

Chemistry-climate model simulations of a mesospheric source of nitrous oxide

SEE-Chem talk 11th April 2017

Chris Kelly¹, Martyn Chipperfield¹, John Plane¹, Wuhu Feng¹, and David Jackson²


¹University of Leeds, ²Met Office

- N₂O as precursor to ozone destruction
- Upper-atmospheric N₂O production mechanisms
- Verifying feasibility of a mesospheric source
- WACCM model to ACE-FTS satellite comparisons
- Future work

3

Nitrous oxide (N₂O)

Significant ozonedepleting substance

- Not controlled by Montreal Protocol
- 3rd most important greenhouse gas
 - Mitigated by Kyoto Protocol
- Anthropogenic and natural sources

$N \equiv N - O$

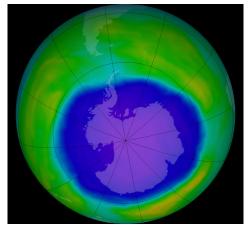
Nitrous Oxide (N_2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century

depleting substance on the basis of the extent of depleting substance on the basis of the extent of cone depletion it causes. Indeed, current anthro-pogenic ODP weighted N₂O emissions are the largest of all the ODSs and are projected to reargest or an use ODSS and are projected to re-main the largest for the rest of the 21st century. We have calculated the ODP of N₂O by using the Garcia and Solomon two-dimensional (2D) model [(11) and references therein], which is similar to models used previously for such calculations (12, 13). The ODP of N_2O under current atmospheric conditions is computed to be 0.017. This value is comparable to the ODPs of many hydrochlorofluorocarbons (HCFCs) (3) such as HCFC-123 (0.02), -124 (0.022), -225ca (0.025), as rCC-123 (002), -124 (0022), -225a (0022), and -225cb (0.033) that are currently being phased out under the MP. We conclude that the value of the ODP of N_2O is robust because (i) our similarly calculated ODPs for CFC-12 (1.03) and HCFC-22 (0.06) agree with the accepted values (3); (ii) ozone depletion by NO_x from N_2O dominates the chemical control of ozone in the mid-stratosphere (13), a region well represented with 2D models; and (iii) ozone reductions by enhanced N₂O have been reported in other studies (8, 10, 14), although no published study, to the best of our knowledge, has

previously presented an ODP for N2O. We examine here a few important factors that

influence the ODP of N2O. At mid-latitudes, chlorine-catalyzed ozone destruction contributes most to depletion in the lowest and upper stratospheres, that is, below and above the ozone maximum. Nitrogen oxides contribute most to ozone depletion just above where ozone concentrations are the largest. This leads to efficient ozone destruction from NO_x (13). The ODP of N₂O is lower than that of CFCs primarily because only ${\sim}10\%$ of N_2O is converted to NO_{xy} whereas the CFCs potentially contribute all their chlorine.

There are important interconnections between the roles of nitrogen oxides with chlorine such that the N_2O ODP may be different from the calculated value in the past and future. It is well known that nitrogen oxides dampen the effect of chlorine-catalyzed ozone destruction


Ravishankara et al. (2009)

- N₂O is precursor of middle atmos. NO_y N₂O + O(¹D) \rightarrow 2NO
- NO_y destroys stratospheric O_3 : $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O \rightarrow NO + O_2$
- Previously assumed only surface sources of N_2O
- Mesospheric sources now identified

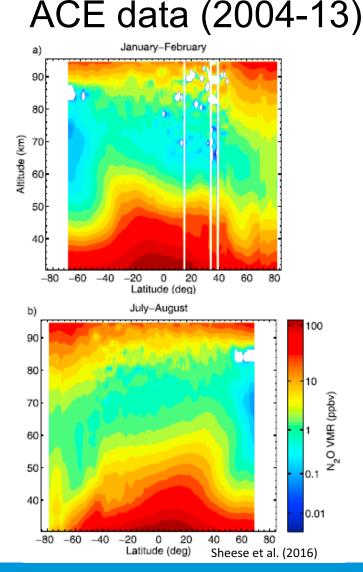
Ozone hole

Credit: NASA

- Zipf and Prasad (1982) postulated:
 - Excited N₂ from EEP e + N₂(X¹ Σ_g^+) \rightarrow N₂(A³ Σ_g^+) + e
 - Reaction with O_2 $N_2(A^3\Sigma_g^+) + O_2 \rightarrow N_2O + O$
- Produces N₂O at around 95km

Upper-atmospheric N₂O history

- ~25 years passed without highaltitude satellite obs.
- Semeniuk et al. (2008) reported stratospheric N₂O VMRs of ~5 ppbv after 2004 SSW
 - Suggested mesospheric mechanism: $N(^{4}S) + NO_{2} \rightarrow N_{2}O + O$
 - Initially seen as upper atmospheric N_2O source


UNIVERSITY OF LEEDS

Credit: ACE – University of Waterloo

Upper-atmospheric N₂O history

- Funke et al. (2008) verified
 'N(⁴S) + NO₂ →' mechanism
 Via N₂O-CH₄ correlations
 Also suggested potential for
 - the 'N₂(A³ Σ_g^+) + O₂ \rightarrow ' source
- Sheese et al. (2016) provided first satellite obs. of 95km N₂O
 - Reported mean N₂O VMRs above 20 ppbv

• To sustain N₂O VMRs from Sheese et al. (2016):

- Efficiency factor

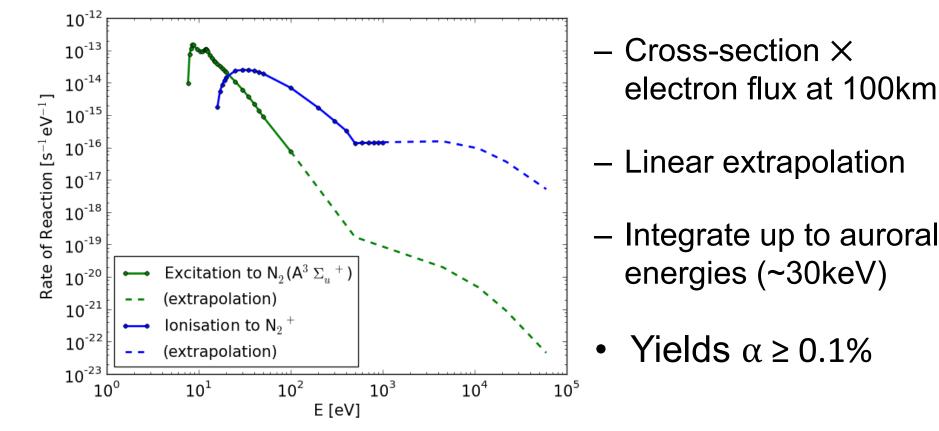
$$\alpha = \frac{N_2 0 \text{ prod. rate}}{\text{ion pair prod. rate}} \approx 0.1\%$$

– Where

 N_2O prod. rate = $[N_2O]_{obs} \cdot (N_2O \text{ loss rate})$

Other constants from standard WACCM output

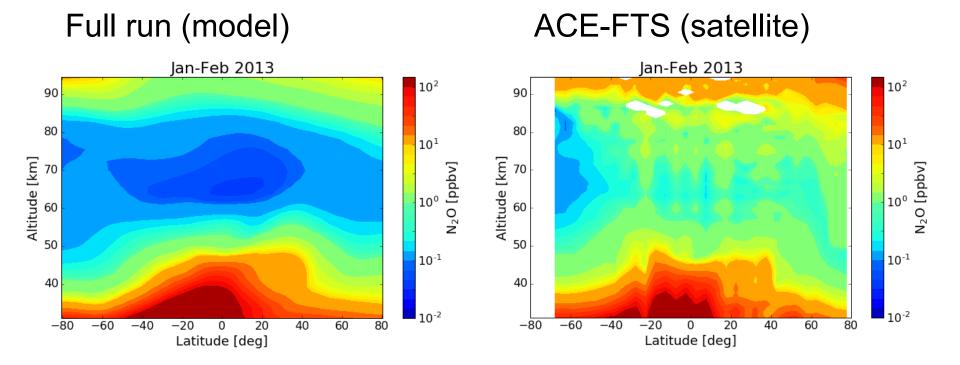
Verifying feasibility


- N₂O loss mechanisms:
 - Photolysis in the stratosphere $N_2O + hv \rightarrow N_2 + O(^1D)$ (~90%)
 - Reaction with O(¹D) $N_2O + O(^1D) \rightarrow N_2 + O_2$ $N_2O + O(^1D) \rightarrow 2NO$

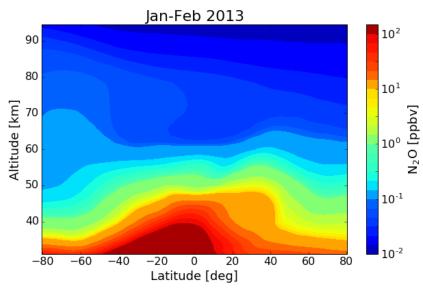
Portmann et al. (2012)

- Upper mesospheric lifetime ~10 days
- Lower thermospheric lifetime ~100 days

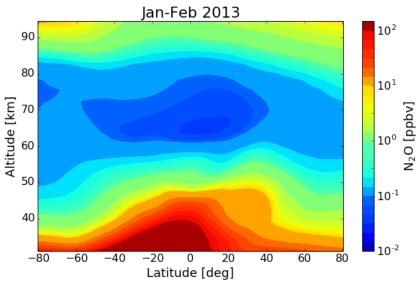
• Is efficiency factor ($\alpha = 0.1\%$) reasonable?


– Recalculate α from first principles

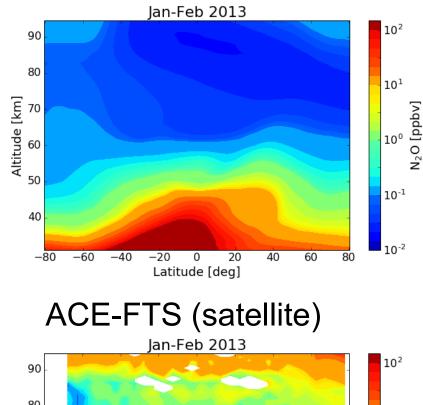
Simulation		Configuration	
1.	Standard WACCM run	$N(^{4}S) + NO_{2} \rightarrow$	ON
		$N_2(A^3\Sigma_g^+) + O_2 \rightarrow$	OFF
2.	Moderator run	$N(^{4}S) + NO_{2} \rightarrow$	OFF
		$N_2(A^3\Sigma_g^+) + O_2 \rightarrow$	ON
3.	Full run	$N(^{4}S) + NO_{2} \rightarrow$	ON
		$N_2(A^3\Sigma_g^+) + O_2 \rightarrow$	ON

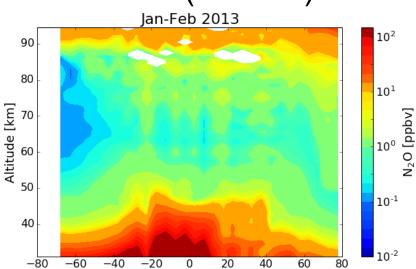

Model to satellite comparisons

• Added 95km N₂O source into WACCM: $N_2(A^3\Sigma_g^+) + O_2 \rightarrow N_2O + O$



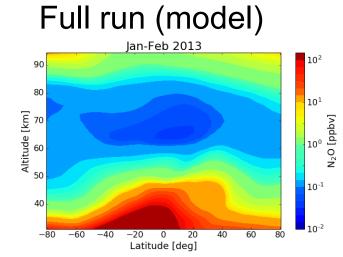
UNIVERSITY OF LEEDS

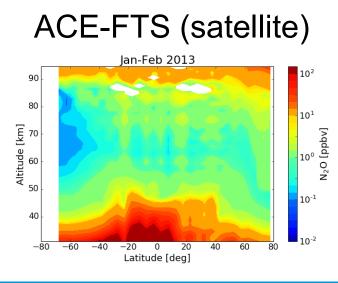

1. Standard WACCM run

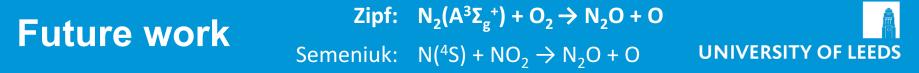


3. Full run

2. Moderator run

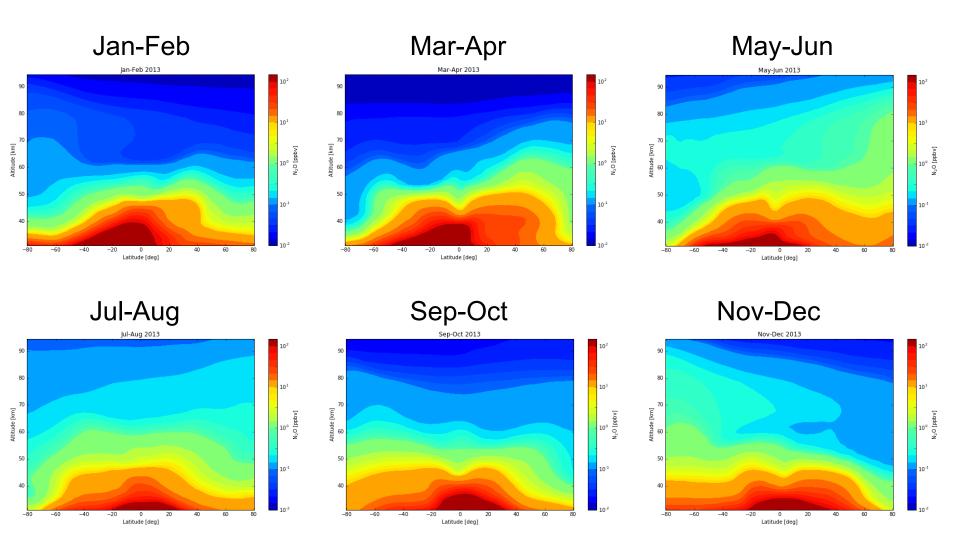



Latitude [deg]

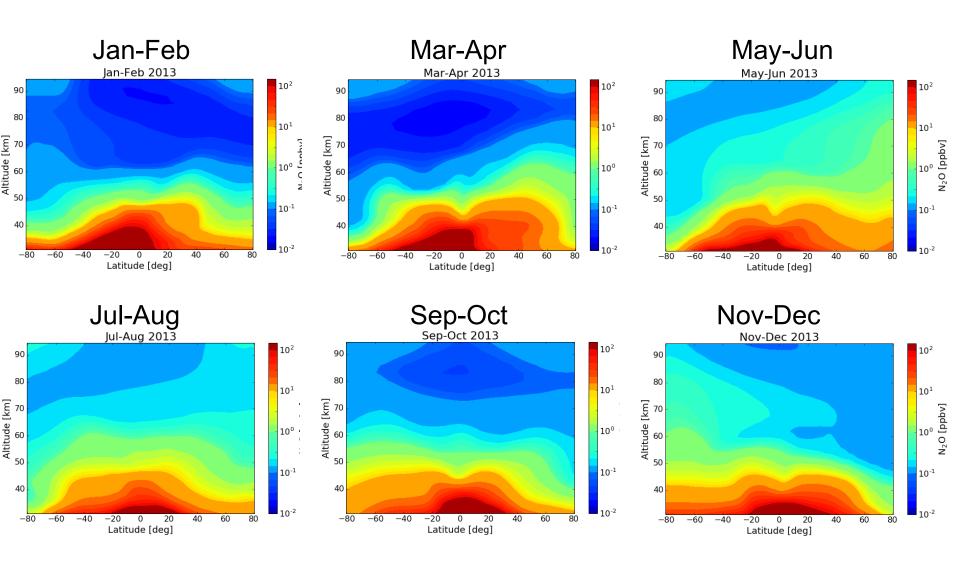

Interpretation Semeniuk: $N(^{4}S) + NO_{2} \rightarrow N_{2}O + O$ UNIVERSITY OF LEEDS

- 'Steady-state' reached quickly

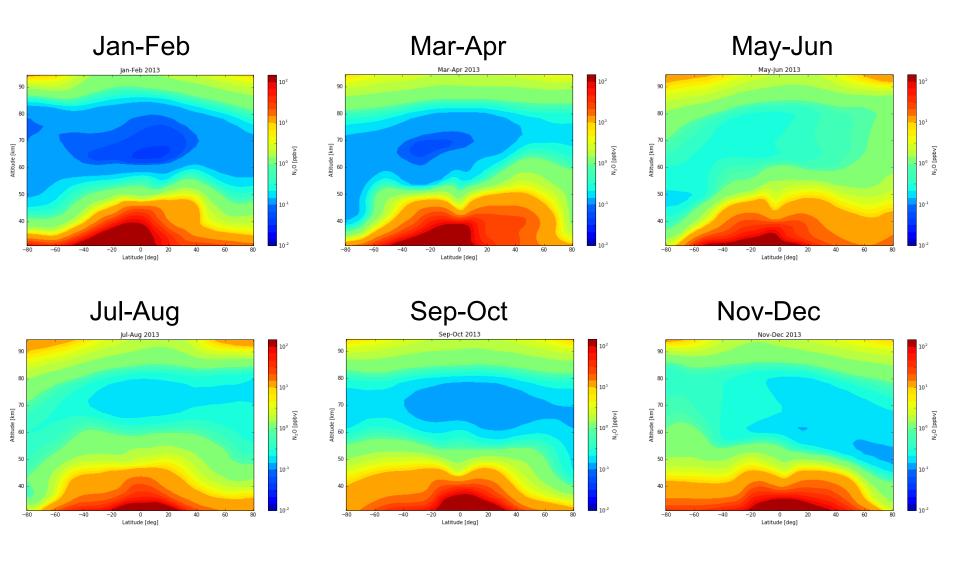

 Expected for short N₂O lifetime
- Abundances do not descend as low as in obs.
- N₂O minimum seen in WACCM at ~60km
 - Not observed, other sources?
- Seasonal polar trend not well replicated by model
- 'N(⁴S) + NO₂ →' is by far the dominant source



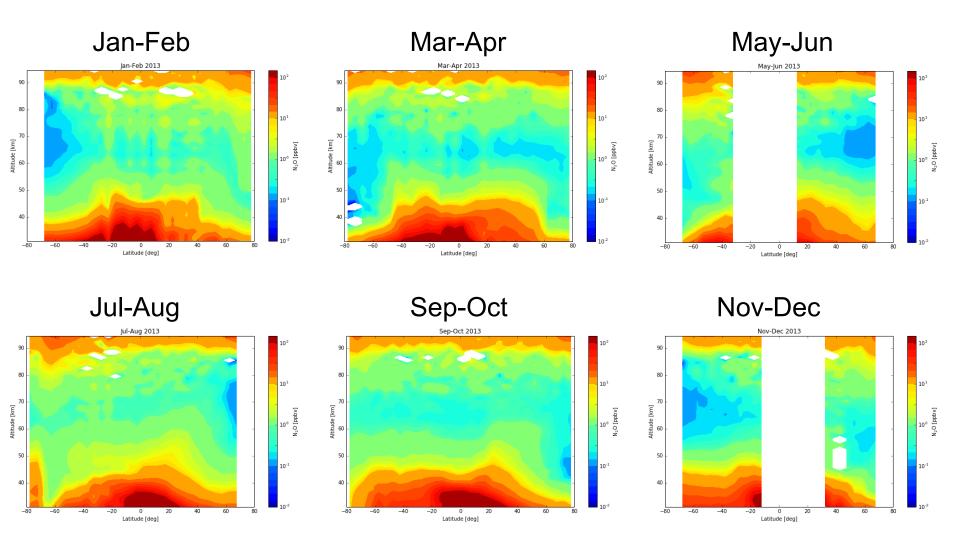
- Investigate other production mechanisms
 Photochemical N₂(A) source?
- Perform WACCM simulations for 2014:
 - Know to have less EEP than 2013
 - Significance of EEP on N₂O will be better quantified
- Impact of 95km source on stratospheric ozone


- N₂O source at around 95km via EEP
 Until recently only surface sources considered
- $N_2(A^3\Sigma_g^+) + O_2 \rightarrow N_2O + O$
- At 90km α ~0.1%
- Production mechanism put in WACCM
 - N₂O observed, but not at mid-latitudes in lower mesosphere
- Next find impact on stratospheric ozone

1. Standard WACCM run (2013)



2. Moderator run (2013)


UNIVERSITY OF LEEDS

3. Full run (2013)

ACE-FTS 2013

