

A Modified Archie's Law for Two Conducting Phases

Paul Glover, Malcolm Hole & J. Pous University of Aberdeen & Universitat de Barcelona

Different Mixing Models
A Modified Archie's Law
Testing the New Law
Applications

Many Mixing Models have been published

- The Wiener Bounds (Parallel and Perpendicular Models)
- The Hashin-Shtrikman Bounds
- Maxwell's Isolated Sphere Equation and Wagner's Modifications
- The Waff Model
- The Brick-Layer and Modified Brick-Layer Models
- Sphere distribution models
- The Milton-Bergman Models
- Archie's Law

Some are valid for:

One, two, or many conducting phases
 Specified phase geometries (layers, spheres, cracks)

Complete or limited ranges of volume fractions

Constrained phase distributions (e.g. diffuse spherical inclusions)

Advantages of Archie's Law

Archie's Law is useful because:

It contains a variable parameter that describes the connectivity of a conducting phase
It is valid for complex rock geometries
It is valid for the complete range of volume fractions

Disadvantages of Archie's Law

Archie's Law has one BIG disadvantage: It is only valid for ONLY ONE conducting phase Hence it cannot be used where the rock matrix has a significant conductivity, e.g. Partial melting calculations Clay-bearing rocks Graphite/sulphide bearing rocks **♦In the lower crust and mantle**

Some Mixing Models

A Modified Archie's Law I

Two Conducting Phases A and B A and **B** have volume fractions χ • where $\chi_A + \chi_B = 1$ $\diamond A$ and **B** have electrical conductivities σ_A and σ_B The distribution of A is described by an exponent p The distribution of B is described by an exponent m

Neglecting Stiltjes Integral allows us to modify the conventional Archie's Law as:

$$\sigma_{e\!f\!f} = \sigma_A \chi^p_A + \sigma_B \chi^m_B$$

A Modified Archie's Law - Eq. 2

Applying an isoconductivity boundary condition allows us to obtain the exponent *p* as a function of the exponent *m* (or *vice versa*):

$$p = \frac{\log\left(1 - \chi_B^m\right)}{\log\left(1 - \chi_B\right)}$$

Hence

$$\sigma_{eff} = \sigma_A \left(1 - \chi_B\right)^{\left(\log\left(1 - \chi_B^m\right) / \log\left(1 - \chi_B^m\right)\right)} + \sigma_B \chi_B^m$$

Testing The Modified Law

- 10 samples made from conductive Cu₂O grains
 Different grain sizes and hydrostatic compaction
 different porosities
- Saturated with different brine salinities/conductivities
- Complex electrical conductivity measured at 50 frequencies (50 Hz to 500 kHz) with 2 black-Pt electrodes
- Porosity measured by He method before and after
- Brine conductivity measured under same conditions

Validation of the Modified Law

Modified equation fitted to σ_{eff} versus σ_{brine} data
 Coefficient of determination R² >0.99 for all samples
 Hence 1st equation is correct

Crossplot of measured p against p predicted from m and measured m against m predicted from p

1:1 relationship

Hence 2nd equation is correct

Hence modified form of Archie's Law is validated

1:1 Straight Line indicates Eq. 2 is correct

Application to Partial Melt - Effective Conductivity Calculations

IF: Matrix conductivity Melt conductivity Partial melt fraction Conventional Archie's Law gives Modified Archie's Law gives $\sigma_A = 0.015 \text{ S/m}$ $\sigma_B = 0.3 \text{ S/m}$ $\chi_B = 10\%$ $\sigma_{eff} = 0.003 \text{ S/m with } m=2$ $\sigma_{eff} = 0.0178 \text{ S/m with } m=2$

 \diamond Conventional law in error as $\sigma_{eff} < \sigma_A$ or σ_B

 \diamond Modified law gives $\sigma_A < \sigma_{eff} < \sigma_B$ as expected

Application to Partial Melt

Effective Conductivity Calculations

Application to Partial Melt - Partial Melt Fraction Calculations

IF: Matrix conductivity Melt conductivity Effective conductivity Conventional Archie's Law gives Modified Archie's Law gives $\sigma_A = 0.015 \text{ S/m}$ $\sigma_B = 0.3 \text{ S/m}$ $\sigma_{eff} = 0.0178 \text{ S/m}$ $\chi_B = 24.4\% \text{ for } m=2$ $\chi_B = 10\% \text{ for } m=2$

Large difference between results from the conventional law and from the modified law

Secause the conventional law neglects the significant conductivity of the matrix

Application to Partial Melt

Partial Melt Fraction Calculations

- Archie's law can only be used with <u>ONE</u> conducting phase
- We have modified Archie's law to enable it to be used with <u>TWO</u> conducting phases
- The modified equation is relatively simple to apply, and retains parameters that describe the <u>connectivity</u> of each conducting phase
- The modified equation has been validated and been shown to work well
- The modified law can be used to improve the assessment of partial melting at depth

Many thanks to the following, who contributed to this work: Colin Taylor, S. Ogilvie ♦ J. Munoz, M. Liesa & P. Queralt ♦ J. Roberts ♦ A. Revil British Petroleum ARCO This work was funded by The British Council (1837)/Acciones Integradas (HB1997-14).

23