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Influences on Spring and Summer-time 
Tropospheric Ozone in Western Siberia, 

and the Russian Arctic.
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Climate
• Greenhouse gas which has a net positive radiative forcing since pre-industrial. 

Accounts for 20-25% of total radiative forcing from greenhouse gases (Monks 
et al., 2009)

• Lifetime 1-2 weeks in remote troposphere.

Air Quality
• 142 000 premature deaths globally in 2010, 358 000 in 2050 (Lelieveld, 2015)

• Agricultural damage (reduction in carbon uptake and photosynthesis) 
(Wilkinson, 2012)

Motivation - Tropospheric Ozone (O3)

IPCC, 2013
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• Sources:

– Secondary pollutant predominantly formed from in-situ photochemical production

• NO2 + hv ➔ NO + O (R1)
• O + O2 + M ➔ O3 + M (R2)

– Transport from Stratospheric downwelling 

• Sinks:
– OH precursor

• O3 + hv ➔ O2 + O(1D) (R3)
• O(1D) + H2O ➔ 2OH (R4)

– Polluted Environment

• O3 + NO ➔ NO2 + O2 (R5)

– Dry deposition

Tropospheric O3
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Arctic warming disproportionately relative to mid-latitudes

Long Term Forcers 

• Primarily controlled by radiative 
forcing from well-mixed 
greenhouse gases (CO2 , CH4)

Short Term Forcers

• Short-lived Climate Pollutants 
(SLCPs) also contribute to 
Arctic warming

• Tropospheric Ozone Precursors 
and Black Carbon 

• Increase in local SLCPs –
seasonal differences

Motivation – The Arctic

Arctic Amplification (Overland et al., 2016)
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Motivation – The Arctic

Ozone precursor and aerosol emissions by major economic sector for 2010 (AMAP, 2015)
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Spring / Summer Transport

• Spring:
– Low level import of Eurasian pollution. Main pathway across Siberia into Russian Arctic.

– Inefficient removal of pollution leading to Springtime peak (Arctic Haze)

• Summer: 
– Removal of pollutants greater during summer (wet + dry deposition)

– Wind direction change, and greater vertical mixing in Arctic vertical column

AMAP, 2015
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Aim: To evaluate processes controlling  
regional ozone distribution over Western 
Siberia during the spring and summer-time. 

Objective 1: Assess the influence of seasonal differences on 
ozone composition through the use of a regional chemistry-
transport model and satellite data. 

Objective 2: Through model sensitivity studies we aim to 
quantify the impact of different ozone source/sink processes 
in the region.

Aims & Objectives
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Model Setup

• WRF-Chem 3.7.1

• Horizontal Res: 30km
• Vertical Levels: 33

• Gas-Phase Chem: MOZART 4
• Aerosol Scheme: MOSAIC 4-Bin
• Photolysis Scheme: Madronich 

FTUV

• Biogenic Emissions: MEGAN
• Fire Emissions: FINN
• Anthropogenic Emissions: EDGAR 

HTAP v2 • Simulations for 01.02.2011 
– 30.09.2011

Model Domain, major cities marked in black, observation sites 
marked in blue. 
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Initial Results

Feb, Mar, Apr
May Mean

Jun, Jul, Aug, 
Sep Mean

Mean Wind Speed and Direction Mean Surface O3
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Model Evaluation

Feb Mar Apr May Jun Jul Aug Sep

Observations

Model 
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Model Evaluation 

Tiksi Tomsk Varrio ZOTTO
M = 4.0

M = 4.3

M = -20.6

M = -12.6

M = -10.3

M = -2.7

M = -5.4

M = -1.1

M = Median
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• Dutch Ozone Monitoring Instrument for NO2 

(DOMINO), on board NASA’s Aura satellite (13:30 
local time passing).

• Uses Differential Optical Absorption Spectroscopy 
(DOAS) to make UV-visible measurements. 

• Provided with quality checked Tropospheric Column 
NO2 at high resolution 

• For direct WRF-Chem comparison averaging 
kernels applied to model, as OMI sensitivity differs 
through the tropospheric column. 

OMI NO2 Comparisons
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Model Evaluation

Model

Apr 
May

Jun
July

Aug 
Sep

Satellite
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Model Evaluation

Apr 
May

Jun 
July

Aug 
Sep

Mean Bias (Model - Sat)
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Model Evaluation

City Mean Bias : (Model – Sat)/Sat 

T            T           I              I              T             T              I             T             I            I



16
Tom Thorp

16

• Current setup using EDGAR HTAP 2
• Not well represented at high latitudes, potential 

missing sources. 

• Setting up WRF-Chem to use ECLIPSE V5a, 
which is most frequently inventory used for high-
latitude regional studies 

• Better representation of high-latitude emissions

Future Work – Anthropogenic Emissions 
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• Upper troposphere reactions 
impacted by uncertainties in 
NO/NO2 reaction rates

• Figures 1 + 2 show GEOS-Chem 
output with JNO2 – 20%, 1.4k1 

• NO2 photolysis rate decreased by 
20%

• Temperature dependence of the 
NO + O3 rate constant k1 
increased by factor of 1.4 

• Problem with modelling NO/NO2
in Antarctica. 

Future Work – NO / NO2  Cycling Rates  

Fig 
1

Fig 
2

Silvern et al., 2018
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• Large parts of Siberia dominated by boreal forests –
potentially significant surface O3 sink.

• Uncertainty regarding impact of earlier growing season –
will increase annual cumulated ozone uptake

Future Work – Dry Deposition 

Height Source O3 mixing 
ratio (ppbv)

3000-6500m Aircraft 67
3000m-surface Aircraft 32

surface Surface Obs 18
Surface Train 27 Stjerngberg et al., 2012
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• WRF-Chem output for 8 month period in 2011, 
and evaluated results against ground 
observations and satellite data.

• Found that over polluted areas model is 
potentially underestimating 

• Next steps involve changing anthropogenic 
emissions, and investigating reaction rates and 
dry deposition 

Conclusions
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Extra Slides – FMAM Diurnal 
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Extra Slides – JJAS Diurnal



23
Tom Thorp

23

Surface Temperature

• Mean = -22.6 (250.6K) Mean = -12.6(260.6K)


