Chemical oxidation of greenhouse gases

Dwayne Heard

(representing a lot of work here in Chemistry)

UNIVERSITY OF LEEDS

School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK

d.e.heard@leeds.ac.uk

SEE – Chem meeting 5th January 2017 - Chemistry

Oxidants

(initiators of removal under atmospheric conditions)

- OH
- $O_3(O_2 \text{ only for unstable radicals})$
- NO₃ (night)
- Cl atoms
- Criegee intermediates
- O(¹D)
- hv
- Metals, Metals +
- Other positive lons (O^+, O_2^+)
- Redox-chemistry in solution (Cu²⁺, Fe³⁺, H₂O₂....) (not today)

Much of the research here in Chemistry focusses on understanding the abundance and behaviour of these oxidants

"Unconventional" oxidants

100 yr Global Warming Potential = 10,800 – 17,000 years Removal can mainly be in the mesosphere

Mesospheric removal of NF₃ Totterdill et al., JPC A, 2014

Lifetime = 550 years (excluding mesosphere)

Below 60 km removal dominated by reaction with O(¹D) and photolysis at λ < 190 nm

Above 60 km dominated by photolysis at λ = 121.1 nm, reactions with metal atoms less important

Going to restrict things to the troposphere (BL)

MAAAS

Scientists flag new causes for surge in methane levels Paul Voosen (December 22, 2016) Science 354 (6319), 1513. [doi: 10.1126/science.354.6319.1513]

ATMOSPHERIC CHEMISTRY

Scientists flag new causes for surge in methane levels

Swelling tropical wetlands and a decline in a natural atmospheric detergent are leading suspects

Are global levels of OH going down? (Joey's talk)

Global mean [OH] since 1978 – estimated using CH₃CCl₃

Leilieveld et al., ACP, 4, 2337 (2004)

No significant global change in OH concentrations for ~ 20 years

It is getting harder to use this method as methyl chloroform was banned by the Montreal Protocol to protect the ozone layer – and its concentration is getting lower and lower

How will climate change affect global OH?

Zonal mean change in [OH] from 1990s – 2020s (Model run with climate change – run with fixed climate) Stevenson et al., *Faraday Disc.* 130, 41 (2005)

ATMOSPHERIC LIFETIME

For many trace gases removed by OH,

Methane SCIAMACHY/ENVISAT 2003-2005

CH₄ column-averaged mole fraction [ppb]

1680	1710	1740	1770	1800

Methane removal

So need to understand distribution of OH, and what controls its production and loss

Minor sinks:

- (1) Cl atoms, lifetime ~ 50 years
- (2) Stratosphere (also O¹D)
- (3) Soils

Satellite global measurements of OH – only at higher altitudes

MAHRSI OH number density (units of 10⁶ cm⁻³) on 5 November 1994

Surface OH measurements (by Leeds)

Lelieveld et al., ACP 2016

Creasey et al JGR, 2003

Can we parameterise OH for use in global models?

Seasonal observations of HOx at Cape Verde (Vaughan et al., ACP, 2012)

Richard Honrath was interested in establishing long term OH measurements at Pico (Azores)

 $[OH] = a \times \{ j(O^{1}D) / 10^{-5} \text{ s}^{-1} \}^{b} + c$

	a	b	С		
OH / 10 ⁵ cm ⁻³					
	2.52 ± 0.16	0.74 ± 0.04	1.06 ± 0.12		
Halley, Antarctica					
Brauers <i>et al.</i> (2001)	13.7	1 (fixed)	0 (fixed)		
ALBATROSS, Tropical Atlantic					
Holland et al. (2003)	20^{1}	$1 (fixed)^1$	$0 (fixed)^1$		
BERLIOZ – Rural Germany					
Smith <i>et al.</i> (2006)	14.7	0.84 ± 0.05	4.4		
NAMBLEX, Mace Head, Ireland					
Rohrer & Berresheim (2006)	24	1	1.3		
Hohenpeissenberg Observatory					

Although all datasets fit equation reasonably well, the values of *a*, *b* and *c* are site-dependent, and are not known *a priori*

Rohrer and Berresheim, *Nature*, 442, 184, 2006

$$[OH] = a \times \{ j(O^{1}D) / 10^{-5} \text{ s}^{-1} \}^{b} + c$$

Southern Germany

It is surprising that 5 years of data (what an achievement!) fit this simple equation and that each season can be represented by the same set of parameters (There is no 5 year OH trend)

However, at this site there is a balancing out of sources and sinks during the year.

We need measurements of [OH] in a wide variety of environments in order to define an "OH index" of a, b, and c

More about OH sinks

$$k'_{OH} = \Sigma_x k_{OH+X}[X]$$

$$L(OH) = [OH] \times k'_{OH}$$

OH reactivity $k'_{OH} = \Sigma_x k_{OH+X}[X]$ **Measurements and model (MCM v3.2)**

Whalley et al., ACP, 2016

More Detail – what controls OH (and HO₂, RO₂) and how can we measure them?

Burkholder et al., JGR, submitted 2016

Approaches (1)

Process studies at the individual reaction

- Laboratory studies k(T,P), $\phi_{photolysis}(\lambda, P, T)$, $\gamma(RH, T, composition)$
- Identification of products
- T range 38 K 1000 K
- Pressure range 1 Torr 10 atmospheres
- Quantum theory to calculate energies of transition states and intermediates
- Kinetic rate theory to calculate k(T,P) and product channels (MESMER)
- Gas phase or at surface/within aerosols
- Values then used as input to models thereby improving their accuracy (SEE collaborations)

- Development of new technology and detection methods: laser-induced fluorescence, mass spectroscopy (PIMS, PTR), cavity-ring down, long-path absorption (QCL), frequency comb (?)

Individual reactions (very selective)

Dainton and Challenger Laboratories

Aerosol laboratory

If you'd like a process studied, talk to us! *k*(NO+O₃) at low T?

- Criegee radical kinetics (alternate oxidant, and source of OH at night)
- Photolysis of acetone (with SEE), glyoxal
 - HO₂ uptake on aerosol (salts, organics, SOA, dust, cosmic dust, TiO₂, role of surfactants, transition metals, viscosity) [CO, O₃ Arctic]
- Production of radicals on aerosols (e.g. TiO₂)
- Heterogeneous sources of HONO from aerosols (poorly understood), e.g. pNO₃⁻ photolysis
- Photolysis of RO₂ (e.g. isoprene) to give OH
- Photolysis of HPALD (isoprene product)
- OH + amines (CCS) k(T) and products
- OH + isoprene \rightarrow OH recycling
- OH + biofuels (DME, DEE, furans)
- OH + SO₂, glyoxal k(T,P)
- OH + acetylene (OH recycling)

Higher than expected OH in forested regions Danum Valley, Malaysian Borneo, 2008

<u>New</u> routes from RO₂ back to OH?

LIMx, Peeters et al., 2009, 2010, 2014

But most are only predictions from quantum theory. Need further experimental verification but difficult timescale to study (1-100s)

Fuchs et al., Nat. Geosci., 2013

Repeated RO₂ isomerisation suggested to form extremely low volatility VOCs (ELVOC) which partition to form SOA

Ehn et al., Nature, 506, 476, 2014

"Auto-oxidation"

Suggest biogenics as another theme

Approaches (2) HIRAC chamber

"Simple" reaction systems in a controlled environment

Part of EUROCHAMP2020

- HIRAC chamber, 2 m³, stainless steel
- Introduce individual VOCs or simple mixes
- Can vary T, P, RH, O₃, NOx
- Equipped with FTIR, GCs, FTIR, commercial analysers for NOx, O3, CO, H2O
- Radical detection using FAGE (OH, HO₂, RO₂)
- Fit data using a simple mechanism (e.g.
 Facsimile, Kineticus, AtChem)
- Extract k(T,P), ϕ (λ , P, T), sometimes need model and best fit to extract values (not always)
- Currently just gas-phase
- Values then used as input to models to improve mechanisms
- Good place to test new instruments and new calibration methodologies

- CI atom reactions with VOCs (e.g. acetates) k (T) using relative rate methods [lights on]
- O₃ + VOCs, *k*(T,P) and OH/HO₂ yields [lights off]
- Radical-radical reactions

CH₃C(O)O₂ + HO₂, k(T) and product yields (e.g. OH, CH₃C(O)OH) RO₂ + RO₂ → k(T) and products (R=CH₃, C₂H₅) CH₃O₂ + OH →

- Oxidation of biofuels and amines
- Development of new methods to measure HO₂ and CH₃O₂

Approaches (3)

Model validation (using our new lab. and chamber data) in the real world via fieldwork

- OH, HO₂, RO₂ are ideal target species for the box model as short lifetimes and budgets not controlled by transport processes
- Models to predict climate or air quality need validation in a range of environments hence field campaigns all around the world
- Over 30 field campaigns since 1996
- Constant improvements to instruments (improving sensitivity, accuracy, precision, reliability, size, weight)
- Detection of more species : RO₂ speciation, IO, HCHO, glyoxal
- OH reactivity allows check of whether model contains all OH sinks

Quite a few examples of collaborations with SEE where fundamental parameters or field measurements are exploited via modelling

A typical OH field experiment

Then compare measurements and the model – do they agree?

Master Chemical Mechanism mcm.leeds.ac.uk/MCM/

- Oxidation of ~ 140 VOCs by OH, O₃ and NO₃
- 17,000 reactions and 6,700 species

Including the CH₃O₂ + OH reaction (100% HO₂ product) Cape Verde, Tropical Atlantic Ocean

Uptake of radicals in clouds?

AMMA, West Africa (2006). Skimming in and out of clouds at constant altitude

Commane et al., *Atmos. Chem. Phys.*, **10**, 8783-8801, 2010

Also older work from Fred Eisele on [OH] in and around clouds

Uptake of HO₂ onto clouds

HO₂ as a function of pH during cloud events 3.0×10^{6} Model used to obtain γ

GEOSChem simulations including loss of HO₂ to clouds

90°S

Surface HO2

Impact ?

Whalley et al., ACP, 2015

GEOSChem. Impact of cloud uptake on HO₂ on surface O₃ (climate gas, damaging to humans and plants)

What is the main oxidant? London as an example

