The Scaling Behaviour of Fluid Flow in Rock Fractures

Paul Glover, Steven Ogilvie & Evgeny Issakov

University of Aberdeen

NERC Micro-to-Macro Funded Research
Structure

- Introduction
- Novel Experimental Methods
- Fluid Flow Modelling
- Summary
Introduction

Fluid flow in rough rock fractures is central to many problems in Earth Sciences, e.g.:

- Flow channelling and compartmentalization in hydrocarbon reservoirs
- Management of water resources
- Control of contamination by domestic and chemically toxic industrial waste, and remediation
- Design of safe repositories for nuclear waste
Rough Surfaces and Scaling Behaviour

◆ Rough fracture surfaces have the potential for affecting fluid flow in thin fractures

◆ The effect depends upon scale because:
 ◆ The surfaces are fractal
 ◆ There is fracture matching at long wavelengths but not at short wavelengths

◆ Many other parameters affect fluid flow, such as the stress regime, mean aperture, fluid properties and flow rate…..
Novel Experimental Methods

- CT Scanning
- NMR Measurements
- DOI Imaging
- PDPK Imaging
- PET Imaging
- Image Analysis
Digital Optical Imaging (DOI)

- Being developed at Aberdeen University
 - Measurement of fluid flow in rough rock fractures
 - Miscible/immiscible fluids, flow rates, viscosities and densities
 - Sample may contain an analogue gouge material

- High fidelity polymer models (HFPMs) are produced by casting from moulds produced from rock fractures
- To a precision better than 1 micron
- HFPMs inserted into holder for fluid flow
- High resolution camera/image analysis captures flow data
HFPM Construction
HFPM Construction
HFPM Resolution

◆ Original Fracture

◆ HFPM

HFPM Resolution

◆ Original Fracture

◆ HFPM

150 μm
Digital Optical Imaging (DOI)

- The DOI setup
Digital Optical Imaging (DOI)

- An example flood
Digital Optical Imaging (DOI)

- An example flood
Digital Optical Imaging (DOI)

- Current developments
 - Digital video and image analysis
 - Fracture aperture modelling
 - Adding gouge to HFPMs
PET Imaging

- **Positron Emission Tomography**
 - Measures position of radioactive doped tracer in a rock
 - Dopant emits positrons
 - Positrons decay in very short distance to 2 photons
 - Photons travel in opposite directions and are contemporaneously measured by a ring of detectors
 - Original position of the emission calculated by computer
PET Imaging

- **Uses**
 - To trace any mobile chemical in a rock
 - Water and oil dynamic flow
 - Water and oil diffusion
 - Adsorbance of fluids to mineral surfaces
 - Transport of toxic and radioactive contaminants
 - Remediation of contaminants
PET Imaging

Example
Flow of water through a core containing deformation bands

<table>
<thead>
<tr>
<th>P.V. (sec)</th>
<th>2.8</th>
<th>5.8</th>
<th>8.4</th>
<th>11.2</th>
<th>14.0</th>
<th>16.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (sec)</td>
<td>150</td>
<td>300</td>
<td>450</td>
<td>600</td>
<td>750</td>
<td>900</td>
</tr>
</tbody>
</table>

Normalized radioactivity bins (no scale)
- 0.60 - 1.00
- 0.40 - 0.60
- 0.25 - 0.40
- 0.00 - 0.25

Flow Direction
High
Low
PET Imaging

- Example
 Flow of water through a HFPM
Fluid Flow Modelling

- Mathematical Description
- Fracture Profiling & Analysis
- Synthetic Fracture Modelling
- Flow Modelling in the SynFrac
- Comparison with Field Flow
Field Fracture

Profiling and Analysis

Synthetic Modelling

Reynold’s Flow Modelling

Closure Modelling

Cubic Law Modelling

Field Flow Tests

Comparison
Mathematical Description

- Fracture surface needs 3 functions:
 - Probability Density Function of surface heights irrespective of spatial position
 - Power Density Spectrum for spatial correlation or texture of the surface
 - Mismatch Wavelength Function to separate matched & unmatched behaviour at long and short wavelengths
Synthetic Fracture Modelling

Spectral Synthesis Method Inputs

- Fractal Dimension
- Standard deviation of surface heights
- Anisotropy
- Lateral scaling parameters
- Mismatch wavelength control parameters

All obtained from profiling an original fracture
Synthetic Fracture Surfaces
Flow Modelling in SynFracs

Hagen-Poiseuille Cubic Modelling

- **Input:** Mean geometric apertures
 Fluid viscosities (T,P)

- **Output:** Fluid transmissivity vs. normal closure
 Fluid transmissivity vs. normal pressure

- **Results only valid for smooth parallel fractures!**
Flow Modelling in SynFracs

Reynolds Flow Modelling

Reasons: Accounts for rough fracture surfaces

Application: Finite difference, full multi-grid with Gauss-Seidel pressure equations

Machine: NEC SX3 & Cray-916 Computers

Output: Local fluid velocities
Mean hydraulic apertures
Flow Modelling in Synthetic Fractures
Flow Modelling in Synthetic Fractures
Comparison with Field Flows

Field Flow Tests

- Field transmissivity measured between 2 boreholes for different fracture fluid pressures

Modelling

- Fluid transmissivity vs. Fluid pressure
 - Hagen-Poiseuille with SynFrac closure apertures
 - Reynolds modelling, aperture touching once
 - Reynolds modelling for modelled SynFrac closure
Flow Modelling in Synthetic Fractures

Comparison with Field Data:

- Field Measurements from Hachimantai, Japan
- Hagen-Poiseuille Modelling, smooth parallel plates
- Reynolds Modelling with rough surfaces
Summary

- A number of new experimental techniques can be used to monitor fluid flow through rough fractures
- Rough fractures can be profiled, and numerical synthetic fractures can be produced to high precision
- These fractures mimic all characteristics of real fractures including their implicit matching scales
- Fluid flow modelling in synthetic fractures allow a comparison with field flow tests
Acknowledgements

Many thanks to the following, who contributed to this work:

- Colin Taylor, D. Moffat, J.M. Orribo & G. Bachle
- K. Hayashi, K. Matsuki & R. Hikima (Tohoku University)
- Andrew Welch and Felice Chilcott (Aberdeen PET Centre)
- David Lurie (Biomedical Physics, Aberdeen University)
- British Petroleum & ARCO

This work was funded by NERC as part of the Micro-to Macro Thematic Programme