A characterization of the warm 1999 Arctic winter by observations and modeling: NO$_y$ partitioning and dynamics

Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Universität Karlsruhe, Karlsruhe, Germany

M. P. Chipperfield

School of the Environment, University of Leeds, UK

Received 15 August 2001; revised 21 November 2001; accepted 2 January 2002; published 5 October 2002.

[1] A characterization of the NO$_y$ partitioning in the warm Arctic winter 1998/1999 is given. Vertical profiles of nocturnal total reactive nitrogen (NO$_y$ = NO + NO$_2$ + HNO$_3$ + ClONO$_2$ + 2 N$_2$O$_5$ + H$_2$O$_2$NO$_2$) were retrieved from infrared limb emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding, Balloon-borne version (MIPAS-B) instrument inside a distortion of the winter Arctic vortex from Kiruna (Sweden, 68°N) on 27 January 1999. To estimate the dynamic effects, the mixing ratios of the tracers N$_2$O and CH$_4$ were derived to construct a correlation between these two long-lived species and to estimate the effects of mixing on the N$_2$O-NO$_y$ relationship. The measured data are compared to calculations performed with the three-dimensional chemistry transport models (CTMs) SLIMCAT and KASIMA. The results show that despite the warm winter 1998/1999 without significant occurrence of polar stratospheric clouds, the agreement between both the measurement and the models and among the models themselves is not satisfactory. It appears that in such a dynamically active winter, mixing processes on different scales which are hard to reproduce with coarsely resolved CTMs should be taken into account to explain the differences. Nevertheless, the results indicate that the chemistry which controls the NO$_y$ partitioning is not yet understood well under the studied geophysical situation. Furthermore, chlorine activation appears to be too crudely modeled when winter temperatures are marginal for polar stratospheric cloud formation.

INDEX TERMS: 0340 Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; 3334 Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics (0341, 0342); 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation; KEYWORDS: nitrogen partitioning, stratospheric dynamics, mixing processes, modeling, polar ozone, remote sensing

1. Introduction

[2] Nitrogen compounds (NO, NO$_2$, NO$_3$, HNO$_3$, ClONO$_2$, N$_2$O$_5$, HO$_2$NO$_2$) + (NO$_y$ = NO + NO$_2$ + NO$_3$ + HNO$_3$ + ClONO$_2$ + 2 N$_2$O$_5$ + H$_2$O$_2$NO$_2$) are involved in chemical processes leading to the destruction of ozone through rapid catalytic cycles. Reservoir species like HNO$_3$, ClONO$_2$, and N$_2$O$_5$ are able to remove reactive species like NO$_2$ for a certain time from fast chemical reactions. Hence, the partitioning of the individual species within NO$_y$ plays an important role in the chemistry of the winter and spring polar stratospheres.

[3] The main source of NO$_y$ is N$_2$O transported from the troposphere which reacts with O(1D) to form NO yielding a compact correlation between N$_2$O and NO$_y$. On the other hand, nitric oxide can be photolized and can react with atomic nitrogen causing a loss of NO$_y$. This loss reaction becomes more important at higher altitudes, thus both competing reactions will lead to a maximum in NO$_y$ in the middle stratosphere [see, e.g., Brasseur and Solomon, 1986].

[4] Major contributions to the understanding of stratospheric chemistry have resulted from the investigation of mechanisms which couple the photochemistry of the nitrogen, halogen, and hydrogen families. The coupling which changes the partitioning within the NO$_y$, Cl$_y$, and HO$_x$ families may occur via gas-phase or heterogeneous reactions [Hofmann and Solomon, 1989; Wennberg et al., 1994].
Though there has been substantial progress in the understanding of these processes, many important details need better explanations before trends in ozone can be understood and predicted [Solomon et al., 1998; Waibel et al., 1999]. Up to now, a quantitative understanding of the partitioning of the nitrogen species has not fully been achieved, although several comparisons have been made between measurements and 1-D, 2-D and 3-D model calculations.

[5] The NO$_x$/NO$_y$ ratios observed on board the ER-2 in 1991 during the Airborne Arctic Stratospheric Experiment-II (AASE-II) showed differences of up to 50% compared to a photochemical model integrated along back trajectories [Kawa, 1993]. A lack of understanding of heterogeneous reactions was suggested to account for the differences. Comparison of the data of the Upper Atmosphere Research Satellite (UARS) for three separate periods between August 1992 and March 1993 with predictions from a constrained version of the Goddard 2-D fixed circulation model showed that the model NO$_x$/NO$_y$ ratio is systematically lower, especially at higher altitudes [Morris et al., 1997]. Reaction rates and photolysis coefficients in this study were calculated using recommended values from DeMore et al. [1994], Randeniya et al. [1999] studied the partitioning of the NO$_y$ family using data obtained from the Halogen Occultation Experiment (HALOE) and a photochemical box model. The use of rate parameters obtained from DeMore et al. [1997] in the box model leads to an underestimation of the NO$_x$/NO$_y$ ratios by 15–35% between 24 and 32 km and 30°–75°N. It was concluded that the gas-phase processes which link NO$_x$ and HNO$_3$ were inadequately represented in the model. Similar results were found by using data from the Cryogenic Limb Array Etalon Spectrometer (CLAES) and the HALOE instrument compared with box model-calculated monthly averaged NO$_x$/NO$_y$ ratios and NO, NO$_2$, and HNO$_3$ profiles [Danilin et al., 1999].

[6] Since the partitioning of reactive nitrogen is controlled by gas phase and heterogeneous chemistry the atmospheric aerosol loading is important. By 1997 the aerosol loading enhanced by the Pinatubo eruption decreased to a background level [Thomason et al., 1997]. Nevertheless, ER-2 and balloon-borne measurements of the NO$_x$/NO$_y$ ratios in 1997 show higher values compared to box model simulations [Gao et al., 1999]. The agreement has been improved by including new rate constants for the OH + NO$_2$ and OH + HNO$_3$ reactions in the models [Brown et al., 1999a, 1999b; Dransfield et al., 1999; Portmann et al., 1999] instead using kinetic data of DeMore et al. [1997]. In Arctic summer and under very low aerosol loading conditions Osterman et al. [1997] obtained a promising agreement between observed and modeled NO$_x$/NO$_y$ ratios.

[7] HNO$_3$ measurements under a wide range of aerosol surface area densities made with the Smithsonian Astrophysical Observatory Far-Infrared Spectrometer 2 (FIRS-2) covering the period 1989–1997 were given in Jucks et al. [1999]. A comparison with a photochemical steady state model using kinetic data of DeMore et al. [1997] shows that HNO$_3$ is significantly overestimated by the model at altitudes above 22 km, with the difference increasing with increasing altitude and decreasing aerosol surface area density. Significantly higher NO$_x$/HNO$_3$ ratios were observed by the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) in November 1994 in the Antarctic vortex compared to model calculations [Lary et al., 1997]. Results of a photochemical model for the same ATMOS data set using newer kinetic parameters of DeMore et al., [1997] constrained additionally by measurements of the ER-2 aircraft and UARS data yielded a very good agreement for HNO$_3$ and NO$_x$ at all altitudes inside and outside the Antarctic vortex [Michelsen et al., 1999].

[8] Generally, the NO$_x$/HNO$_3$ ratio appears to be fairly well simulated under conditions of high-to-moderate aerosol loading, provided multiphase hydrolysis reactions (N$_2$O$_5$ + H$_2$O, BrONO$_2$ + H$_2$O) are included. This can be seen in post-Pinatubo NO$_x$ simulations indicating that NO$_x$ (NO/NO$_2$, NO$_2$/NO$_3$) steady state modeling agrees well with observations within experimental uncertainties [Sen et al., 1998]. Similar confidence is associated with constrained modeling of NO$_x$/N$_2$O$_5$ and NO$_2$/CINO$_2$ in the lower stratosphere [Gao et al., 1997]. Nevertheless, discrepancies in the order of 20% remain in the lower stratosphere and even larger errors are found in the middle stratosphere [Gao et al., 1999].

[9] Recent 3-D modeling work has shown that in contrast to steady state and constrained models, CTMs do not simulate NO$_x$ distributions very accurately in the stratosphere and that large variations exist among the models. Results of former MIPAS-B flights compared to 3-D model calculations performed with KASIMA (Karlsruhe Simulation model of the Middle Atmosphere) show discrepancies especially in the description of the minor species NO$_2$NO$_2$ and N$_2$O$_5$ [Wetzel et al., 2002]. Up to now 3-D CTMs generally overestimate denoxification processes inside the polar vortex resulting in low NO$_x$/NO$_y$ ratios [Lary et al., 1997; Wetzel et al., 1997; Payan et al., 1999].

[10] Together with Wetzel et al. [2002], this is the first paper showing the complete nighttime partitioning and budget of NO$_x$ together with N$_2$O in the Arctic along with results of two 3-D CTMs. Here, we study the warm Arctic winter 1998/99 which was characterized by a disturbed and dynamically active polar vortex. To estimate the dynamic effects the mixing ratios of the tracers N$_2$O and CH$_4$ were derived to construct a correlation between these two long-lived species and to estimate the effects of mixing on the N$_2$O-NO$_x$ relationship. Furthermore we give a characterization of the NO$_x$ budget and compare the results to the output of the two CTMs KASIMA [Kouker et al., 1999] and SLIMCAT [Chipperfield, 1999]. In the warm winter 1998/99 without significant occurrence of polar stratospheric clouds together with background aerosol levels, heterogeneous reactions should have played a minor role and we might anticipate good agreement between measurements and model calculations. It is shown that despite this fact the agreement between measurement and model calculations is not satisfactory.

2. Experimental Details

[11] Several types of the Fourier transform spectrometer MIPAS have been constructed for the simultaneous measurement of atmospheric trace gases [Fischer and Oelhaf, 1996]. The cryogenic balloon version MIPAS-B was developed to measure limb emission spectra under nighttime or polar winter conditions. The technical details of the instrument are described by Friedl-Vallon et al. [1999].
The flight on 27 January 1999 took place from Kiruna (68°N, 21°E) at night inside a distortion of the polar vortex. From a mean float altitude of 32.1 km, eight elevation angles were acquired from 0.71° to 4.65° corresponding to tangent altitudes from 31.4 km down to 10.1 km with a vertical spacing of about 3 km. The azimuth viewing direction was chosen in such a way that the measurement took place inside a tongue of polar vortex air (see Figure 1).

A limb sounding instrument with a spectral resolution of 0.07 cm\(^{-1}\) cannot resolve the shapes of vertical profile segments between two tangent altitudes. Therefore the independent parameters to be retrieved are partial slant path column amounts. Between two tangent altitudes the most probable profile form constrained to the retrieved partial column amount was assumed. A high-performance pointing system combined with a CCD star camera system allowed the determination of the tangent altitudes to better than 150 m within a 3-s confidence limit [Maucher, 1999]. Three spectral channels of the MIPAS-B instrument ranging from 763 to 981 cm\(^{-1}\), 1136 to 1351 cm\(^{-1}\), and 1576 to 1691 cm\(^{-1}\) were used to retrieve the trace gas profiles.

Data Analysis and Error Estimation

The steps to process the recorded interferograms to calibrated spectra including phase correction and spectral transformation are described by Trieschmann [2000]. Special emphasis was placed phase correction in order to achieve a good phase information over the entire range of the channel. Calibration of the spectra was based on recorded “deep space” (±20° elevation angle) and blackbody spectra. Residual atmospheric spectral features in the “deep space” spectra were eliminated to determine the instrumental offset. The gain function of the instrument is derived from the blackbody spectra and the related Planck functions. Calibration and characterization have been described in more detail by Friedl-Vallon et al. [1998], Kleinert and Friedl-Vallon [1998], Lengel et al. [1998], and Trieschmann and Friedl-Vallon [1998]. After apodization with the Norton and Beer “strong” function [Norton and Beer, 1976], the spectral resolutions ranged from 0.067 to 0.072 cm\(^{-1}\). The noise equivalent spectral radiance (NESRs), after averaging of 5 to 17 spectra recorded at the same elevation angles, range from \(1.0 \times 10^{-9}\) to \(4.5 \times 10^{-9}\) W/(cm\(^2\) sr cm\(^{-1}\)) depending on altitude and frequency.

Spectra were analyzed by an onion-peeling retrieval algorithm in combination with a multiparameter non-linear least squares fitting procedure, using the software package Retrieval of Atmospheric Trace gas profiles (RAT) [von Clarmann, 1994]. Line-by-line forward calculations were performed with the Fast Atmospheric Signature Code 2 (FASCOD2) algorithm [Clough et al., 1986], which had been modified for inclusion of temperature-dependent cross sections of heavy molecules [Wetzel et al., 1995]. A temperature-pressure first-guess profile was generated with the help of the European Centre for Medium-Range Weather Forecasts (ECMWF) temperatures as well as data from ozone sondes launched shortly before and after the MIPAS flight. The temperature retrieval was performed within selected microwindows of several CO\(_2\) transitions near 810 and 950 cm\(^{-1}\). Atmospheric parameters were fitted in microwindows.
with relevant spectral contributions of target species using HITRAN96 spectroscopic data [Rothman et al., 1998]. Improved spectroscopic data for HNO3 transitions in the ν5/2ν9 bands were included (J.-M. Flaud, private communication, 1997). Absorption cross sections for ClONO2 originate from Birk and Wagner [2000] and Oelhaf et al. [2001], which include temperature-pressure dependences.

The CO2 vertical profile was adjusted to its atmospheric abundance in the year 1999, while the initial guess profiles for the other relevant species represent polar vortex standard conditions.

HNO3 was retrieved within the ν5/2ν9 bands in the spectral interval between 864 and 874 cm⁻¹. Especially at lower altitudes, some interferences caused mainly by CCl3F and H2O occur. ClONO2 was analyzed within the Q branch region of the ν5/2ν9 bands from 779.7 to 780.7 cm⁻¹, while HO2NO2 was derived in the Q branch region of the ν5 band between 802 and 804 cm⁻¹. N2O5 was retrieved in the 1220 to 1270 cm⁻¹ region of the ν12 band in the second MIPAS channel. The N2O5 contribution is visible as a broadband pseudo-continuum. Besides N2O5, interfering species (e.g. CH4, N2O, O3, H2O, and COF2) are fitted simultaneously using the pseudo-continuum. Besides N2O5, interfering species (e.g. CH4, N2O, O3, H2O, and COF2) are fitted simultaneously using the pseudo-continuum.

Results From MIPAS-B With Associated Total 1-σ Errors on 27 January 1999*

<table>
<thead>
<tr>
<th>Pressure, hPa</th>
<th>HNO3, ppbv</th>
<th>ClONO2, ppbv</th>
<th>N2O5, ppbv</th>
<th>HO2NO2, pptv</th>
<th>NO2, ppbv</th>
<th>NOy, ppbv</th>
<th>CH2O, pptv</th>
<th>CH4, ppbv</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>2.3 ± 14%</td>
<td>1.04 ± 12%</td>
<td>1.71 ± 18%</td>
<td>27 ± 44%</td>
<td>3.4 ± 21%</td>
<td>10.1 ± 10%</td>
<td>12.1 ± 15%</td>
<td>0.41 ± 10%</td>
</tr>
<tr>
<td>11.7</td>
<td>7.1 ± 18%</td>
<td>1.26 ± 6%</td>
<td>1.97 ± 13%</td>
<td>62 ± 26%</td>
<td>1.4 ± 26%</td>
<td>13.7 ± 6%</td>
<td>21.2 ± 11%</td>
<td>0.43 ± 10%</td>
</tr>
<tr>
<td>19.5</td>
<td>10.3 ± 8%</td>
<td>1.22 ± 6%</td>
<td>0.49 ± 12%</td>
<td>28 ± 28%</td>
<td>0.1 ± 32%</td>
<td>12.6 ± 7%</td>
<td>55.7 ± 11%</td>
<td>0.71 ± 10%</td>
</tr>
<tr>
<td>32.5</td>
<td>10.6 ± 8%</td>
<td>1.16 ± 6%</td>
<td>0.08 ± 12%</td>
<td>27 ± 30%</td>
<td>–</td>
<td>11.9 ± 7%</td>
<td>86.5 ± 10%</td>
<td>0.83 ± 11%</td>
</tr>
<tr>
<td>51.7</td>
<td>9.9 ± 9%</td>
<td>1.23 ± 7%</td>
<td>0.05 ± 44%</td>
<td>8 ± 36%</td>
<td>–</td>
<td>11.3 ± 8%</td>
<td>98.1 ± 10%</td>
<td>0.87 ± 10%</td>
</tr>
<tr>
<td>85.7</td>
<td>5.4 ± 9%</td>
<td>0.69 ± 8%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6.1 ± 8%</td>
<td>210.7 ± 11%</td>
<td>1.34 ± 11%</td>
</tr>
<tr>
<td>148.5</td>
<td>1.9 ± 10%</td>
<td>0.14 ± 9%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.0 ± 9%</td>
<td>274.1 ± 12%</td>
<td>1.56 ± 11%</td>
</tr>
<tr>
<td>215.2</td>
<td>0.9 ± 10%</td>
<td>0.03 ± 19%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.0 ± 10%</td>
<td>299.0 ± 12%</td>
<td>1.68 ± 12%</td>
</tr>
</tbody>
</table>

*Abbreviations are as follows: ppbv, parts per billion by volume; pptv, parts per trillion by volume. dashes indicate no data available.

4. Model Calculation

Three-dimensional model calculations were performed with the chemistry transport models (CTM) SLIMCAT and KASIMA. KASIMA combines a diagnostic model up to the upper limit (10 hPa) of the ECMWF meteorological analyses with a mechanistic model of the middle atmosphere to account for a more realistic diabatic circulation [Kouker et al., 1999; Reddmann et al., 2001]. The model extends vertically between 10 and 120 km pressure altitude. The SLIMCAT model makes use of UKMO analyses (up to 0.4 hPa) and calculates the transport of the trace species on isentropic levels in contrast to KASIMA which uses pressure levels as vertical coordinate. SLIMCAT uses diagnosed heating rates for the description of the vertical transport. The vertical velocity in the KASIMA model is calculated from the divergence of the horizontal wind fields which are taken from ECMWF analyses. The KASIMA model has a horizontal resolution of 2.8° × 2.8° using 6-hourly wind fields while the SLIMCAT experiment used here has a resolution of 3.75° × 3.75° using 24-hourly wind fields. The reaction rate constants are calculated in both models using the JPL 1997...
recommended data with the updates of JPL 2000 [DeMore et al., 1997; Sander et al., 2000]. The seasonal model runs of KASIMA were initialized in the early winter of the corresponding year whereas the results of SLIMCAT had been obtained from a multi-annual run initialized in October 1991. The SLIMCAT run which is used in this comparison uses H$_2$SO$_4$ fields from a 2-D model [Chipperfield, 1999], while KASIMA uses SAGE II data [Thomason et al., 1997]. The SAGE II data used in KASIMA are more realistic than the 2-D model output used in SLIMCAT, because this 2-D model [Bekki and Pyle, 1994] does not reproduce the post-Pinatubo decay beyond 1995 and the model does not produce sufficient descent at high latitudes. For both CTMs the results of the model calculations were calculated for the mean tangent height location and mean time of the MIPAS measurements.

5. Results and Discussion

5.1. Meteorological Situation

[20] The winter 1998/99 was a dynamically active winter with a disturbed, weak vortex [Manney et al., 1999]. The measurement took place in a relatively cold period when the vortex was re-established after a strong warming event in December which had continued through the first 10 days of January. Temperature conditions below the threshold for PSC formation were only present during a small time period between the end of November and mid December. Hence temperatures were not cold enough to form polar stratospheric clouds (PSCs) type 1 (nitric acid trihydrate, NAT) or even type 2 (ice clouds) over extended time periods but often remained close to the NAT temperature threshold. To interpret the observed data, we used maps of Ertel's potential vorticity (EPV) on isentropic surfaces using the ECMWF data. To distinguish whether the measurement took place inside polar vortex air, EPV values of the vortex edge were calculated using the definition of the steepest gradient [Nash et al., 1996]. From this point of view the vortex is more compact in the upper levels, while at lower altitudes the vortex becomes more and more patchy. The EPV values for the polar vortex edge are given in Table 3 and are compared to values of the cold winter 1996/97 as given in Kondo et al. [1999]. The comparatively low values imply a weak polar vortex at all altitude levels.

[21] Although the distribution of EPV on isentropic surfaces indicates a more pronounced vortex at higher altitudes, the MIPAS profiles of the two tracers CH$_4$ and N$_2$O above 20 km (~50 hPa) indicate air masses of the vortex edge or strong mixing effects between midlatitude and vortex air masses, while below 50 hPa the comparatively low CH$_4$ and N$_2$O values suggest vortex air and a strong subsidence (see Figure 2). The observed structure is seen both in the MIPAS CH$_4$ (not shown) and in the N$_2$O profile. The SLIMCAT output of N$_2$O suggests a stronger subsidence over the entire altitude range compared to the measurement. In contrast KASIMA models significantly larger N$_2$O values. For comparison a MIPAS N$_2$O profile measured on 11 February 1995 [Oelhaf et al., 1996], well inside the polar vortex, is also shown revealing much lower volume mixing ratios above 50 hPa. The N$_2$O profiles are compared to an in-situ profile inside the polar vortex which was obtained one week later from the same location.

<table>
<thead>
<tr>
<th>Level, K</th>
<th>January 1999</th>
<th>Vortex Edge, PVU</th>
<th>February 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>675</td>
<td>202</td>
<td>169</td>
<td>200</td>
</tr>
<tr>
<td>625</td>
<td>137</td>
<td>108</td>
<td>–</td>
</tr>
<tr>
<td>550</td>
<td>86</td>
<td>63</td>
<td>90</td>
</tr>
<tr>
<td>475</td>
<td>39</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td>435</td>
<td>25</td>
<td>19</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>14</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

*From [Kondo et al., 1999]. Also given are the EPV values at the tangent altitudes. 1 PVU = 10$^{-6}$ km$^{-1}$ kg$^{-1}$ s$^{-1}$."

Though there is more structure in the in situ profile the two-pieced profile shape is also seen in this measurement [Müller et al., 2000].

[22] To investigate the observed structures, an analysis of backward trajectories of the air parcels measured on 27 January 1999 was made using the PV thresholds given in Table 3 to distinguish between inside and outside vortex air. The weakness of the vortex as compared to 1997 is evident. The trajectory analysis shows, that for all isentropic levels, the air masses had remained inside the vortex for the last 10 days prior to the observation. For the lowest altitude levels (350K and 380K) the PV values are close to the threshold, above that altitude they are always well above the thresholds. Hence the mixing events producing the signal of large tracer values above 20 km must have occurred earlier in the winter, most likely in the time of the strong minor warming at the end of December.

5.2. Tracer Correlations

[21] In this section we focus on the NO$_x$-N$_2$O relationship and the correlation of the two long-lived trace gases N$_2$O and CH$_4$. The correlation between the two long-lived tracers N$_2$O and methane is shown in Figure 3. The solid line represents a mean midlatitude correlation derived from ATOMS data [Michelsen et al., 1998]. The symbols are the results derived from MIPAS observations made inside the Arctic vortex in January 1999 and at midlatitudes in April 1999. A compact linear correlation is found for the winter flight. The results of the April flight fit the midlatitude reference correlation very well. Deviations from this correlation are obvious in the altitude region of a filament at 14.1 hPa corresponding to N$_2$O values of about 40 ppbv.

[24] The NO$_x$ values are plotted versus the N$_2$O values in Figure 4. The solid line marks a mean midlatitude correlation derived from ATOMS data [Michelsen et al., 1998]. For comparison an ATOMS correlation based on measurements outside the polar vortices is given [Sugita et al., 1998]. The symbols indicate the results derived from MIPAS observations made inside the Arctic vortex in January 1999 and at midlatitudes in April 1999. For the winter measurement below 19 km (above ~100 ppbv N$_2$O) the observed NO$_x$ mixing ratios agree very well with those calculated using the ATOMS midlatitude NO$_x$-N$_2$O correlation. Above 19 km the NO$_x$ values are up to 2.5 ppbv lower than the reference correlation. This deficit cannot be attributed to denitrification because temperatures were not cold enough to form polar stratospheric clouds type 1 or even type 2 over a sufficiently long time period. The
Figure 2. N_2O volume mixing ratios measured by MIPAS-B on 27 January 1999 (solid line with symbols) and modeled by KASIMA (dashed line) and SLIMCAT (dotted line). An in situ observation (BONBON) [Müller et al., 2000] 9 days after the MIPAS flight shows a similar characteristic of the air masses. For comparison a MIPAS N_2O profile measured well inside the polar vortex on February 11, 1995 is shown, too.

Figure 3. CH_4-N_2O correlation measured by MIPAS-B on Jan. 27, 1999 and April 30, 1999. Two mixing lines for the data points measured at 22.2 and 25.2 km are given. The points where the mixing lines intersect the extra-vortex reference correlation (marked with circles with cross) denote the air masses that have mixed within a single event to produce the properties at the two marked data points. The extra-vortex reference correlation [Michelsen et al., 1998] is in good agreement with the data of the April flight.
deviation is attributed to subsidence and mixing processes of vortex air masses with extra-vortex air. The correlation of the two source gases N\textsubscript{2}O and CH\textsubscript{4} (not affected by denitrification) helps to estimate the amount of quasi horizontal mixing of two air masses along isentropic surfaces \cite{Waugh et al., 1997; Michelsen et al., 1998; Rex et al., 1999}. If a single mixing event across the vortex edge occurred, the air masses at the measured point at 22.2 km (see Figure 3) should have mixed with air outside the vortex at the same (potential temperature) altitude. This out-of-vortex N\textsubscript{2}O value we chose from a standard out-of-vortex profile published by \cite{Michelsen et al., 1998} yielding the first end member on the standard midlatitude correlation in Figure 3 (circle with cross at 150 ppbv N\textsubscript{2}O). The straight dashed line through this end member and the measured data point intersects the midlatitude correlation at the second inner vortex end member (circle with cross at 13.1 ppbv N\textsubscript{2}O) to create the mixing line. This mixing line can be transferred into the N\textsubscript{2}O-NO\textsubscript{y} space in Figure 4 with the end members at 150 ppbv N\textsubscript{2}O and 13.1 ppbv N\textsubscript{2}O on the ATMOS midlatitude correlation. The measured data point at 22 km in Figure 4 lies on this mixing line within the error bars. Therefore the deviation from the ATMOS midlatitude correlation can be explained by the combined process of diabatic descended air and quasi-horizontal mixing across the vortex edge. This kind of approach could be interpreted as an ‘upper limit’ of possible mixing assuming a single mixing event which in reality might have taken place in several mixing events or even continuously \cite{Plumb et al., 2000}. Equal to the scheme described above, the mixing line for the data point at 25.2 km was transferred to the N\textsubscript{2}O-NO\textsubscript{y} space.

\[25\] The open symbols illustrate the situation in spring 1999 at midlatitudes. At this time, the MIPAS measurement very closely follows the ATMOS N\textsubscript{2}O-NO\textsubscript{y} Northern Hemisphere correlation (within the 1-\sigma error confidence limit). The slight deviation from the correlation between 29 and 33 km (corresponding to 25 to 45 ppbv N\textsubscript{2}O) is a hint that the undisturbed midlatitude conditions are not yet re-established at this time. Actually, at this altitude level a remnant filament of polar vortex air is also seen in the midlatitude N\textsubscript{2}O profile (not shown here).

5.3. NO\textsubscript{y} Partitioning: A Comparison With 3-D CTMs

\[26\] After recording data sets of the partitioning of NO\textsubscript{y} in the cold winters 1994/95 and 1996/97 \cite[see, e.g.,][]{Oelhaf et al., 1996, 2000; Wetzel et al., 1997, 2002} inside a very strong vortex, we are now able to investigate the NO\textsubscript{y} budget in an unusually warm winter with a disturbed but re-established vortex. The complete partitioning and budget of NO\textsubscript{y} measured on 27 January 1999 compared to model calculations performed with the 3-D CTMs SLIMCAT and KASIMA is depicted in Figure 5.

\[27\] The HNO\textsubscript{3} profile shows a distinct and broad maximum up to 11.8 ppbv around 22.2 km (\approx 33 hPa). This is fairly consistent with the model calculations. The
SLIMCAT model results reveal an even broader maximum and above 28 km this model overestimates the amount of HNO₃. In contrast, the KASIMA model shows an underestimation of HNO₃ in this altitude region. Below this altitude, there is a quite good agreement between the measurement and the model outputs. A reasonable agreement had also been seen between the MIPAS profile and the results of the ASUR instrument obtained on the FALCON aircraft that was coordinated with the MIPAS-B flight [von König et al., 2002]. The large mixing ratios of HNO₃ result from strong denoxification processes (conversion of NOₓ to HNO₃ mainly via N₂O₅) during the polar winter.

[28] The broad maximum of the ClONO₂ profile between 19 and 28 km could be explained by a combination of two effects: (1) The upper part of the maximum is caused by the midlatitude character of the air masses which is also seen in the tracer profiles. (2) The lower part of the maximum results from the recombination of previously activated chlorine with NO₂. This chlorine activation is likely to have happened during the short cold period at the beginning of December. With the beginning photolysis of HNO₃, the resulting NO₂ reacts rapidly with ClO to form ClONO₂ yielding a second maximum at about 20 km altitude. The SLIMCAT model clearly overestimates the amount of ClONO₂ in the whole altitude region whereas KASIMA underestimates ClONO₂ especially in the altitude region between 16 and 20 km. This could be explained by differences in the temperature fields used in the CTMs resulting in different amounts of chlorine activation especially in situations where the temperatures were close to the NAT threshold.

[29] Below 28 km the amount of N₂O₅ rapidly decreases with decreasing altitude due to the fact that the lower stratosphere is highly depleted in NOₓ. SLIMCAT clearly underpredicts the amount of N₂O₅ in the stratosphere. This could be partly explained by the overestimation of the reaction N₂O₅ + H₂O(s) → 2 HNO₃(s) owing to the overestimation of the aerosol loading in the model. The aerosol loading in the SLIMCAT model is higher compared to the SAGE II data by a factor of 4 at 17 km. Whereas above the maximum the coincidence between the modeled HO₂NO₂ profiles is quite good, the profiles below this altitude differ significantly with both models which overestimate the amount of HO₂NO₂ by more than a factor of two.

[30] In contrast to former results, the winter 1999 NO₂ SLIMCAT model output is in line with the results of MIPAS-B. The KASIMA results even show an overestimation of NO₂ which is a very uncommon feature which might be caused by the underestimation of ClO. NO₂ is quite important because chlorine radicals are passivated rapidly by NOₓ. The amount of NOₓ controls, therefore, the efficiency of catalytic ClO cycles destroying ozone.

[31] Since the modeled total reactive nitrogen (NOₓ) may be uncertain due to its dependence on the initialization and long timescale transport, and to separate a first order dynamical from chemical effects, the ratios X/NOₓ (X = HNO₃, ClONO₂, 2N₂O₅, H₂O₂NO₂, NO₂) are shown in Figure 6.

[32] The ratio HNO₃/NOₓ is reproduced by the two models quite well both in shape and value. The increasing
discrepancies with differences up to 40% between the two models above 25 km is owing to the different amounts of aerosol loading. The SLIMCAT model clearly overestimates the ratio ClONO\textsubscript{2}/NO\textsubscript{y} above 16 km by up to 80% whereas KASIMA underestimates this ratio especially in the altitude region between 15 and 20 km by up to 60%.

[34] In contrast to former results the winter NO\textsubscript{2}/NO\textsubscript{y} SLIMCAT model output is in line with the results of MIPAS-B, while the KASIMA model results even show an overestimation. The ratio N\textsubscript{2}O\textsubscript{5}/NO\textsubscript{y} is underestimated by SLIMCAT over the entire altitude region by a factor of 4. For KASIMA an overestimation by about 60% is found between 31 km and 22 km, but below 22 km the model also shows too low N\textsubscript{2}O\textsubscript{5}/NO\textsubscript{y} ratios. These differences between the two models could be explained by the fact that KASIMA assumes a lower aerosol loading than SLIMCAT above about 13 km.

[35] The ratio HO\textsubscript{2}NO\textsubscript{2}/NO\textsubscript{y} is overestimated by both models, which is a common feature, that is found in all comparisons between MIPAS-B results and model calculations [see, e.g., Wetzel et al., 1997, 2002]. The overestimation of the HO\textsubscript{2}NO\textsubscript{2}/NO\textsubscript{y} ratio in the models could possibly be explained by a new HO\textsubscript{2}NO\textsubscript{2} photolysis pathway in the near infrared region not included in the models but postulated recently [Salawitch et al., 2002]. The expected lower sunset values of HO\textsubscript{2}NO\textsubscript{2} will result therefore in lower nighttime values.

6. Conclusions

[36] A characterization of the NO\textsubscript{y} partitioning in the warm Arctic winter 1998/1999 was given. The MIPAS measurement on 27 January 1999 shows profiles of air masses with different character below and above 500 K clearly visible in the profiles of the long-lived trace gases N\textsubscript{2}O and CH\textsubscript{4}. Above 475 K the NO\textsubscript{y} values are up to 2.5 ppbv lower than the reference correlation. This deficit can be attributed to mixing processes of subsided vortex air masses with extra-vortex air. The given mixing lines constructed with the help of the MIPAS CH\textsubscript{4}–N\textsubscript{2}O correlation can explain the deviations very well. Although temperatures were above the NAT thresholds for most of the time, the models, using currently recommended kinetic and photochemical parameters, fail to account for the observed partitioning within the NO\textsubscript{y} family. Also, the agreement between the two CTMs KASIMA and SLIMCAT is not satisfactory. In particular, the description of the minor species HO\textsubscript{2}NO\textsubscript{2} and N\textsubscript{2}O\textsubscript{5} is not sufficient. The comparisons discussed above have clearly demonstrated that under such circumstances the understanding of the NO\textsubscript{y} chemistry and our ability to model it is not satisfactory. It appears that part of this difficulty may be explained by the relatively warm, dynamically disturbed Arctic winter 1998/1999. During some periods of this winter stratospheric temperatures were close to the NAT threshold; in such a case the degree of chlorine activation is very sensitive to the model temperature. Another problem arises from the dynamic instability of the vortex which probably led to mixing processes on different scales which cannot be reproduced with coarsely resolved CTMs. Also other numerical problems like numerical mixing in the transport scheme in strong gradient regions should be taken into account. In any case, the synopsis of results from various geophysical situations indicates that the NO\textsubscript{y} chemistry itself is not yet understood well, an issue which requires further attention in view of its importance for the fate of stratospheric ozone.

[37] Acknowledgments. The work presented in this paper was funded in part by the CEC Environmental Program (contract EV5V-CT93-0331) and the German Ozone Research Program (BMBF grant 01 LO 9401/9). We are grateful to the CNES launching team and the staff of the SSC Esrange for the excellent balloon operations and logistical support as well as ECMWF to provide us with meteorological data via NILU. We thank
References

M. P. Chipperfield, School of the Environment, University of Leeds, LS2 9JT, UK. (martyn@env.leeds.ac.uk)