this indicates that they are not true
spectral bands, and that one should not consider the fluxes in individual bands alone,
but only the sum of the fluxes in the bands which does represent the true flux across
the specified region. For example, if band 1 is specified as running from 0.2–0.32 µm,
but bands 2 and 3 both have limits 0.32–0.69µm, it is meaningful to consider the flux
in band 1 as representing the true flux between 0.2 and 0.32 µm, but the flux in band
2 or band 3 should not be considered alone: all that can be said is that the sum of the
fluxes in bands 2 and 3 can meaningfully be taken as that in the region 0.32–0.69µm.

Block 2 is required only in shortwave files and contains the fraction of the solar spectrum
in each band.

Block 3 is required only in shortwave files and contains the Rayleigh scattering coefficients.

Block 4 contains the list of gaseous absorbers active in each band, listed by their indexing
numbers. Note that the first gas listed must be the primary absorber in the band
i.e. that which makes the greatest contribution to the atmospheric absorption when
considered alone.

Block 5 contains the k-fits to the gaseous transmissions.

Block 6 is required only for infra-red calculations and contains the coefficients of a polyno-
mial fit to the Planck function in each band.

Block 7 is obsolete and not present in any file used in the UM.
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Block 8 contains the list of continuum absorbers in each band. In principle, there are several
species of continuum absorber, but in practice the main continua are the self and foreign-
broadened continua of water vapour.

Block 9 contains the continuum absorption coefficients in each band.

Block 10 contains parametrizations for the single scattering properties of droplets. The file
may contain data for a number of different types of droplet. The term type is deliberately
vague to allow for flexibility: a different type may indicate a parametrization appropriate
to a different collection of droplets, say droplets in convective clouds and stratiform
clouds, a different parametrization of the same data or different spectral averaging.
Type numbers are supplied at runtime and must be selected for the appropriate spectral
file. The details are given below. Parametrizations are generated over a range of particle
sizes, so the minimum and maximum dimensions for which the parametrization is valid
are recorded as well.

Block 11 contains data on aerosols. The selection of aerosols included is very varied and is
described for each file listed below.

Block 12 contains parametrizations for the single scattering properties of ice crystals. The
file may contain data for a number of different types of droplet. As for water droplets,
the term type is deliberately vague to allow for flexibility: a different type may indicate
a parametrization appropriate to a different collection of ice crystals, say, crystals in
convective clouds and stratiform clouds, a different parametrization of the same data,
a different crystal shape, or different spectral averaging. Type numbers are supplied at
runtime and must be selected for the appropriate spectral file. The details are given
below. Parametrizations are generated over a range of particle sizes, so the minimum
and maximum dimensions for which the parametrization is valid are recorded as well.

Block 13 is only relevant in the longwave region and is obsolescent. It contains heuristic
adjustments for Doppler broadening. Eventually, these will be moved to block 5.

Block 14 specifies exclusions. In the original version of the radiation code a band had to
be a contiguous range of frequencies, but for use in the UM it was desirable to allow
for split bands. This concept is most easily explained by an example. If we specify
that band 5 extends from 8 to 12 µm and band 6 from 10–11µm, and exclude band 6
from band 5, this means that we take band 5 effectively to consist of the regions 8–10
µm and 11–12µm. In this case, the limits for band 6 will naturally be set as 10 and
11 µm, but band 5 will have limits of 8 and 12 µm. Exclusions are of importance in
the generation of the spectral file, but are not of such relevance in runs in the UM. If
diagnostics covering only a portion of the spectrum were defined, it would be necessary
to know about any exclusions in order to weight the contributions from individual bands
appropriately. Split bands are used only for reasons of efficiency.

3.3 Standard Spectral Files

Standard spectral files that have been used operationally for numerical weater prediction or
climate runs are described. Spectral files with names beginning spec or spec3a are namelist
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files available for UM versions up to 8.5 (readable text equivalents of these files are available
with the offline Edwards-Slingo code). Files with names beginning sp are readable text
versions for use with UM versions 8.6 onwards or the offline code.

3.3.1 Global Atmosphere Configuration 7

Spectral file: sp sw ga7

Sections are identical to sp sw ga3 0 except for changes to the spectral bands, solar spectrum
(including Rayleigh coefficients), and gaseous absorption:

Spectral bands

The six spectral bands are identical to sp sw ga3 0 except the combined bands 2 and 3 are
now properly split into two true bands at 505nm. Band limits are now:

Band Wavelength (nm)

1 200 - 320
2 320 - 505
3 505 - 690
4 690 - 1190
5 1190 - 2380
6 2380 - 10000

Solar spectrum

New solar spectrum (”lean 12”) taken as a mean of the spectral data from 2000-2011 from
the recommendation of the SPARC/SOLARIS group (data from Judith Lean, available here:
http://solarisheppa.geomar.de/ccmi). Associated updates to Rayleigh scattering coefficients.

Gaseous absorption

Newly derived gaseous absorption for all gases based on HITRAN 2012 and CAVIAR water
vapour continuum. Scaling of absorption coefficients uses a look-up table of 59 pressures with
5 temperatures per pressure level based around a mid-latitude summer profile.

Addition of N2O and CH4 minor gases.

Ozone cross sections for the UV and visible come from Serdyuchenko et al. [2014] and
Gorshelev et al. [2014] (with Brion-Daumont-Malicet cross-sections for the far UV) taken
from this website: http://igaco-o3.fmi.fi/ACSO/cross sections.html. In band 1, a single k-
term is calculated for each 20nm sub-interval from 200 to 320nm as done for the GA3 spectral
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file. In band 2, a single k-term is calculated for each of the sub-intervals 320-400nm and 400-
505nm. This allows the incoming solar flux to be supplied on these finer wavelength bands
for experiments concerning solar spectral variability.

Absorption due to Sulphur dioxide (SO2, principally in the UV, plus near-IR) and Car-
bonyl sulphide (OCS, near-IR) is included based on HITRAN 2012 (only used for particular
experimental configurations).

Total of 41 major gas k-terms.

Spectral file: sp lw ga7

Sections are identical to sp lw ga3 0 except for changes to gaseous absorption, thermal emis-
sion:

Spectral bands

The nine spectral bands are identical to sp lw ga3 0. Band limits are:

Band Wavenumber (cm−1) Wavelength (µm)

1 1 - 400 25 - 10000
2 400 - 550 18.18 - 25
3 550 - 590 and 750 - 800 12.5 - 13.33 and 16.95 - 18.18
4 590 - 750 13.33 - 16.95
5 800 - 990 and 1120 - 1200 8.33 - 8.93 and 10.10 - 12.5
6 990 - 1120 8.93 - 10.10
7 1200 - 1330 7.52 - 8.33
8 1330 - 1500 6.67 - 7.52
9 1500 - 2995 3.34 - 6.67

Gaseous absorption

Newly derived gaseous absorption for all gases (except CO2 in band 4) based on HITRAN
2012 and CAVIAR water vapour continuum. Scaling of absorption coefficients uses a look-
up table of 59 pressures with 5 temperatures per pressure level based around a mid-latitude
summer profile.

The improved representation of CO2 in the window region (more minor gas k-terms in
bands 5 and 6) provides a better forcing response to increases in CO2 (tested up to x32
present day).

Greenhouse gases included: H2O, CO2, O3, N2O, CH4, CFC11, CFC12, CFC113, HCFC22
and HFC134a.
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Absorption due to Sulphur dioxide (SO2) and Carbonyl sulphide (OCS) is included based
on HITRAN 2012 (only used for particular experimental configurations).

Total of 81 major gas k-terms. The new method of “hybrid” scattering may be used with
this spectral file. This will run the full scattering solver for 27 of the major gas k-terms
(where their nominal optical depth is less than 10 in a mid-latitude summer atmosphere).
The remaining 54 k-terms (optical depth > 10) will use a much cheaper non-scattering solver.

Thermal emission

The Planckian function in each band is represented by a quartic fit in the temperature,
generated by a least squares fit over the range 160 to 330 K. This increases the lower bound
of the fit from 150K used with sp lw ga3 0 and slightly improves the fit over the important
temperature range for the Earth’s atmosphere.

3.3.2 Global Atmosphere Configuration 3

Spectral file: sp sw ga3 0 / spec sw ga3 0

Sections are identical to spec3a sw hadgem1 5o rlfx except for changes to the solar spectrum
(including Rayleigh coefficients), gaseous absorption, aerosols, and ice crystals:

Solar spectrum

The Lean (2000, updated) spectrum [Lean, 2000] is based on satellite observations at wave-
lengths shorter than 735nm with the Kurucz spectrum at longer wavelengths. The satellite
observations provided monthly data which have been meaned over the last 2 solar cycles
(between 1983 and 2004 inclusive).

Gaseous absorption

Changes to O3 k-terms in bands 1-3. The revision was made in order to improve ozone heating
rate calculations and better incorporate solar variability. Briefly, the first UV band is divided
into six relatively narrow sub-bands, each of which has only one ozone absorption coefficient so
that, although the total number of bands is increased, the computational demands are similar
to the previous k-distribution method for the UV band. Each new sub-band has physically
realistic band limits and the ozone absorption coefficients are obtained from mean transmission
functions calculated with high resolution (1 cm−1) and using a fitting procedures similar to
that described by Chou and Lee [1996]. Ozone cross-sections used in the calculations are a
combination of Hitran2004 (0.24 - 0.34 µm), Molina and Molina [1986] (0.2 - 0.24 µm) and
Voigt et al. [2001] (above 0.34 µm). This new broad-band model has greater accuracy due to
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the higher number of bands within the UV. It also provides an easier vehicle for experiments in
which variations in the solar irradiance spectrum may be imposed because the k-distribution
of lines is restricted to the narrower bands.

For more information see Zhong et al. [2008].

Aerosols

Addition of 4 aerosol species: Fresh and Aged OCFF (Organic Carbon Fossil Fuel), ‘delta’
aerosol, and nitrate aerosol. The optical properties of the 6 divisions of mineral dust have been
revised using the set of refractive indices from Balkanski et al. [2007]. This makes mineral
dust less absorbing in the SW and more absorbing in the LW.

Ice crystals

A new parametrisation for the optical properties of ice crystals has been developed by An-
thony Baran based on the latest observed particle size distributions (from Paul Field) and an
ensemble model of ice crystal type and orientation. The optical properties are linked directly
to temperature and ice water content with no intermediate dependence on ice-crystal size.
This parametrisation is added as type 9.

Spectral file: sp lw ga3 0 / spec lw ga3 0

spec lw ga3 0 is used for climate configurations and is favoured to spec lw ga3 1 principally
where a more accurate treatment of the stratosphere is required. Sections are identical to
spec3a lw hadgem1 5C except for changes to gaseous absorption, thermal emission, aerosols,
and ice crystals (also note that obsolete coefficients for the continuum in band 9 have been
removed):

Gaseous absorption

New k-terms have been provided by Wenyi Zhong for CO2 in band 4 and O3 in band 6. This
increases the total number of k-terms by 14 (with a corresponding increase in computational
cost) but allows for a more accurate treatment of stratospheric absorption. The k-terms for
CO2 and O3 have been taken from a spectral file developed by Wenyi Zhong for the “Met
Office Middle Atmosphere” model based on HadCM3 [Zhong and Haigh, 2000].

Thermal emission

The Planckian function in each band is represented by a quartic fit in the temperature,
generated by a least squares fit over the range 150 to 330 K. The previous fit (using the range
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of 180 to 330 K) for spec3a lw hadgem1 5C could give negative emission for the very cold
temperatures sometimes seen at the top of the model.

Aerosols

Addition of 4 aerosol species: Fresh and Aged OCFF (Organic Carbon Fossil Fuel), ‘delta’
aerosol, and nitrate aerosol. The optical properties of the 6 divisions of mineral dust have
been revised using the set of refractive indices from Balkanski et al. [2007]. This makes
mineral dust less absorbing in the SW and more absorbing in the LW. Aerosol Optical Depth
coefficients have been altered accordingly.

Ice crystals

A new parametrisation (type 9) has been added to be used in conjunction with the new SW
ice properties. These are based on the near-IR properties from spec sw ga3 0 as the full LW
properties have not yet been modelled.

Spectral file: sp lw ga3 1 / spec lw ga3 1

spec lw ga3 1 is used for forecast configurations and is favoured to spec lw ga3 0 where speed
of computation and more accurate treatment of the troposphere is required. Sections are
identical to spec3a lw hadgem1 5C except for changes to aerosols and ice crystals (also note
that obsolete coefficients for the continuum in band 9 have been removed):

Aerosols

Addition of 4 aerosol species: Fresh and Aged OCFF (Organic Carbon Fossil Fuel), ‘delta’
aerosol, and nitrate aerosol. The optical properties of the 6 divisions of mineral dust have
been revised using the set of refractive indices from Balkanski et al. [2007]. This makes
mineral dust less absorbing in the SW and more absorbing in the LW. Aerosol Optical Depth
coefficients have been altered accordingly.

Ice crystals

A new parametrisation (type 9) has been added to be used in conjunction with the new SW
ice properties. These are based on the near-IR properties from spec sw ga3 0 as the full LW
properties have not yet been modelled.
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Spectral files: sp sw cloud3 0 & sp lw cloud3 0

These are simple spectral files designed specifically for use with the “incremental radiative
time-stepping” scheme for improved sampling of cloud. They represent regions of high trans-
missivity in the SW and LW in order to capture the radiative effects of changes in low cloud. A
full description of these files is available in Manners et al. [2009]. (Namelist versions starting
spec are also available.)

3.3.3 HadGEM2

Spectral file: spec3a sw hadgem1 5o rlfx

spec3a sw hadgem1 5o rlfx is used in the HadGEM2-A model and the global forecast model
from PS20. All sections are identical to spec3a sw hadgem1 3 except for changes to aerosols
and Rayleigh scattering:

Rayleigh scattering bug-fix

Rayleigh scattering coefficients in spec3a sw hadgem1 3 were found to be in error by ap-
proximately 20% due to a bug in the generating code. These are corrected here. Further
information on this error and its impact in the global model is available in Haywood et al.
[2008].

Aerosols

Mie scattering calculations have provided the optical properties for 7 additional aerosols: 6
size bins (also termed divisions) for mineral dust, and 1 mode representing biogenic aerosols
from terpene emissions. The biogenic aerosol size distribution is lognormal, with a modal
radius of 0.095 microns and a standard deviation of 1.5. Its density is 1300 kg/m3. Biogenic
aerosols experience hygroscopic growth. In addition, parametrisations of Aitken Sulphate,
Fresh Biomass (mode 1), and Aged Biomass (mode 2) have been changed. Aitken sulphate
lognormal size distribution has now a modal radius of 0.0065 microns with a standard devi-
ation of 1.3. Biomass aerosols are now hygroscopic following aircraft measurements. Their
size distributions now use a modal radius of 0.1 and 0.12 microns for fresh and aged biomass,
respectively, with a standard deviation of 1.3. Biomass aerosol density is now 1350 kg/m3.

Spectral file: spec3a lw hadgem1 5C

spec3a lw hadgem1 5C is used in the HadGEM2-A model and the global forecast model from
PS20. All sections are identical to spec3a lw hadgem1 3 except for changes to aerosols:
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Aerosols

Mie scattering calculations have provided the optical properties for 7 additional aerosols: 6
size bins (also termed divisions) for mineral dust, and 1 mode representing biogenic aerosols
from terpene emissions. The biogenic aerosol size distribution is lognormal, with a modal
radius of 0.095 microns and a standard deviation of 1.5. Its density is 1300 kg/m3. Biogenic
aerosols experience hygroscopic growth. In addition, parametrisations of Aitken Sulphate,
Fresh Biomass (mode 1), and Aged Biomass (mode 2) have been changed. Aitken sulphate
lognormal size distribution has now a modal radius of 0.0065 microns with a standard devi-
ation of 1.3. Biomass aerosols are now hygroscopic following aircraft measurements. Their
size distributions now use a modal radius of 0.1 and 0.12 microns for fresh and aged biomass,
respectively, with a standard deviation of 1.3. Biomass aerosol density is now 1350 kg/m3.

In addition, a new block, number 15, is introduced. It contains the specific absorption
and scattering coefficients of each aerosol mode (in the same order as in the aerosol block 11).
In contrast to the content of block 11, which are averaged across spectral bands, block-15
coefficients are monochromatic (given at specific wavelengths). They are used by the model
to compute the aerosol optical depth at these wavelengths. There are 6 wavelengths, in the
order: 0.38, 0.44, 0.55, 0.67, 0.87, 1.02 microns. As in the aerosol block 11, those aerosols
which are hygroscopic have relative-humidity-dependent coefficients.

3.3.4 HadGEM1

Spectral file: spec3a sw hadgem1 3

spec3a sw hadgem1 3 is the standard SW spectral file for HadGEM1.

The spectrum is divided into six bands, the second and third of which are not true bands,
as discussed above under the remarks on block 1.

The solar spectrum is based on that published by Kurucz [1995], and this is used in the
frequency weighting of Rayleigh scattering coefficients.

Gaseous absorption

Gaseous absorption by water vapour, ozone, carbon dioxide and oxygen is included. Version
2.4 of the CKD continuum is included. The foreign component is combined with the line
data and fitted as one entity. The self-broadened continuum is represented explicitly. The
spectroscopic data used in generating the absorption data come from HITRAN2000, with the
published corrections, augmented by theoretical weak lines and extra observations from ESA
(see Zhong et al. [2001] for an introduction to this matter and further references). The data
for gases other than water vapour are identical to those used in HadCM3, as described in
Cusack et al. [1999].
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Aerosols

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al. [1998])
and two modes each for sulphate, black carbon, sea-salt and biomass aerosols and six divisions
of dust aerosol. The properties of aerosols depend on their nature and the size distribution.
Size distributions and optical properties for the climatological aerosols are specified as in the
standard WMO report (see Cusack et al. [1998] for details). The single scattering parameters
for aerosols are generated by running a Mie scattering code and averaging over the assumed
size distribution. The climatology is specified in terms of an optical depth, but densities for
the aerosols are not required or specified. However, the radiation code works in terms of mass
extinction coefficients, so a density must be assumed. Provided that the same density is used
in the code and in the generation of the spectral file, its value is irrelevant and a conventional
density of 1000 kgm−3 has been assumed. If spectral data for the climatological aerosols are
combined with mass-loadings specified other than through the climatology, it is necessary to
consider whether this density is appropriate. Note that climatological aerosols will not be
a part of the final standard version of HadGEM1, having been superceded by prognostics
aerosols

Sulphate aerosols are hygroscopic, so their optical properties depend on the relative hu-
midity. The nature of this dependence is a matter for aerosol modellers. From the point of
view of generating radiative data, a size distribution of the dry aerosol must be assumed.
Two distinct modes of aerosol are included in this file: the Aitken and accumulation modes.
For each of these modes, a log-normal size distribution is assumed. For the Aitken mode, the
modal radius, r̂ = 24 nm and the standard deviation σ = 1.45. In the case of the accumulation
mode r̂ = 95 nm and σ = 1.4. The density of dry aerosol is taken as 1769 kgm−2.

Black carbon aerosols not not hygroscopic. They are represented as fresh and aged
aerosols, each obeying a log-normal distribution. In this case r̂ = 40 nm and σ = 2.0 for
both modes. The density is taken as 1000 kgm−2. (Note that these size distributions differ
from those used in spec3a sw 3 asol2c hadcm3).

Film and jet modes of sea-salt aerosol are included. Data were generated using log-normal
size distributions with r̂ = 0.1 µm and σ = 2.0 for the film mode and r̂ = 1.0 µm and σ = 2.0
for the jet mode.

Prognostic dust aerosols are modelled using six size classes with limits as follows: 6.32456E-
8 – 2.0E-7 (m), 2.0E-7 – 6.32456E-7, 6.32456E-7 – 2.0E-6, 2.0E-6 – 6.32456E-6, 6.32456E-6
– 2.0E-5 and 2.0E-5 – 6.32456E-5. The size distribution is taken as uniform within each bin.
The density of dust is taken as 2650 kgm−3. Data were generated using a Mie scattering
code, taking the refractive indices given by Deepak and Gerber [1983].

Two modes of biomass smoke are included. For the fresh smoke (biomass 1), a log-normal
distribution with r̂ = 69 µm and σ = 1.65 is assumed. For the aged smoke (biomass 2),
r̂ = 200 µm and σ = 1.58.

For further details about aerosols, the documentation on this area should be consulted.
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Cloud droplets

Data for water droplets were generated using a Mie scattering code. Whilst a single size
distribution may be assumed for each species of aerosol individually, size distributions for
droplets vary widely, depending on the location and moisture content of the atmosphere. Some
appropriate but variable measure of the size of droplet is required. For radiative purposes, the
appropriate measure of size is the effective radius, re. re may be parametrized or imposed (see
section 1). The numbers in the spectral file represent coefficients in a parametrization. They
are generated by running a Mie scattering code for a number of different size distributions at
a range of wavelengths, averaging the single scattering properties across the spectral bands,
weighting with an appropriate function of frequency and then fitting using some appropriate
function of the effective radius. This may clearly be done in many different ways, and to allow
general freedom, the concept of a type of droplet is introduced. In the current file, four types
are available, namely 2, 3, 4 and 5. In all cases the size distributions specified by Rockel et al.
[1991] with effective radii in the range 1.5 – 50 microns were used as the basis of the Mie
calculations. In particular, this uses a modified gamma distribution of this form:
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with parameters: α = (1/Ne)−2, β = 1, rm = NeRe 1.0E-6. Where the distribution variance
(Ne) takes a number of values: Ne = 0.01, 0.1, 0.175, 0.25.

Calculations are done for each Ne value at a number of different effective radii (Re) and
then a fit is made for each of the optical properties (extinction, single scattering albedo,
asymmetry) against effective radius.

Weighting was carried out using the solar spectrum of Labs and Neckel [1970]. In the
case of types 2 and 4, the method of thin averaging (Edwards and Slingo [1996]) was used,
whereas for types 3 and 5, the method of thick averaging was used. Types 2 and 3 have in
fact been retained for historical consistency with HadAM3 and are based on the linear fits of
the functional form of Slingo and Schrecker [1982]. Simple linear fits do not allow the use of
a wide range of particles sizes, as was required for use with the wider range of studies of the
indirect effects of sulphate envisaged with HadAM4. To meet this need, new Padé fits were
developed, and their use is recommended. Type 4 corresponds to thin averaging and type 5
to thick averaging. The use of type 5 is preferred for both convective and large-scale clouds.

Ice crystals

The generation of single-scattering data for ice crystals is more complicated than for water
clouds, because issues of crystal shape must be addressed. When HadAM3 was defined,
methods for generating single-scattering data for non-spherical particles were not available,
so data for ice particles were generated analogously to the approach for water droplets, using
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the size distributions for ice particles given by Rockel et al. [1991] with effective radii in
the range 24 – 80 microns, weighting with the solar spectrum of Labs and Neckel [1970]
and using thin averaging for type 2 and thick averaging for type 3. In this case, because
large-scale ice cloud is often thin, we recommend the use of type 2 for large-scale cloud, but
type 3 for convective cloud. Since the definition of HadAM3, progress has been made with
the treatment of non-spherical particles. Type 7 invokes a treatment of ice crystals as planar
polycrystals, based on the anomalous diffraction approximation (see Kristjánsson et al. [1999]
and Kristjánsson et al. [2000]). In this case, the parameters represent a fit in terms of the
mean maximum dimension of the crystals. The mean maximum dimension is predicted in
the model. At releases up to 5.5, the use of this ice scheme automatically selects this method
of specifying the crystal size. A new parametrization [Edwards et al., 2007] was introduced
for ice crystals at 5.5. This is based on the representation of ice aggregates introduced by
Baran et al. [2001]. The data were generated from the aggregate database (A. J. Baran pres.
comm.) using 83 representative size distributions measured during CEPEX and fitted using
the appropriate functional form. Thin averaging was performed. Note that this fit is provided
in terms of the effective dimension. It may be selected by choosing type 8 for ice crystals.
Thickly averaged data are not available for ice crystals. (Technical Note: Kristjánsson et al.
[2000] use tenth-order polynomial fits to the optical properties, but the parametrization in this
file is based on two splined quartic fits. The two fits are to the same data, but the tenth order
scheme was used in the paper for the convenience of running a common scheme in CCM3
and the UM: the splined quartic fit had already become part of HadAM4 when the tenth-order
fit was developed.)

Spectral file: spec3a lw hadgem1 3

spec3a lw hadgem1 3 is the standard longwave spectral file for HadGEM1. The spectrum is
divided into nine bands, the third and fifth of which are split, as discussed above under the
remarks on block 14.

The Planckian function in each band is represented by a quartic fit in the temperature,
generated by a least squares fit over the range 180 to 330 K.

Gaseous absorption

Gaseous absorption by water vapour, ozone, carbon dioxide, methane, nitrous oxide, CFC11,
CFC12, CFC113, HCFC22, HFC125 and HFC134a is included. The spectroscopic data used in
generating the absorption coefficients for gases other than the halocarbons and water vapour
come from HITRAN92: for further details see Cusack et al. [1999]. Absorption cross-sections
for the halocarbons were based on data supplied by K. Shine (pers. comm.). Data for absorp-
tion by water vapour were generated from HITRAN2000. The water vapour continuum is
represented using version 2.4 of the CKD model. The self-broadened continuum is represented
explicitly, while the foreign broadened continuum is combined with the line absorption, the
combined absorption being fitted as if it were line data.
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Aerosols

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al. [1998]),
two modes each for sulphate, black carbon, sea-salt and biomass aerosols and six divisions
of dust aerosol. The properties of aerosols depend on their nature and the size distribution.
Size distributions and optical properties for the climatological aerosols are specified as in the
standard WMO report (see Cusack et al. [1998] for details). The single scattering parameters
for aerosols are generated by running a Mie scattering code and averaging over the assumed
size distribution. The climatology is specified in terms of an optical depth, but densities for
the aerosols are not required or specified. However, the radiation code works in terms of
mass extinction coefficients, so a density must be assumed. Provided that the same density
is used in the code and in the generation of the spectral file, its value is irrelevant and a
conventional density of 1000 kgm−3 has been assumed. If spectral data for the climatological
aerosols are combined with mass-loadings specified other than through the climatology, it is
necessary to consider whether this density is appropriate. Note that climatological aerosols
are not included in the standard version of HadGEM1, being replaced by prognostic aerosols.

Sulphate aerosols are hygroscopic, so their optical properties depend on the relative hu-
midity. The nature of this dependence is a matter for aerosol modellers. From the point of
view of generating radiative data, a size distribution of the dry aerosol must be assumed.
Two distinct modes of aerosol are included in this file: the Aitken and accumulation modes.
For each of these modes, a log-normal size distribution is assumed. For the Aitken mode, the
modal radius, r̂ = 24 nm and the standard deviation σ = 1.45. In the case of the accumulation
mode r̂ = 95 nm and σ = 1.4. The density of dry aerosol is taken as 1769 kgm−2.

Black carbon aerosols not not hygroscopic. They are represented as fresh and aged
aerosols, each obeying a log-normal distribution. In this case r̂ = 40 nm and σ = 2.0 for
the both the fresh and modes.

Film and jet modes of sea-salt aerosol are included. Data were generated for log-normal
size distributions with r̂ = 0.1 µm and σ = 2.0 for the film mode and r̂ = 1.0 µm and σ = 2.0
for the jet mode.

Prognostic dust aerosols are modelled using six size classes with limits as follows: 6.32456E-
8 – 2.0E-7 (m), 2.0E-7 – 6.32456E-7, 6.32456E-7 – 2.0E-6, 2.0E-6 – 6.32456E-6, 6.32456E-6
– 2.0E-5 and 2.0E-5 – 6.32456E-5. The size distribution is taken as uniform within each bin.
The density of dust is taken as 2650 kgm−3. Data were generated using a Mie scattering
code, taking the refractive indices given by Deepak and Gerber [1983].

Two modes of biomass smoke are included. For the fresh smoke (biomass 1), a log-normal
distribution with r̂ = 69 µm and σ = 1.65 is assumed. For the aged smoke (biomass 2),
r̂ = 200 µm and σ = 1.58.

For further details about aerosols, the documentation on this area should be consulted.



70 Chapter 3. The Spectral Files

Cloud droplets

Data for water droplets were generated using a Mie scattering code. Whilst a single size
distribution may be assumed for each species of aerosol individually, size distributions for
droplets vary widely, depending on the location and moisture content of the atmosphere. Some
appropriate but variable measure of the size of droplet is required. For radiative purposes, the
appropriate measure of size is the effective radius, re. re may be parametrized or imposed (see
section 1). The numbers in the spectral file represent coefficients in a parametrization. They
are generated by running a Mie scattering code for a number of different size distributions at
a range of wavelengths, averaging the single scattering properties across the spectral bands,
weighting with an appropriate function of frequency and then fitting using some appropriate
function of the effective radius. This may clearly be done in many different ways, and to
allow general freedom, the concept of a type of droplet is introduced. Data for type 1 were
obtained by using the size distributions specified by Rockel et al. [1991] with effective radii
in the range 1.5 – 50 microns as the basis of the Mie calculations. Weighting was carried out
using a Planckian function at a temperature of 250 K, and spectral averaging was carried
out using the method of thin averaging (Edwards and Slingo [1996]) and the functional form
of Slingo and Schrecker [1982] was used for fitting. These data are retained for historical
consistency and the use of the Padé fits of types 4 and 5, which are valid over a wider range
of effective radii is now recommended. These data were generated from the same sources as
type 1, but differ in the fitting used. Type 4 was generated using thin averaging and type 5
with thick averaging.

Ice crystals

The generation of single-scattering data for ice crystals is more complicated than for water
clouds, because issues of crystal shape must be addressed. When HadAM3 was defined,
methods for generating single-scattering data for non-spherical particles were not available,
so data for ice particles were generated analogously to the approach for water droplets, using
the size distributions for ice particles given by Rockel et al. [1991] with effective radii in the
range 24 – 80 microns, weighting with the a Planckian function at 250 K and using thin
averaging. The functional form of Slingo and Schrecker [1982] was used again: only data for
type 1 were initially available. Since the definition of HadAM3, progress has been made with
the treatment of non-spherical particles. Type 7 invokes a treatment of ice crystals as planar
polycrystals, based on the anomalous diffraction approximation (see Kristjánsson et al. [1999]
and Kristjánsson et al. [2000]). In this case, the parameters represent a fit in terms of the
mean maximum dimension of the crystals. The mean maximum dimension is predicted in the
model. At releases up to 5.5, the use of this ice scheme automatically selects this method of
specifying the crystal size. A new parametrization [Edwards et al., 2007] was introduced for
ice crystals at 5.5. This is based on the representation of ice aggregates introduced by Baran
[2003]. The data were generated from the aggregate database (A. J. Baran pres. comm.) using
83 representative size distributions measured during CEPEX and fitted using the appropriate
functional form. Thin averaging was performed. Note that this fit is provided in terms of the
effective dimension. It may be selected by choosing type 8 for ice crystals. Thickly averaged
data are not available for non-spherical ice crystals. (Technical Note: Kristjánsson et al.
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[2000] use tenth-order polynomial fits to the optical properties, but the parametrization in this
file is based on two splined quartic fits. The two fits are to the same data, but the tenth order
scheme was used in the paper for the convenience of running a common scheme in CCM3
and the UM: the splined quartic fit had already become part of HadAM4 when the tenth-order
fit was developed.)

3.3.5 Older spectral files

1. spec3a sw 3 asol2c hadcm3 is the standard shortwave spectral file used in HadCM3
runs. The spectrum is divided into six bands, the second and third of which are not
true bands, as discussed above under the remarks on block 1.

The solar spectrum is based on that published by Labs and Neckel [1970], and this is
used in the frequency weighting of Rayleigh scattering coefficients.

Gaseous absorption by water vapour (without the continuum), ozone, carbon dioxide
and oxygen is included. The spectroscopic data used in generating the absorption
data come from HITRAN92, except for the data on ozone which were generated from
LOWTRAN7: for further details see Cusack et al. [1999].

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al.
[1998]), two modes of sulphate aerosol and two modes of black carbon aerosol. The
properties of aerosols depend on their nature and the size distribution. Size distributions
and optical properties for the climatological aerosols are specified as in the standard
WMO report (see Cusack et al. [1998] for details). The single scattering parameters
for aerosols are generated by running a Mie scattering code and averaging over the
assumed size distribution. The climatology is specified in terms of an optical depth,
but densities for the aerosols are not required or specified. However, the radiation code
works in terms of mass extinction coefficients, so a density must be assumed. Provided
that the same density is used in the code and in the generation of the spectral file,
its value is irrelevant and a conventional density of 1000 kgm−3 has been assumed. If
spectral data for the climatological aerosols are combined with mass-loadings specified
other than through the climatology, it is necessary to consider whether this density is
appropriate.

Sulphate aerosols are hygroscopic, so their optical properties depend on the relative
humidity. The nature of this dependence is a matter for aerosol modellers. From the
point of view of generating radiative data, a size distribution of the dry aerosol must
be assumed. Two distinct modes of aerosol are included in this file: the Aitken and
accumulation modes. For each of these modes, a log-normal size distribution is assumed.
For the Aitken mode, the modal radius, r̂ = 24 nm and the standard deviation σ = 1.45.
In the case of the accumulation mode r̂ = 95 nm and σ = 1.4. The density of dry aerosol
is taken as 1769 kgm−2.

Black carbon aerosols not not hygroscopic. They are represented as fresh and aged
aerosols, each obeying a log-normal distribution. In this case r̂ = 20 nm and σ = 2.0
for the fresh modes, but r̂ = 100 nm and σ = 2.0 for the aged mode. The density is
taken as 1000 kgm−2.

Data for water droplets were generated using a Mie scattering code. Whilst a single size
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distribution may be assumed for each species of aerosol individually, size distributions
for droplets vary widely, depending on the location and moisture content of the atmo-
sphere. Some appropriate but variable measure of the size of droplet is required. For
radiative purposes, the appropriate measure of size is the effective radius, re. re may
be parametrized or imposed (see section 1). The numbers in the spectral file represent
coefficients in a parametrization. They are generated by running a Mie scattering code
for a number of different size distributions at a range of wavelengths, averaging the
single scattering properties across the spectral bands, weighting with an appropriate
function of frequency and then fitting using some appropriate function of the effective
radius. This may clearly be done in many different ways, and to allow general freedom,
the concept of a type of droplet is introduced. In the current file, two types are available,
namely 2 and 3. In both cases the size distributions specified by Rockel et al. [1991]
with effective radii in the range 1.5 – 50 microns were used as the basis of the Mie
calculations. Weighting was carried out using the solar spectrum of Labs and Neckel
[1970]. In the case of type 2, the method of thin averaging (Edwards and Slingo [1996])
was used, whereas for type 3, the method of thick averaging was used. In both cases
the functional form of Slingo and Schrecker [1982] was used. Tests against more highly
spectrally resolved data suggest that thick averaging is more representative for water
clouds, and the use of type 3 for both large-scale and convective clouds is recommended.

The generation of single-scattering data for ice crystals is more complicated than for
water clouds, because issues of crystal shape must be addressed. When HadAM3 was
defined, methods for generating single-scattering data for non-spherical particles were
not available, so data for ice particles were generated analogously to the approach for
water droplets, using the size distributions for ice particles given by Rockel et al. [1991]
with effective radii in the range 24 – 80 microns, weighting with the solar spectrum
of Labs and Neckel [1970] and using thin averaging for type 2 and thick averaging for
type 3. In this case, because large-scale ice cloud is often thin, we recommend the use
of type 2 for large-scale cloud, but type 3 for convective cloud. Since the definition of
HadAM3, progress has been made with the treatment of non-spherical particles. Type
7 invokes a treatment of ice crystals as planar polycrystals, based on the anomalous
diffraction approximation (see Kristjánsson et al. [1999] and Kristjánsson et al. [2000]).
In this case, the parameters represent a fit in terms of the mean maximum dimension
of the crystals. The mean maximum dimension is predicted in the model. At releases
up to 5.5, the use of this ice scheme automatically selects this method of specifying
the crystal size. Thickly averaged data are not available for non-spherical ice crystals.
(Technical Note: Kristjánsson et al. [2000] use tenth-order polynomial fits to the optical
properties, but the parametrization in this file is based on two splined quartic fits. The
two fits are to the same data, but the tenth order scheme was used in the paper for the
convenience of running a common scheme in CCM3 and the UM: the splined quartic fit
had already become part of HadAM4 when the tenth-order fit was developed.)

2. spec3a sw hadcm4 is the standard shortwave spectral file used in HadAM4 runs. The
spectrum is divided into six bands, the second and third of which are not true bands,
as discussed above under the remarks on block 1.

The solar spectrum is based on that published by Labs and Neckel [1970], and this is
used in the frequency weighting of Rayleigh scattering coefficients.
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Gaseous absorption by water vapour, ozone, carbon dioxide and oxygen is included.
Version 2.1 of the CKD continuum is included. The foreign component is combined
with the line data and fitted as one entity. The self-broadened continuum is represented
explicitly. The spectroscopic data used in generating the absorption data come from
HITRAN92. Absorption by water vapour in the near infra-red has been improved
relative to the treatment in spec3a sw asol2c hadcm4, as used in HadCM3, by the
addition of an extra k-term in the fourth band. The data for gases other than water
vapour are identical to those used in HadCM3, as described in Cusack et al. [1999].

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al.
[1998]), and two modes of sulphate aerosols. The properties of aerosols depend on their
nature and the size distribution. Size distributions and optical properties for the clima-
tological aerosols are specified as in the standard WMO report (see Cusack et al. [1998]
for details). The single scattering parameters for aerosols are generated by running a
Mie scattering code and averaging over the assumed size distribution. The climatology
is specified in terms of an optical depth, but densities for the aerosols are not required
or specified. However, the radiation code works in terms of mass extinction coefficients,
so a density must be assumed. Provided that the same density is used in the code and
in the generation of the spectral file, its value is irrelevant and a conventional density of
1000 kgm−3 has been assumed. If spectral data for the climatological aerosols are com-
bined with mass-loadings specified other than through the climatology, it is necessary
to consider whether this density is appropriate.

Sulphate aerosols are hygroscopic, so their optical properties depend on the relative
humidity. The nature of this dependence is a matter for aerosol modellers. From the
point of view of generating radiative data, a size distribution of the dry aerosol must
be assumed. Two distinct modes of aerosol are included in this file: the Aitken and
accumulation modes. For each of these modes, a log-normal size distribution is assumed.
For the Aitken mode, the modal radius, r̂ = 24 nm and the standard deviation σ = 1.45.
In the case of the accumulation mode r̂ = 95 nm and σ = 1.4. The density of dry aerosol
is taken as 1769 kgm−2.

Data for water droplets were generated using a Mie scattering code. Whilst a single size
distribution may be assumed for each species of aerosol individually, size distributions
for droplets vary widely, depending on the location and moisture content of the atmo-
sphere. Some appropriate but variable measure of the size of droplet is required. For
radiative purposes, the appropriate measure of size is the effective radius, re. re may be
parametrized or imposed (see section 1). The numbers in the spectral file represent co-
efficients in a parametrization. They are generated by running a Mie scattering code for
a number of different size distributions at a range of wavelengths, averaging the single
scattering properties across the spectral bands, weighting with an appropriate function
of frequency and then fitting using some appropriate function of the effective radius.
This may clearly be done in many different ways, and to allow general freedom, the
concept of a type of droplet is introduced. In the current file, four types are available,
namely 2, 3, 4 and 5. In all cases the size distributions specified by Rockel et al. [1991]
with effective radii in the range 1.5 – 50 microns were used as the basis of the Mie calcu-
lations. Weighting was carried out using the solar spectrum of Labs and Neckel [1970].
In the case of types 2 and 4, the method of thin averaging (Edwards and Slingo [1996])
was used, whereas for types 3 and 5, the method of thick averaging was used. Types 2
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and 3 have in fact been retained for historical consistency with HadAM3 and are based
on the linear fits of the functional form of Slingo and Schrecker [1982]. Simple linear
fits do not allow the use of a wide range of particles sizes, as was required for use with
the wider range of studies of the indirect effects of sulphate envisaged with HadAM4.
To meet this need, new Padé fits were developed, and their use is recommended. Type
4 corresponds to thin averaging and type 5 to thick averaging. The use of type 5 is
preferred for both convective and large-scale clouds.

The generation of single-scattering data for ice crystals is more complicated than for
water clouds, because issues of crystal shape must be addressed. When HadAM3 was
defined, methods for generating single-scattering data for non-spherical particles were
not available, so data for ice particles were generated analogously to the approach for
water droplets, using the size distributions for ice particles given by Rockel et al. [1991]
with effective radii in the range 24 – 80 microns, weighting with the solar spectrum
of Labs and Neckel [1970] and using thin averaging for type 2 and thick averaging for
type 3. In this case, because large-scale ice cloud is often thin, we recommend the use
of type 2 for large-scale cloud, but type 3 for convective cloud. Since the definition of
HadAM3, progress has been made with the treatment of non-spherical particles. Type
7 invokes a treatment of ice crystals as planar polycrystals, based on the anomalous
diffraction approximation (see Kristjánsson et al. [1999] and Kristjánsson et al. [2000]).
In this case, the parameters represent a fit in terms of the mean maximum dimension
of the crystals. The mean maximum dimension is predicted in the model. At releases
up to 5.5, the use of this ice scheme automatically selects this method of specifying the
crystal size. Thickly averaged data are not available for ice crystals. (Technical Note:
Kristjánsson et al. [2000] use tenth-order polynomial fits to the optical properties, but
the parametrization in this file is based on two splined quartic fits. The two fits are to
the same data, but the tenth order scheme was used in the paper for the convenience of
running a common scheme in CCM3 and the UM: the splined quartic fit had already
become part of HadAM4 when the tenth-order fit was developed.)

3. spec3a sw h4 meso2 is a spectral file designed for use with the mesoscale mode. Im-
portant Note: This file has been developed for use where speed of execution is critical
and the balance between speed and accuracy is very much toward speed, with minimal
numbers of k-terms being used for each gas. It is used operationally only for mesoscale
runs out to 36 hours and not for global or climate runs. Its use for off-line radiation
calculations is not encouraged.

The shortwave spectral region is divided into five bands. The solar spectrum is based on
that published by Labs and Neckel [1970], and this is used in the frequency weighting
of Rayleigh scattering coefficients.

Gaseous absorption by water vapour, ozone and carbon dioxide is included. Version 2.1
of the CKD continuum is included: here the self and foreign components of the contin-
uum are treated separately. The spectroscopic data used in generating the absorption
data come from HITRAN92.

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al.
[1998]). The properties of aerosols depend on their nature and the size distribution.
Size distributions and optical properties for the climatological aerosols are specified as
in the standard WMO report (see Cusack et al. [1998] for details). The single scattering
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parameters for aerosols are generated by running a Mie scattering code and averaging
over the assumed size distribution. The climatology is specified in terms of an optical
depth, but densities for the aerosols are not required or specified. However, the radiation
code works in terms of mass extinction coefficients, so a density must be assumed.
Provided that the same density is used in the code and in the generation of the spectral
file, its value is irrelevant and a conventional density of 1000 kgm−3 has been assumed.
If spectral data for the climatological aerosols are combined with mass-loadings specified
other than through the climatology, it is necessary to consider whether this density is
appropriate.

Data for water droplets were generated using a Mie scattering code. Whilst a single size
distribution may be assumed for each species of aerosol individually, size distributions
for droplets vary widely, depending on the location and moisture content of the atmo-
sphere. Some appropriate but variable measure of the size of droplet is required. For
radiative purposes, the appropriate measure of size is the effective radius, re. re may
be parametrized or imposed (see section 1). The numbers in the spectral file represent
coefficients in a parametrization. They are generated by running a Mie scattering code
for a number of different size distributions at a range of wavelengths, averaging the
single scattering properties across the spectral bands, weighting with an appropriate
function of frequency and then fitting using some appropriate function of the effective
radius. This may clearly be done in many different ways, and to allow general freedom,
the concept of a type of droplet is introduced. In the current file, four types are avail-
able, namely 2, 3, 4 and 5. In all cases the size distributions specified by Rockel et al.
[1991] were used as the basis of the Mie calculations. Weighting was carried out using
the solar spectrum of Labs and Neckel [1970]. In the case of types 2 and 4, the method
of thin averaging (Edwards and Slingo [1996]) was used, whereas for types 3 and 5,
the method of thick averaging was used. Types 2 and 3 have in fact been retained for
historical consistency with HadAM3 and are based on the linear fits of the functional
form of Slingo and Schrecker [1982]. Simple linear fits do not allow the use of a wide
range of particles sizes, as was required for use with the wider range of studies of the
indirect effects of sulphate envisaged with HadAM4. To meet this need, new Padé fits
were developed, and their use is recommended. Type 4 corresponds to thin averaging
and type 5 to thick averaging. The use of type 5 is preferred for both convective and
large-scale clouds.

The generation of single-scattering data for ice crystals is more complicated than for
water clouds, because issues of crystal shape must be addressed. When HadAM3 was
defined, methods for generating single-scattering data for non-spherical particles were
not available, so data for ice particles were generated analogously to the approach for
water droplets, using the size distributions for ice particles given by Rockel et al. [1991]
with effective radii in the range 24 – 80 microns, weighting with the solar spectrum
of Labs and Neckel [1970] and using thin averaging for type 2 and thick averaging for
type 3. In this case, because large-scale ice cloud is often thin, we recommend the use
of type 2 for large-scale cloud, but type 3 for convective cloud. Since the definition of
HadAM3, progress has been made with the treatment of non-spherical particles. Type
7 invokes a treatment of ice crystals as planar polycrystals, based on the anomalous
diffraction approximation (see Kristjánsson et al. [1999] and Kristjánsson et al. [2000]).
In this case, the parameters represent a fit in terms of the mean maximum dimension
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of the crystals. The mean maximum dimension is predicted in the model. At releases
up to 5.5, the use of this ice scheme automatically selects this method of specifying the
crystal size. Thickly averaged data are not available for ice crystals. (Technical Note:
Kristjánsson et al. [2000] use tenth-order polynomial fits to the optical properties, but
the parametrization in this file is based on two splined quartic fits. The two fits are to
the same data, but the tenth order scheme was used in the paper for the convenience of
running a common scheme in CCM3 and the UM: the splined quartic fit had already
become part of HadAM4 when the tenth-order fit was developed.)

4. spec3a lw 3 asol2c hadcm3 is the standard longwave spectral file used in HadCM3
runs. The spectrum is divided into eight bands, the third and fifth of which are split,
as discussed above under the remarks on block 14.

The Planckian function in each band is represented by a quartic fit in the temperature,
generated by a least squares fit over the range 200 to 300 K.

Gaseous absorption by water vapour, ozone, carbon dioxide, methane, nitrous oxide,
CFC11, CFC12, CFC113, HCFC22, HFC125 and HFC134a is included. The spectro-
scopic data used in generating the absorption parametrizations for gases other than
halocarbons come from HITRAN92: for further details see Cusack et al. [1999]. Data
for CFC11 and CFC12 are taken from Varanasi and Chudamani [1988], while cross-
sectional data for other gases were supplied by K. Shine (pers. comm.). (Note in
respect of potential revision of these data: Cross-sectional data are now included in the
HITRAN database and the use of this source of data is recommended for future work.)
The water vapour continuum is represented using version 2.1 of the CKD model. The
self-broadened continuum is represented explicitly, while the foreign broadened contin-
uum is combined with the line absorption, the combined absorption being fitted as if it
were line data.

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al.
[1998]), two modes of sulphate aerosol and two modes of black carbon aerosol. The
properties of aerosols depend on their nature and the size distribution. Size distributions
and optical properties for the climatological aerosols are specified as in the standard
WMO report (see Cusack et al. [1998] for details). The single scattering parameters
for aerosols are generated by running a Mie scattering code and averaging over the
assumed size distribution. The climatology is specified in terms of an optical depth,
but densities for the aerosols are not required or specified. However, the radiation code
works in terms of mass extinction coefficients, so a density must be assumed. Provided
that the same density is used in the code and in the generation of the spectral file,
its value is irrelevant and a conventional density of 1000 kgm−3 has been assumed. If
spectral data for the climatological aerosols are combined with mass-loadings specified
other than through the climatology, it is necessary to consider whether this density is
appropriate.

Sulphate aerosols are hygroscopic, so their optical properties depend on the relative
humidity. The nature of this dependence is a matter for aerosol modellers. From the
point of view of generating radiative data, a size distribution of the dry aerosol must
be assumed. Two distinct modes of aerosol are included in this file: the Aitken and
accumulation modes. For each of these modes, a log-normal size distribution is assumed.
For the Aitken mode, the modal radius, r̂ = 24 nm and the standard deviation σ = 1.45.
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In the case of the accumulation mode r̂ = 95 nm and σ = 1.4. The density of dry aerosol
is taken as 1769 kgm−2.

Black carbon aerosols not not hygroscopic. They are represented as fresh and aged
aerosols, each obeying a log-normal distribution. In this case r̂ = 20 nm and σ = 2.0
for the fresh modes, but r̂ = 100 nm and σ = 2.0 for the aged mode. The density is
taken as 1000 kgm−2.

Data for water droplets were generated using a Mie scattering code. Whilst a single size
distribution may be assumed for each species of aerosol individually, size distributions
for droplets vary widely, depending on the location and moisture content of the atmo-
sphere. Some appropriate but variable measure of the size of droplet is required. For
radiative purposes, the appropriate measure of size is the effective radius, re. re may
be parametrized or imposed (see section 1). The numbers in the spectral file represent
coefficients in a parametrization. They are generated by running a Mie scattering code
for a number of different size distributions at a range of wavelengths, averaging the
single scattering properties across the spectral bands, weighting with an appropriate
function of frequency and then fitting using some appropriate function of the effective
radius. This may clearly be done in many different ways, and to allow general freedom,
the concept of a type of droplet is introduced. In this file, only one type is available,
type 1. The size distributions specified by Rockel et al. [1991] with effective radii in the
range 1.5 – 50 microns were used as the basis of the Mie calculations. Weighting was
carried out using a Planckian function at a temperature of 250 K, and spectral averaging
was carries out using the method of thin averaging (Edwards and Slingo [1996]). The
functional form of Slingo and Schrecker [1982] was used for fitting.

The generation of single-scattering data for ice crystals is more complicated than for
water clouds, because issues of crystal shape must be addressed. When HadAM3 was
defined, methods for generating single-scattering data for non-spherical particles were
not available, so data for ice particles were generated analogously to the approach for
water droplets, using the size distributions for ice particles given by Rockel et al. [1991]
with effective radii in the range 24 – 80 microns, weighting with the a Planckian function
at 250 K and using thin averaging. The functional form of Slingo and Schrecker [1982]
was used again: only data for type 1 were initially available. Since the definition of
HadAM3, progress has been made with the treatment of non-spherical particles. Type
7 invokes a treatment of ice crystals as planar polycrystals, based on the anomalous
diffraction approximation (see Kristjánsson et al. [1999] and Kristjánsson et al. [2000]).
In this case, the parameters represent a fit in terms of the mean maximum dimension
of the crystals. The mean maximum dimension is predicted in the model. At releases
up to 5.5, the use of this ice scheme automatically selects this method of specifying
the crystal size. Thickly averaged data are not available for non-spherical ice crystals.
(Technical Note: Kristjánsson et al. [2000] use tenth-order polynomial fits to the optical
properties, but the parametrization in this file is based on two splined quartic fits. The
two fits are to the same data, but the tenth order scheme was used in the paper for the
convenience of running a common scheme in CCM3 and the UM: the splined quartic fit
had already become part of HadAM4 when the tenth-order fit was developed.)

5. spec3a lw hadcm4 N is the standard longwave spectral file used in HadAM4 runs. The
spectrum is divided into nine bands, the third and fifth of which are split, as discussed
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above under the remarks on block 14. This nine-band configuration was developed
from that used in HadAM3. In order to improve the treatment of the spectral overlap
between absorption by methane and nitrous oxide in the region 1200 – 1500 cm−1, it
was decided to split the original seventh spectral band, but as tuning of HadAM4 was
well advenced at that stage, it was desired not to alter the spectral characteristics of
absorption by water vapour. Consequently, the seventh and eighth bands are not true
spectral bands (see the general discussion of block 1 above).

The Planckian function in each band is represented by a quartic fit in the temperature,
generated by a least squares fit over the range 200 to 300 K, but the fits for bands 7 and
8 are a partitioning of the fit for the region 1200 – 1500 cm−1 for the reasons discussed
above.

Gaseous absorption by water vapour, ozone, carbon dioxide, methane, nitrous oxide,
CFC11, CFC12, CFC113, HCFC22, HFC125 and HFC134a is included. The spec-
troscopic data used in generating the absorption coefficients for gases other than the
halocarbons come from HITRAN92: for further details see Cusack et al. [1999]. Ab-
sorption cross-sections for the halocarbons were based on data supplied by K. Shine
(pers. comm.). The water vapour continuum is represented using version 2.1 of the
CKD model. The self-broadened continuum is represented explicitly, while the foreign
broadened continuum is combined with the line absorption, the combined absorption
being fitted as if it were line data.

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al.
[1998]) and two modes of sulphate aerosol. The properties of aerosols depend on their
nature and the size distribution. Size distributions and optical properties for the clima-
tological aerosols are specified as in the standard WMO report (see Cusack et al. [1998]
for details). The single scattering parameters for aerosols are generated by running a
Mie scattering code and averaging over the assumed size distribution. The climatology
is specified in terms of an optical depth, but densities for the aerosols are not required
or specified. However, the radiation code works in terms of mass extinction coefficients,
so a density must be assumed. Provided that the same density is used in the code and
in the generation of the spectral file, its value is irrelevant and a conventional density of
1000 kgm−3 has been assumed. If spectral data for the climatological aerosols are com-
bined with mass-loadings specified other than through the climatology, it is necessary
to consider whether this density is appropriate.

Sulphate aerosols are hygroscopic, so their optical properties depend on the relative
humidity. The nature of this dependence is a matter for aerosol modellers. From the
point of view of generating radiative data, a size distribution of the dry aerosol must
be assumed. Two distinct modes of aerosol are included in this file: the Aitken and
accumulation modes. For each of these modes, a log-normal size distribution is assumed.
For the Aitken mode, the modal radius, r̂ = 24 nm and the standard deviation σ = 1.45.
In the case of the accumulation mode r̂ = 95 nm and σ = 1.4. The density of dry aerosol
is taken as 1769 kgm−2.

Data for water droplets were generated using a Mie scattering code. Whilst a single size
distribution may be assumed for each species of aerosol individually, size distributions
for droplets vary widely, depending on the location and moisture content of the atmo-
sphere. Some appropriate but variable measure of the size of droplet is required. For
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radiative purposes, the appropriate measure of size is the effective radius, re. re may
be parametrized or imposed (see section 1). The numbers in the spectral file represent
coefficients in a parametrization. They are generated by running a Mie scattering code
for a number of different size distributions at a range of wavelengths, averaging the
single scattering properties across the spectral bands, weighting with an appropriate
function of frequency and then fitting using some appropriate function of the effective
radius. This may clearly be done in many different ways, and to allow general freedom,
the concept of a type of droplet is introduced. Data for type 1 were obtained by using
the size distributions specified by Rockel et al. [1991] with effective radii in the range
1.5 – 50 microns as the basis of the Mie calculations. Weighting was carried out using
a Planckian function at a temperature of 250 K, and spectral averaging was carried
out using the method of thin averaging (Edwards and Slingo [1996]) and the functional
form of Slingo and Schrecker [1982] was used for fitting. These data are retained for
historical consistency and the use of the Padé fits of types 4 and 5, which are valid over
a wider range of effective radii is now recommended. These data were generated from
the same sources as type 1, but differ in the fitting used. Type 4 was generated using
thin averaging and type 5 with thick averaging.

The generation of single-scattering data for ice crystals is more complicated than for
water clouds, because issues of crystal shape must be addressed. When HadAM3 was
defined, methods for generating single-scattering data for non-spherical particles were
not available, so data for ice particles were generated analogously to the approach for
water droplets, using the size distributions for ice particles given by Rockel et al. [1991]
with effective radii in the range 24 – 80 microns, weighting with the a Planckian function
at 250 K and using thin averaging. The functional form of Slingo and Schrecker [1982]
was used again: only data for type 1 were initially available. Since the definition of
HadAM3, progress has been made with the treatment of non-spherical particles. Type
7 invokes a treatment of ice crystals as planar polycrystals, based on the anomalous
diffraction approximation (see Kristjánsson et al. [1999] and Kristjánsson et al. [2000]).
In this case, the parameters represent a fit in terms of the mean maximum dimension
of the crystals. The mean maximum dimension is predicted in the model. At releases
up to 5.5, the use of this ice scheme automatically selects this method of specifying
the crystal size. Thickly averaged data are not available for non-spherical ice crystals.
(Technical Note: Kristjánsson et al. [2000] use tenth-order polynomial fits to the optical
properties, but the parametrization in this file is based on two splined quartic fits. The
two fits are to the same data, but the tenth order scheme was used in the paper for the
convenience of running a common scheme in CCM3 and the UM: the splined quartic fit
had already become part of HadAM4 when the tenth-order fit was developed.)

6. spec3a lw h4 meso2 is a spectral file designed for use with the mesoscale mode. Im-
portant Note: This file has been developed for use where speed of execution is critical
and the balance between speed and accuracy is very much toward speed, with minimal
numbers of k-terms being used for each gas. It is used operationally only for mesoscale
runs out to 36 hours and not for global or climate runs. Its use for off-line radiation
calculations is not encouraged.

The longwave spectral region is divided into five bands. The Planckian function in each
band is represented by a quartic fit in the temperature, generated by a least squares fit
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over the range 190 to 310 K.

Gaseous absorption by water vapour, ozone and carbon dioxide and nitrous oxide is
included. Version 2.1 of the CKD continuum is included. The self-broadened component
is represented explicitly, but the foreign-broadened component has been added to the
line data for water vapour and the k-terms represent a fit to the combined entity. The
spectroscopic data used in generating the absorption data come from HITRAN92.

Aerosols included comprise the five aerosols of the standard climatology (Cusack et al.
[1998]). The properties of aerosols depend on their nature and the size distribution.
Size distributions and optical properties for the climatological aerosols are specified as
in the standard WMO report (see Cusack et al. [1998] for details). The single scattering
parameters for aerosols are generated by running a Mie scattering code and averaging
over the assumed size distribution. The climatology is specified in terms of an optical
depth, but densities for the aerosols are not required or specified. However, the radiation
code works in terms of mass extinction coefficients, so a density must be assumed.
Provided that the same density is used in the code and in the generation of the spectral
file, its value is irrelevant and a conventional density of 1000 kgm−3 has been assumed.
If spectral data for the climatological aerosols are combined with mass-loadings specified
other than through the climatology, it is necessary to consider whether this density is
appropriate.

Data for water droplets were generated using a Mie scattering code. Whilst a single
size distribution may be assumed for each species of aerosol individually, size distri-
butions for droplets vary widely, depending on the location and moisture content of
the atmosphere. Some appropriate but variable measure of the size of droplet is re-
quired. For radiative purposes, the appropriate measure of size is the effective radius,
re. re may be parametrized or imposed (see section 1). The numbers in the spectral
file represent coefficients in a parametrization. They are generated by running a Mie
scattering code for a number of different size distributions at a range of wavelengths,
averaging the single scattering properties across the spectral bands, weighting with an
appropriate function of frequency and then fitting using some appropriate function of
the effective radius. This may clearly be done in many different ways, and to allow
general freedom, the concept of a type of droplet is introduced. Data for type 1 were
obtained by using the size distributions specified by Rockel et al. [1991] as the basis
of the Mie calculations. Weighting was carried out using a Planckian function at a
temperature of 250 K, and spectral averaging was carried out using the method of thin
averaging (Edwards and Slingo [1996]) and the functional form of Slingo and Schrecker
[1982] was used for fitting. Data for ice crystals have been generted analogously, using
the size distributions given by Rockel et al. [1991] as a basis and treating ice crystals
as spheres of ice. Fits were generated using a similar functional form. Note: In the
generation of this file, the full range of size distributions given by Rockel et al. [1991]
was used, including data for small particles. In the longwave region, this encompasses a
range of sizes much below those for which geometrical optics applies, in some instances
giving an increase in the extinction with particle size.



Chapter 4

Interface to the calling model

The interface to the core radiation code is designed to present a clear and logical structure
to the input and output fields. This is done by wrapping related variables into defined types.
All arguments passed to the routine radiance calc are contained within 8 defined types:

control: control options initially read in via a namelist

dimen: dimensions for arrays

spectrum: spectral discretisation and optical properties read in from the spectral file

atm: grid discretisation and atmospheric profiles of thermodynamic quantities and gas amounts

cld: cloud fields (fractions, mixing ratios and sub-grid structure)

aer: aerosol fields (mixing ratios for CLASSIC aerosols, optical properties for GLOMAP-
MODE aerosols)

bound: boundary conditions at top-of-atmosphere and surface (input fluxes, albedo/emissivity
etc)

radout: all output variables (fluxes and other diagnostics)

The first 7 defined types are INTENT(IN) and radout is INTENT(OUT). All variables
required or output by the code are contained within these types: modules are only used to
pass parameters, constants and type definitions.

The structure of the interface from the calling model (such as the UM) should look like
this:

CALL read_control -- sets up control (elements that are not time-step dependent)

CALL read_spectrum -- sets up spectrum by reading from a standard spectral file

81
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--- Begin loop over time-steps / calls to radiation -->

CALL set_control -- sets control for this call

--- Begin loop over OpenMP segments -->

CALL set_dimen -- sets dimen for segment

CALL set_atm --> CALL allocate_atm(atm, dimen), set atm

CALL set_cld --> CALL allocate_cld(cld, dimen), set cld

CALL set_aer --> CALL allocate_aer(aer, dimen), set aer

CALL set_bound --> CALL allocate_bound(bound, dimen), set bound

CALL radiance_calc(control, dimen, spectrum, atm, cld, aer, bound, radout)

--> CALL allocate_out(radout, dimen), calculate radout

--> Assign required variables from radout onto full model grid

DEALLOCATE(atm, cld, aer, bound, radout)

<-- End loop over OpenMP segments ---

<-- End loop over time-steps / calls to radiation ---

This structure is repeated for the SW and LW radiation calls.

The core radiation code will contain the interface definition comprising the routines:

read spectrum: a standard routine to read in spectral files that can then be used inter-
changeably between models

def spectrum, def control, def dimen, def atm, def cld, def aer, def bound, def out:

type definitions including associated allocate/deallocate routines (and netCDF read/write
routines in the future)

radiance calc and called routines: the core radiation code itself

The calling model will contain the routines to set the input variables:

set control, set dimen, set atm, set cld, set aer, set bound: these will USE the def
modules from the core code.
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