

GASTEM International Lecture Tour

Measurements, modelling and applications of the electro-kinetic properties of rocks

Paul Glover Université Laval, Québec, Canada

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Introduction

AVAL Introduction

What are electro-kinetic properties?

Electro-kinetic phenomena

The generation of an electrical potential difference across a porous medium by the flow of fluid through it, or vice versa

Flow causes potential **Electro-kinetics** Potential causes flow **Electro-osmosis**

Electro-seismic phenomena

The generation of an electro-magnetic wave in a porous medium by the passage of an elastic wave through it, or vice versa

- Elastic wave causes EM wave **Seismo-electric conversion**
 - EM wave causes elastic wave **Electro-seismic conversion**

Plan

Introduction

Origin

Theory

Apparatus

Laboratorv determination

Applications

Conclusions

Future directions

LAVAL Introduction

Principal applications

Electro-kinetic phenomena

✓ Hydrocarbon production ✓Water reservoir management ✓ Remediation of polluted soils ✓Volcano prediction ✓ Earthquake prediction ✓ Synthetic earthquakes

Polymer sciences, membrane sciences, catalysis, microfluidics, food science, medical science

Electro-seismic phenomena

- ✓ Hydrocarbon exploration & production ✓Water reservoir management ✓Volcano prediction
- ✓ Earthquake prediction

Plan

Introduction

Origin

Theory

Apparatus

Laboratorv determination

Applications

Conclusions

Future directions

The electrical "double" layer
Debye thickness
Surface conduction
Electro-seismic conversion

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Origin - The electrical double layer

There exists:

An undisturbed central zone of laminar flow,

and

A surface boundary layer of turbulent flow,

and

Zero flow at the rock surface

Origin - The electrical double layer

There exists:

A -ve charged rock surface,

and

A layer of **+ve** adsorbed ions,

and

A net –ve diffuse layer [thickness *f*(salinity)]

and

Net neutral bulk fluid

Boundary of moveable fluids is in diffuse layer

Flow separates – ve charges to the right

and

+ve charges are left behind

this

generates a potential difference called the STREAMING POTENTIAL

Origin Debye thickness I

 $\chi_d = \sqrt[2]{\frac{\varepsilon_f k_b T N_A}{2000 e^2 C_f}}$

UNIVERSITÉ LAVAL Origin

Debye thickness II

<u>Plan</u>

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

PET Visualisation of the electrical double layer

Surface conduction

Two conduction mechanisms

- A. via the bulk fluid
- B. via the diffuse and Stern layers

The latter is surface conduction

Surface conduction more effective than bulk fluid conduction

At low salinities – the EDL is thick – Surface conductivity dominates

DC Theory The Helmholtz-Smoluchowski equation Formulation in continuous media What controls the zeta potential? AC Theory

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

DC theory - Historical

Helmholtz (1879) Simple mineral surface neutralized by a monolayer of counterions from the fluid

Gouy (1910) & Chapman (1913) Replaces monolayer with a diffuse layer composed of counterions and coions (monolayer affected by thermal agitation)

Stern (1924)

Proposes amalgamation of the two previous models

The Helmholtz-Smoluchowski equation

By equating the convective and conductive currents (Overbeek, 1952)

$$\Delta V = - \frac{\varepsilon \zeta}{\eta \left(\sigma_f + \frac{2\Sigma_s}{\Lambda}\right)} \Delta P$$

 C_s is the electro-kinetic coupling coefficient is defined as the ratio of the streaming potential to the fluid pressure difference that created it (V/Pa)

$$C_{s} = \frac{\Delta V}{\Delta P} = \frac{\mathcal{E}\mathcal{G}}{\eta\sigma^{*}}$$
 where

$$= \sigma_f + \frac{2\Sigma_s}{\Lambda}$$

Sources of error

- 1. Not including surface conduction
- 2. Using $\varepsilon = 80$ at low fluid salinities
- 3. Using bulk fluid pH (zeta potential is a strong function of pH)

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Formulation in continuous media

permeability (m²) k fluid conductivity (S/m) σ_{f} fluid dielectric constant 3 GASTE ζ zeta potential (V) Plan fluid viscosity (Pa.s) n Introduction fluid pressure (Pa) P Origin electrical potential (V) \mathcal{O} Theory fluid flow (L/m²), Q**Apparatus** electric current density (A/m²) J Laboratorv determination or $J = \frac{\varepsilon \zeta}{-\infty} \nabla P - \sigma_f \nabla \varphi$ and $Q = -\frac{k}{-\infty} \nabla P + \frac{\varepsilon \zeta}{-\infty} \nabla \varphi$

✓ OK for capillaries

× To be verified for rocks

Applications Conclusions **Future** directions 21 of 72

What controls the zeta potential?

The streaming potential depends upon 4 parameters

- Fluid* dielectric constant
- Fluid* viscosity
- Fluid* conductivity
- Zeta potential

Therefore any control of the streaming potential exercised by the rock rests in the zeta potential

What controls the zeta potential?

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Controls on the zeta potential

- Salinity
- ≻ pH
- Porosity
- Pore microstructure connectedness G
- Flow rate
- Fluid viscosity
- Pore/fracture surface roughness
- Saturation
- Temperature, applied, pore and effective pressure
- Chemical composition of mineral and fluid

<u>Plan</u>

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Theory AC Theory II

Hydraulic coupling coefficient is almost Debye-like

Streaming coupling coefficient is not Debye-like

The smaller the grain size the higher the frequency of the dispersion

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Apparatus Early DC cells

From two existing cells:
→Jouniaux et al. (2000)
→ Glover (2001)

tt

Jouniaux et al. (2000)

Plan Introduction Origin Theory Apparatus Laboratory determination Applications Conclusions Future directions

Glover (2001)

Early AC measurement cells

FIG. 3. Diagrammatic view of test cell, showing capillary unit. Dimensions of test cell: internal diameter: 1.75 in.; outer diameter: 3.00 in.; height polystyrene body: $1\frac{7}{8}$ in.; distance between electrodes: $1\frac{1}{4}$ in.; length platinum electrodes: $1\frac{1}{2}$ in.; diameter platinum electrodes: 0.016 in.; thickness threaded section: $\frac{3}{8}$ in.; diameter threaded section: $\frac{7}{6}$ in.

Future

directions

33 of 72

Packard (1953)

Early AC measurement cells

Vertical scale: 1 square = 1 V Horizontal scale: 1 square = 5 ms

AC measurement cells

The design takes a piston or a rubber membrane

An LVDT allows a servo-locked amplifier to control the shaker with precision

Plan

Introduction

Origin

Theory

Future

35 of 72

Measurements can be made with or without an imposed DC fluid flow

LAVAL Apparatus

LAVAL Apparatus

AC measurement cells

Pore fluid chemistry Pore fluid salinity Pore fluid pH > Mineralogy Grain size > Temperature Saturation Frequency

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Pore fluid chemistry

Pore fluid salinity I

Pore fluid salinity II

Laboratory determinations Pore fluid pH I

Pore fluid pH II

Laboratory determinations Mineralogy I

Grain size

Temperature

Reppert and Morgan (2003)

LAVAL Laboratory determinations

Saturation I

$$J_{i} = -\sigma \sigma_{ri} C C_{ri} \nabla P_{i}$$
$$\sigma_{ri} = S_{i}^{n} \qquad C_{ri} = ?$$

Many attempts at finding a solution

Glover (2009)

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Laboratory determinations Saturation II

Laboratory determinations Frequency (AC measurements) I

No reliable data exists for rocks in the public domain Here is the best data made on silica filters

Filter A (72.5-87 μ m). Modelled transition frequency (269 Hz) corresponds to a pore radius of 65 μ m.

Filter B (35-50 μ m). Modelled transition frequency (710 Hz) corresponds to a pore radius of 40 μ m.

Future

directions

Laboratory determinations Frequency (AC measurements) II

- Hydrocarbon exploration & production
- Water reservoir management
- Remediation of polluted soils
- Permafrost monitoring
- Acid mine drainage monitoring
- Volcano prediction
- Earthquake prediction
- Synthetic earthquakes
- Geothermal HDR reservoir monitoring
- Monitoring of CO₂ sequestering
- Soil stabilisation

Hydrocarbon exploration & production I

Saunders et al. (2008)

a) Inversion of data from level 10, Lynx Mine (plan view)

b) Spectrogram of E-field record for shot 5 after filtering

There are many impressive examples of the use of seismoelectric and electro-kinetic prospection of hydrocarbon reservoirs

All are impossible to publish!!!

Here is an application to mining instead – the discovery of zinc ore by electroseismics

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

Hydrocarbon exploration & production II

Saunders et al. (2008)

As water approaches the borehole it may be predicted by measuring the increasing streaming potential

The well can be shut to improve the reservoir production

Plan Introduction Origin Theory Apparatus Laboratory determination Applications Conclusions Future directions 56 of 72

Applications CO₂ Sequestration

Injection of CO2 produces a dramatic decrease in the coupling coefficient

-300 mV/MPa -30 mV/MPa

These differences would be easily detectable by measuring surface SP

- Progressive injection of a reservoir with CO2 could be monitored
- CO2 leaking from a sequestration reservoir may also be detected before it appears at the surface

Remediation of polluted soils

Electro-kinetic processes are used to

- A. Extract polluted fluids and ions, or
- B. Move polluted fluids into contact with bioremediation or other active agents

Active from ppt upwards

© Google Earth

Applications

Volcano prediction I

© John Freeman

First create a 2D finite element model in Comsol Multiphysics

Applications First create a 2D finite element model in Comsol Multiphysics Volcano prediction II

Volcano prediction III

Colour : Electric field y-component (V/m) Arrows: Electric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic field, z-component (A/m) ArrowsElectric field (V/m) Colour : Magnetic : Magnetic

Courtesy of Emile Walker

Applications

Conclusions

Future directions

61 of 72

Modelling is still at an early stage. Need to develop convective flow. A map of the electric potential across the surface will then be compared to The measured SP values.

Time dependent injection of magma will then be modelled to see the SP values change with time.

Applications - Earthquake prediction I

- Initial fault is submitted to a shear stress
- ✤ However, it is locked

UNIVERSITÉ

- by its surface geometry and
- by the effective stress perpendicular to the fault
- Fluid flowing into a fault increases the fluid pressure
- It decreases the effective stress on the fault
- Unlocks the fault for it to fail
- Lubricates the faulting process

What causes the fluid flow? What can the fluid flow cause?

Applications Earthquake prediction II

The inflow may cause an electrical potential difference hence generating a streaming current $\Delta P \longrightarrow \Delta V$ and hence a magnetic field GASTE by electro-kinetic processes generating electro-magnetic and SP precursors **Plan** Introduction The fluid flow can be caused by electrical potential differences within the crust Origin associated with natural telluric currents $\Lambda V \longrightarrow \Lambda P$ Theory induced by ionospheric currents **Apparatus** by electro-osmosis Laboratorv determination The fluid flow may be caused by elastic waves set in motion by **Applications** other earthquakes Conclusions **Future** Understanding these links may lead to improvement in our ability directions to predict the time of earthquakes

Earthquake prediction III

Red seismic stations received arrivals from small local earthquakes that was triggered by a large distant earthquake (those in blue did not) Independent of tectonic province – mediated by surface waves!

directions

Synthetic earthquakes I

MHD Generators – The Earthquake machine

GASTEM

Plan

Introduction

Origin

Theory

Weight 18,000 kg Maximum power 15 MW Runtime 2 & 7 seconds Output 1.5 kA at 1350 V

Synthetic earthquakes II

Fluid flow into the fault reduces the effective pressure, triggering the earthquake

Pressure in the fault increases at one rate and decreases at another. Fracture fluid pressure may be over a critical level for several days after current injection

Conclusions

Future

directions

Conclusions

- The electro-kinetic and (seismo-electric) phenomena are well understood conceptually and qualitatively
- Unfortunately we do not have a sufficient database of measurements to fully understand quantitatively these phenomena in rocks
- Despite this fundamental lack both phenomena have been pressed into practical application

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

- However, high quality apparatus is being developed in a number of laboratories worldwide
- Future data should give us a better quantitative basis for the phenomena
- Applications for the phenomena are huge with a potential market amounting to billions of euros
- The properties as a function of frequency and saturation are particularly important

Plan

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions

P

- Development of AC electrical theory in rocks
- Development of AC electro-kinetic and seismo-electric theory
- Better basic measurements made over a large range of rocks and parameters

- Open research with industry
- Ensure applications use the latest evelopments and data

GASTE **Plan** Introduction Origin Theory **Apparatus** Laboratorv determination Applications Conclusions Future directions 71 of 72

LAVAL Acknowledgments

- Canada Emilie Walker & Eric Tardif, Jean Ruel, John Hadjigeorgiou & Tom Ransford, Guillaume Lalande, Melissa Jodouin, Marc Blouin, Nicholas Déry & Simon Marcil
- Scotland Steven Ogilvie, Evgeny Isakov, Malcolm Hole & Colin Taylor, Ibrahim Al-Zadjali, Kellie Frew, Steven Cuddy & Hesham Al-Qassab, Peter Bormann & Gregor Bächle
- Hungary Antal Adám

upon Tyne

- Spain Jaume Pous & Javier Gomez
- Japan Koji Matsuki, Kazuo Hayashi & Toshiyuki Hashida
- France André Revil, David Mainprice, Philippe Pezard, Benoît Iledefonse, Yves Guéguen, Yves Bernabé, Michel Darot, Thierry Reuschlé & Patrick Baud
 - UCL Philip Meredith, Stan Murrell & Steve Boon
- UEA & Fred Vine FRS, Keith Runcorn & Russell Ross Newcastle

<u>Plan</u>

Introduction

Origin

Theory

Apparatus

Laboratory determination

Applications

Conclusions

Future directions