Improving understanding of secondary pollutant formation in London and Beijing through radical observations and model comparisons

Lisa Whalley

Poor air quality making headlines

Global pollution kills 9m a year and threatens 'survival of human societies'

Landmark study finds toxic air, water, soils and workplaces kill at least 9m people and cost trillions of dollars every year

Ø A Bangladeshi rickshaw puller rides past smoke created by burning waste materials on a street in Dhaka. Photograph: Anadolu Agency/Getty Images

Deaths from pollution dwarf many other major causes

Global deaths by cause in 2015, millions

Beijing smog: pollution red alert declared in China capital and 21 other cities

Authorities issue five-day warning and order schools to close, residents to stay indoors and heavy industry to slow or halt production

() A photo taken from the China Zun, a skyscraper under construction in Beijing, shows the city being shrouded in heavy smog on Friday. Photograph: VCG via Getty Images

38,000 people a year die early because of diesel emissions testing failures

Global inventory of nitrogen oxide emissions shows highly polluting diesel cars are 'urgent public health issue'

Sadiq Khan triggers alert for high air pollution in London

Capital is given emergency warning as polluted air from the continent combines with toxic air at home

Condon's pollution alert has been issued seven times in the last 13 months. Photograph: Harriet /ce/GuardianWitness

UK has second-highest number of deaths from NO2 pollution in Europe

Only Italy has more annual deaths from nitrogen dioxide, according to a report by the European Environment Agency

Air quality in London and Beijing

Formation of secondary pollutants

• OH mediates virtually all of the oxidative chemistry in the atmosphere

- OH initiates the removal of primary emitted trace species which are directly harmful to humans
- OH initiated oxidation of VOC, HCHO and CO generates peroxy radicals which by reaction with NO form NO₂ resulting in the pollutant

Radical measurements

RO_xLIF

Reactor

CO (+NO)

HO_x Cell

FAGE Cell 1: OH HO_2 RO_xLIF Cell 2: HO_2+RO_2 (NO on in reactor) HO_2^* (NO off in reactor)

OH reactivity instrument

OH reactivity (k'_{OH}) is the rate of OH loss in ambient air

- Direct measurement of the total OH sink

Master Chemical Mechanism

• The Master Chemical Mechanism is a near-explicit tropospheric chemical mechanism describing the complete gas-phase degradation of **135** primary emitted VOCs and the resultant generation of ozone and other secondary pollutants

		Model parameters
22 alkanes (C ₁ -C ₁₂)	18 alcohols and glycols (C ₁ -C ₆)	T, P, H ₂ O, NO, NO ₂ , O ₃ , CO
16 alkenes (C ₂ -C ₆)	10 ethers and glycol ethers (C ₂ -C ₇)	HONO, surface area, mixing height
2 dialkenes (C ₄ -C ₅)	8 esters (C ₂ -C ₆)	Alcohols $C1 - C4$ (4)
2 monoterpenes (C ₁₀)	3 carboxylic acids (C_1-C_3)	
1 alkyne (C.)	$2 \text{ other oxygenates } (C_{\bullet})$	Alkanes, C1 – C12 (15)
$1 \text{ arkyle} (0_2)$		Alkenes, C2 – C5 (8)
18 aromatics (C_6 - C_{11})	15 chlorocarbons (C_1 - C_3)	Alkynes, C2 (1)
6 aldehydes (C ₁ -C ₅)	2 bromocarbons (C ₁ -C ₂)	,,,,,
10 ketones (C ₃ -C ₆)		Carbonyls, C1 – C6 (12)
		Aromatics, C6 – C9 (16)
		Dialkenes, C4 – C5 (2)
c.a. 6700 species; 16700 reactions		Monoterpenes, α-pinene, limonene
		Hydrochlorocarbons, (2)
		Esters, (2)

• Rate constants and product branching ratios are taken from the latest experimental/theoretical data or are estimated from structure activity relationships (SARs).

Clearflo (Clear Air for London) North Kensington, London, 2012

Summer (Jul/Aug) and Winter (Jan/Feb) campaigns

Large project involving long term composition and met. measurements at several sites (upwind, downwind, BT Tower, rooftops), plus IOPs

ClearfLo – some findings so far..

Winter

2110

Summer

Diesel-related hydrocarbons can dominate gas phase reactive carbon in London

Dunmore et al. Atmos. Chem. Phys., 15, 9983, 2015

ClearfLo – some findings so far..

Oxidised products of biogenic VOC important for OH reactivity budget

Whalley et al. Atmos. Chem. Phys., 16, 2109, 2016

Summer ClearfLo measurements and conditions

NATURAL ENVIRONMENT RESEARCH COUNCIL

Radical Observations

NATURAL ENVIRONMENT RESEARCH COUNCIL

Radical measurement diurnals

PSS calculation, measurement comparison

Model measurement radical comparison

NATURAL ENVIRONMENT RESEARCH COUNCIL

Model measurement agreement as a function of NO

- Missing HO₂ radical sinks under low NO_x
- Reasonable agreement between HO₂ model and observations at higher NO_x levels, but increasing under-prediction of RO₂ (also in Beijing during the winter)

Model measurement radical comparison

National Centre for Atmospheric Science

First order loss of $HO_2 = 0.3 \text{ s}^{-1}$

NATURAL ENVIRONMENT RESEARCH COUNCIL

First order loss of HO₂ = 0.3 s⁻¹, γ_{HO2} = 1

Modelled radical flux

mean daytime (11am – 3pm, black and 6am – 9pm, red) rates of reaction for formation, propagation and termination of radicals in units of 10⁵ molecule cm⁻³ s⁻¹.

- Missing HO₂ termination?
- Uncertainties in RO₂ to HO₂ propagation?
- Is autoxidation relevant for the complex RO₂ deriving from diesel and mono-terpene VOCs?

Impact of model uncertainties on in-situ ozone production

Airpro – An Integrated Study of AIR Pollution PROcesses in Beijing

- Part of the Air Pollution and Human Health in a Chinese Megacity programme (APHH).
- Involved winter (Nov, Dec 2016) and summer (May, June 2017) intensive field observations.
- Aimed to better understand the chemical and physical processes responsible for the frequent haze events (winter) and high ozone episodes (summer).
- Goal to improve numerical model used to predict air quality and to develop effective air pollution control strategies.

Radical time-series - November

Radical time-series - December

Average diurnals of radicals

Reasonably high levels of OH despite low j(O¹D)

k(OH) measured and calculated from co-located VOCs, NO_x and CO

Radical diurnals inside and outside of haze events

National Centre for Atmospheric Science NATURAL ENVIRONMENT RESEARCH COUNCIL

OH and peroxy radicals as a function of $PM_{2.5}$

Photostationary steady state OH calculation

Model - Winter

Model - Winter

Radical measurements and MCM model diurnal

www.ncas.ac.uk

NATURAL ENVIRONMENT RESEARCH COUNCIL

Missing sulphate formation mechanism in models

Missing sulphate formation mechanism in models, with novel aqueous phase oxidation mechanisms recently postulated.

In addition to this aqueous phase oxidation process involving NO₂, our observations highlight that the OH generated (potentially from the HONO formed via this mechanism) could further enhance sulphate formation during haze events. This gas-phase oxidation process remains active despite the reduction in photolysis rates.

Wang et al., PNAS, 2016

Conclusions

- Poor representation of chemistry of complex VOCs deriving from biogenic sources and diesel
- Significantly more ozone production predicted using modelled peroxy radical concentrations vs those measured at a time when ozone destruction (by NO titration) is slow
- Under high NO_x, model predicts lower ozone production than calculated from peroxy radical observations
- Model under-predicts OH, even when constrained to the observed HONO, due to the large under-prediction of peroxy radicals, highlighting a poor understanding of the gas phase oxidation chemistry under high NO_x conditions and within haze

Acknowledgements

ClearfLo participants: Daniel Stone, Dwayne Heard, James Hopkins, Rachel Dunmore, James Lee, Jacqueline Hamilton, Alistair Lewis, Paul Williams, Jörg Kleffmann, Sebastian Laufs

Airpro participants: Eloise Slater, Chunxiang Ye, Robert Woodward-Massey, Leigh Crilley, Louisa Kramer, William Bloss, Tuan Vu, James Hopkins, Rachel Dunmore, Jacqueline Hamilton, James Lee, Freya Squires, Alistair Lewis, and Dwayne Heard

FAGE Cell 1: OH HO_2 RO_xLIF Cell 2: HO_2+RO_2 (NO on in reactor) HO_2^* (NO off in reactor)

FAGE Cell 1 with Inlet pre-injector (IPI):

 $\mathrm{OH}_{\mathrm{CHEM}}$ and $\mathrm{OH}_{\mathrm{WAVE}}$

Woodward-Massey et al., in prep.

OHchem and OHwave

