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Introduction - Subduction in the 
Pyrenees

ECORS-Pyrenees deep reflection seismic balanced 
cross-section indicates subduction of the Iberian plate 
under the European plate

Coincident MT studies confirms the subducting plate 
and shows that it has a high conductivity (0.33 S/m)
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Location of the Study
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Questions

What are the mechanisms of the conductivities in the 
crust and mantle?
What is the mechanism of the high conductivities in 
the slab?

If the slab high conductivities are caused by partial 
melting, what is the partial melt fraction and what is 
the melt connectivity?

Why is there no surface volcanism in the Pyrenees?
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Mixing Models

6 mixing Models have been used:
Parallel model (arithmetic mean)

Hashin-Shtrikman upper bound
Waff’s model

Random model (geometric mean)

Modified Archie’s law

Hashin-Shtrikman lower bound
Perpendicular model (harmonic mean)

Well Connected
Melt

Moderately
Connected Melt

Badly Connected
Melt
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Model Inputs I
Grid 2 dimensional. Size: 300 km x 120 km

Resolution: 10 km x 5 km

Structure From coincident ECORS seismic profile
Lithology Sandstone, limestone, metasediments, 

granodiorite, basic amphibolite, granulite,
mantle (Mg0.9 Fe0.1)SiO4

Rock Matrix From laboratory experiments at in situ
Conductivity lithostatic and fluid pressures and 

temperatures. Expressed as P,T dependent
Arrhenius equations.
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Model Inputs II

Fluid Conductivity Rock conductivities made using
0.5 M  NaCl saturations corrected
to 2 M NaCl solution conductivities

Melt Conductivity From laboratory studies available
in the literature. Variable 
between 0.5 S/m and 15 S/m.

Thermal Properties Heat production, thermal
conductivity and surface heat flow
taken from the literature and field
observations
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Model Inputs III

Temperature 2 dimensional distribution calculated
from the thermal properties using the
method of Zeyen and Fernandez [1994]

Lithostatic 2 dimensional distribution calculated 
Pressure from rock densities corrected for 

temperature variations using data in 
Zeyen and Fernandez [1994]

In Situ Obtained from coincident magneto-
Conductivity telluric studies 
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Temperature and Lithostatic Pressure
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Effective
Conductivity
MT Observed 
Conductivities
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Effective Conductivity Modelling

Input rock, melt and fluid conductivities as a 
function of temperature and pressure
Input assumed partial melt fraction
Use mixing models with different degrees of 
connectivity
Calculate effective conductivity
Compare with MT observations of effective 
electrical conductivity
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Effective
Conductivity
Hashin-
Shtrikman Lower 
Bound
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All Effective Conductivity Models
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Melt Fraction Modelling

Input rock, melt and fluid conductivities as a 
function of temperature and pressure
Input observed MT values of effective 
conductivity
Use mixing models with different degrees of 
connectivity
Calculate partial melt fractions required
Compare with geological/geochemical constraints 
on melt production
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Melt Fraction
Hashin-
Shtrikman 
Upper 
Bound/Waff’s 
Model
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Melt Fraction
Hashin-
Shtrikman Lower 
Bound
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All Melt Fraction Models
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Summary I

A two-dimensional conductivity model for the 
Pyrenees has been constructed

A good match to the conductivities observed 
by MT is possible

Aqueous fluids alone can explain the 
conductivity in most of the profile

Aqueous fluids cannot explain the conductivity 
of the subducting slab
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Summary II

Partial melting is likely to be the cause of the very 
high slab conductivities

A partial melt fraction of at least 4.7% is necessary

This is consistent with geochemical melting models

The melt must be well connected

The absence of surface volcanism is partly due to its  
compressive tectonic regime, and volcanism is likely 
in the Pyrenees if the area becomes extensive
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