Chemistry-climate model simulations of a mesospheric lower-thermospheric source of nitrous oxide

C. W. Kelly¹, M. P. Chipperfield^{1,2}, J. M. C. Plane³, W. Feng^{1,2,3}, P. E. Sheese⁴, K. A. Walker^{4,5}, and C. D. Boone⁵

¹School of Earth and Environment, University of Leeds, Leeds, UK, ²National Centre for Atmospheric Science (NCAS), UK, ³School of Chemistry, University of Leeds, Leeds, UK, ⁴University of Toronto, Toronto, Ontario, Canada, ⁵University of Waterloo, Waterloo, Ontario, Canada

> SEE-Chem 25th April 2018

> > Contact: eecwk@leeds.ac.uk

Outline

- Background
- N₂O production mechanisms
- First satellite observations
- Partial parameterisation
- Model setup
- Results
- Summary

Space Shuttle Endeavour at the stratopause Credit: NASA

UNIVERSITY OF LEEDS

Ozone destruction

- N_2O is precursor of middle atmos. NO_y $N_2O + O(^1D) \rightarrow 2NO$ • NO_y destroys stratospheric O_3 : $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O \rightarrow NO + O_2$ Ozone hole
- Previously assumed only surface sources of N₂O
- Mesospheric lower-thermospheric sources now identified

Credit: NASA

- Zipf and Prasad (1982) postulated:
 - Excited N₂ from EEP or photoelectrons $N_2(X^1\Sigma_g^+) + e^- \rightarrow N_2(A^3\Sigma_u^+) + e^-$ - Reaction with O₂ $N_2(A^3\Sigma_u^+) + O_2 \rightarrow N_2O + O$ ACE-FTS
- Produces N₂O at around 95km
- But ~25 years without high-altitude infrared satellite observations to verify, until ACE-FTS

Credit: ACE - University of Waterloo

ENVIRONMENT

- Semeniuk et al. (2008) reported N₂O VMRs of ~5 ppbv at around 55 km using ACE-FTS data
 - Suggested production mechanism at around **75 km**:

$$N(^{4}S) + NO_{2} \rightarrow N_{2}O + O$$

- Initially seen as upper atmospheric N₂O source
- WACCM code already has... **M1:** $N(^{4}S) + NO_{2} \rightarrow N_{2}O + O$

Semeniuk et al. (2008)

• New mechanism...

M2:
$$N_2(A^3\Sigma_u^+) + O_2 \rightarrow N_2O + O$$

Zipf and Prasad (1982)

- Sheese et al. (2016) provided first satellite obs. of 95 km N₂O with ACE-FTS
 - Reported maximum N₂O VMRs of 49 ppbv at 94.5 km

Inclusion of M2 in WACCM:

EEP contribution

- Partially parameterise
- Efficiency (β) factor from steady-state assumption

Photoelectron contribution

 N₂(A³Σ_u⁺) prod. rate from NCAR GLObal airgloW model (Solomon, 2017) Steady state assumption:

$$\frac{d[N_2O]}{dt} = Prod. - Loss \cdot [N_2O]_{obs} = 0$$

Total prod. rate: *Prod.* = $(Prod._{photo} \cdot \alpha) + (Prod._{EEP} \cdot \alpha)$

Verified by second estimate based on first principles:

- Lab. measurements of integrated cross section (ICS)
- Excitation of $N_2 \rightarrow N_2(A^3 \Sigma_u^+)$ and the ionisation of N_2
- Convolved with auroral electron energy spectra
- β≈**0.4**

$$\beta = \frac{Loss \cdot [N_2O]_{obs} - (Prod._{photo} \cdot \alpha)}{(I_{MEE} + I_{aur}) \cdot \alpha} \approx 0.5$$

Model setup

Simulation/ configuration	N ₂ (A ³ Σ _u ⁺) production via EEP	N ₂ (A ³ Σ _u ⁺) production via photoelectrons	(M2) $N_2(A^3\Sigma_u^+) + O_2$ $\rightarrow N_2O + O$	(M1) N(⁴ S) + NO ₂ → N ₂ O + O	GLOW coupled
Standard	On	On	On	On	Yes
Control_0	Off	Off	Off	Off	No
Control_1	On	On	On	Off	Yes
Control_2	Off	Off	Off	On	No
Sensitivity_E	On	Off	On	On	No
Sensitivity_P	Off	On	On	On	Yes

WACCM changes:

• $N_2(A^3\Sigma_u^+)$ tracer added

All simulations completed over 2013

• M2 and other depletion routes included

Latitude cross-sections (1/2)

UNIVERSITY OF LEEDS

Latitude cross-sections (2/2)

NERO

Altitude profiles

NERC

- In-situ N₂O production in the mesosphere lowerthermosphere
- Excited N₂ from EEP or photoelectrons reacts with O₂ to form N₂O
- Added into WACCM via partial parametrisation
- Model replicates observed vertical, latitudinal and seasonal profile
- EEP dominant at poles, photoelectrons dominant at mid and low latitudes