

Biomass burning influences on ozone during the SAMBBA flight campaign.

<u>Tim Keslake^{1,2}, M. Chipperfield^{1,2}, G. Mann^{1,3}, J. Flemming³, S. Remy⁴, W. Morgan⁵, S. Dhomse^{1,2}, R. Pope^{1,2} and C.Reddington¹</u>

University of Leeds¹, NCEO², NCAS-Climate³, ECMWF⁴, CNRS-Paris⁵, University of Manchester⁶

Aims:

- 1. Quantify NO_x and O_3 concentrations during the Amazon dry season and determine the impact of fires.
- 2. Validate model data with satellite, aircraft and ground observations.
- 3. Test the skill of composition assimilation in C-IFS over the Amazon.

Background: Fire impact on composition

Amazon biomass burning:

- During the dry season fires significantly changes
 Amazonian atmospheric composition.
- Emissions of CO, VOCs, NOx and carbonaceous aerosols.
- Both deforestation and cerrado (savannah) fires.
- CO often used as a tracer for fires.

Ozone (O₃):

- Amazonian background tropospheric ozone
 ~20ppb, some of the lowest concentrations on the planet.
- High VOCs concentrations make local O₃ concentrations NO_x limited.
- Affects photosynthesis. Estimated forest sink for CO₂ is 2.4 ± pG C yr⁻¹ (IPCC).
- Higher O_3 concentrations increases the damage to plant stomata (Ainsworth 2012).
- This study: Fires cause an increase in O_3 of 30% in the East and 10-20% in West.

Simulated $\triangle NPP$ (%) between 1901 and 2002 due to O₃ (Ainsworth 2012)

C-IFS ΔO_3 from fires: Sept/Oct 2012

2012 Amazonian fire season: SAMBBA campaign

• Flight campaign September/October 2012

Flight phases:

- Western region: <u>deforestation</u> fires
- Eastern region: cerrado (savanna) vegetation.
- Phase 1 (04/09/12 22/09/12) : Representative of dry season
- Phase 2 (23/09/12 03/10/12): Transition to the wet season.
 Phase 1 Phase 2

Data assimilation: Introduction

- Combines observational data with an a-priori (model) estimate.
- Combines model coverage with observation accuracy.
- Provides an "analysis" a best estimate for the current state of the system.

<u>4d-var</u>

- Used in ECMWF's NWP: IFS
- Minimises a cost function containing observations a-priori and their respective errors
- Incremental formulation:

$$V(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

Metrics:

- Analysis increments: analysis difference from background model at each time step.
- (impact of the assimilation of the single composition tracer)
- Analysis Control: provides total difference from data assimilation. (impact of other assimilation of other composition tracer).

<u>C-IFS Model runs</u> Setup:

- 4d-var data assimilation system.
- T255 spectral resolution (0.7° x 0.7°)
- 60 Vertical levels
- Emissions: Daily GFAS fire emissions based on MODIS FRP.
- Emissions know to underestimate Aerosol emissions (Kaiser 2012 and Remy 2016)
- Fire emissions injected at surface.

Experiments:

•Control: Assimilation of meteorological datasets only.

•Analysis: Assimilation of composition and meteorological datasets.

•NBB: Control-like experiment without GFAS fire emissions.

Instrument	Species	Туре
MODIS	Aerosols, FRP, burnt area	Total optical depth (AOD)
GOME-2	03	Total Column
OMI	0 ₃	Total Column
MLS	03	Partial profile
SBUV-2	03	Partial profile
OMI	NO _{2.}	Column
MOPITT	CO	Total column

<u>CIFS/Satellite comparisons:</u> Without composition assimilation

<u>CIFS/Satellite comparisons:</u> With composition assimilation

Analysis

- Increase in NO_2 concs. but is still lower than OMI.
- Particularly in the eastern region.
- Western NO₂ and O₃ still significantly low.
- Smaller bias reduction in O_3 than NO_2

Impacts of assimilation: Tropospheric column

- NO₂ increased in ER region, where observations are highest.
- Little to no changes in WR.
- CO also mainly increased in east.
- Smaller CO increments compared to NO₂.
- Eastern CO increments dispersed west.
- O_3 uniformly increased by same amount.
- Different changes between analysis increments and analysis – control for O₃.

Impacts of assimilation: NO₂ total Mass

GFAS emissions

60W

0.25 NO2 (g m-2 month-1)

50W

0.38

40W

0.50

- 0.056 g m-2 month-1 added by assimilation.
- 0.015 g m-2 month-1 added by emissions.
- Emissions low compared to satellite observations
- Emissions aren't injected at high enough altitude.

80W

0.00

70W

0.12

SAMBBA correlations

CO

- Well captured in WR2.
- High CO concentrations underestimated in the model and analysis.
- Part of the bias probably due to model injection height.
- Little change from assimilation

NO_x

- Assimilation improves ER representation.
- Higher concentrations have larger bias.
- Largest underestimation in WR2: The dry season away from fire sources.
- ER slightly overestimated in the analysis.
- O₃ MFB reduced by assimilation

TOMCAT Model runs

Experiments:

- To test some model sensitivities the TOMCAT CTM is also compared to OMI and SAMBBA observations.
- Monthly instead of daily GFAS fire emissions.
- Lower horizontal and vertical resolution.

•Control: Tomcat run with GFAS fire emissions

•GFAS x 3.2 : Perturbed NO₂ emissions based on Sat/Model difference

TOMCAT/Satellite comparisons: NO₂

TOMCAT/Satellite comparisons: O₃

Conclusions

NO_x and O_3 concentrations during the Amazon dry season:

- Higher NO_x and O₃ concentrations over eastern savannah fires than western deforestation fires, but western region shows NO_x concentrations throughout the tropospheric profile.
- Model predicts a large contribution of fires to O_3 concentrations: ER (30%) and WR (10-20%)

Model skill:

- CO is generally well captured by the model, suggesting fires are well detected in GFAS.
- C-IFS O₃ captures day time surface concentrations but underestimates satellite and in-situ aircraft observations.
- Overestimation of O_3 night time values: potential model underestimation of local O_3 loss rates.
- Mid-tropospheric O₃ bias most likely due to low modelled NO_x
- Perturbing NO_x fire emissions by 3.2: still an underestimation of total column O₃, but now an overestimation of boundary layer O₃.
- NOx bias either from injection of emissions or another emission source (e.g. lightning).

Composition assimilation:

- Assimilation of NO₂ and O₃ satellite fields improves model representation in the Eastern savannah region against in-situ and satellite observations.
- Changes in O3 values most likely due to NO3 assimilation changes than from O3 total column assimilation.
- Despite a small improvement in the western region, a significant negative bias still remains.