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P\l Introduction |

What are electro-kinetic properties?

Electro-kinetic phenomena

The generation of an electrical potential difference across a
porous medium by the flow of fluid through it, or vice versa

Flow causes potential s Electro-kinetics
Potential causes flow =) Electro-osmosis

Electro-seismic phenomena

The generation of an electro-magnetic wave in a porous
medium by the passage of an elastic wave through it, or vice

versa
Elastic wave causes EM wave s Seismo-electric conversion
EM wave causes elastic wave s E|lectro-seismic conversion
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A\l Introduction Il

Principal applications

» Electro-kinetic phenomena

v'Hydrocarbon production
v'Water reservoir management
v'Remediation of polluted soils
v'Volcano prediction
v'Earthquake prediction
v'Synthetic earthquakes

Polymer sciences, membrane sciences, catalysis, microfluidics,
food science, medical science

» Electro-seismic phenomena

v'Hydrocarbon exploration & production
v'Water reservoir management
v'Volcano prediction

v'Earthquake prediction
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A\ Origin

» The electrical “double” layer
» Debye thickness

» Surface conduction

» Electro-seismic conversion
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| LAVAL Orlgln - The electrical double layer
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There exists:

Origin - The electrical double layer

Rock

No Flow at
Surface

Turbulent
Boundary Layer

Laminar Flow

Turbulent
Boundary Layer

No Flow at
Surface

Rock
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Origin - The electrical double layer

There exists:

Rock Surface »
Negative at pH7 || GASTEM

Adsorbed p
+ ¥ &~ +velons =

k . Origin
Bulk Fluid T

Introduction

Apparatus

Laboratory
determination

¥ Adsorbed Applications

\"‘VE lons Conclusions

Rock $urface Euture
Negative at pH7 BECIESTUE

10 of 72




Origin - The electrical double layer

Boundary of
moveable
fluids is in
diffuse layer

Immobile Fluid
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Sl Origin

PET Visualisation of the electrical double layer
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YAV Origin

Surface conduction

Two conduction
mechanisms

A. via the bulk fluid

B. via the diffuse and
Stern layers

The latter is surface
conduction

Surface conduction
more effective than
bulk fluid conduction

At low salinities — the
EDL is thick — Surface
conductivity dominates
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1\l Origin

Electro-seismic conversion

Haines et al. (2007)

Grain s‘fcale: Pore scale:
Pore fluid flow Charge flow

N NA
\{ >
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» DC Theory
» The Helmholtz-Smoluchowski equation

Plan
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Theory

DC theory - Historical

» Helmholtz (1879) Simple mineral surface

» Gouy (1910) &
Chapman (1913)

» Stern (1924)

neutralized by a monolayer
of counterions from the fluid

Replaces monolayer with a
diffuse layer composed of
counterions and coions
(monolayer affected by
thermal agitation)

Proposes amalgamation of
the two previous models

i I I O oy o o O
o ' i 1 |
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WY\ Theory

The Helmholtz-Smoluchowski equation

By equating the convective and conductive currents (Overbeek, 1952)

C. is the electro-kinetic coupling
) Wl coefficient is defined as the ratio of the

&g
23,

for Z

AV =—
streaming potential to the fluid pressure
difference that created it (V/Pa)

Sources of error

1. Not including surface conduction
2. Using € = 80 at low fluid salinities
3. Using bulk fluid pH (zeta potential is a strong function of pH)
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1W\Y\l Theory

Formulation in continuous media

Darcy’s law, L,,=k/m permeability (m2)
fluid conductivity (s/m)

fluid dielectric constant
L11 L12

zeta potential (v)

B L21 L22 B fluid viscosity (Pa.s)

\ fluid pressure (pPa)

Electro-kinetic electrical potential (v)

phenomena Ohm’s law, |
L, =L,,=¢ln L,, =oc; fluid flow (L/m2),

electric current density (A/m?)

v OK for capillaries x To be verified for rocks
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A\l Theory

What controls the zeta potential?

The streaming potential depends upon 4
parameters

» Fluid* dielectric constant
» Fluid* viscosity

» Fluid* conductivity

» Zeta potential

any control of the streaming potential
exercised by the rock rests in the zeta potential

What controls the zeta potential?
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WY\ Theory

Controls on the zeta potential

Salinity
pH
Porosity
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Glover (2007)
For the hydraulic coupling coefficient

V(a)) 1 [i Jl (ka) _ 1:| IntrE[ion

AP (0)) N W ka JO (ka) Packard (1953) Origin
Theory
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| LAVAL

AC Theory Il

Hydraulic coupling
coefficient is almost
Debye-like

Streaming coupling
coefficient is not
Debye-like

The smaller the grain
size the higher the
frequency of the
dispersion

Coupling Coefficient

Coupling Coefficient

| —— Real Hydraulic Coupling

|| —— Real Streaming Coupling

[| —— Real Debye Fit

Coafficient
Imaginary Hydraulic
Coupling Cosfficiont
Cosfficient

Imaginary Streaming
Coupling Goeflicient

Imaginary Debye Fit

oI
| = Rl 10w Coupling

CoaMc leng

== uagEnaTy 10 mu Coupling
Coafhcient

L
L | = Rl 50 i Coupling

Coefhihing

| == risagraiy &0 mu Coupling

CoefMicient

: —— Faal 100 mu Couplng

Coaffciant

== msagasry 100 mw Coupling
CoaMicient

Frequency (Hz)
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\V\d Apparatus

» Early DC measurement cells
» DC measurement cells at ULaval
» Early AC measurement cells
» AC measurement cells at ULaval
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\V\d Apparatus

Early DC cells

* From two existing cells:
—>Jouniaux et al. (2000)
- Glover (2001)
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Polyolefin - Parspex Pressure  Perspex End : - onfining
g i sarmple |} L : confining Laborator
PTFE E"E!'«::Ill'lﬂ i Vqlssal Perspex  Closure BHC Coaxial = pressure y
End-plece | a | Sp?cers Conneciors bl o
Voltage . ) ; | ; :
Connaxion 2 - " 1 ,/r 5 | . .
. . S \Voltage , 1 Applications
Fluid Inlet.____ 3 : e B - Connexion 1 ! t ;
Current __ - i Fluid Outlet
Connexiom2 — — : = O . - —  Cument
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Confining Fi | . T Temperature
Prassure ~" R ."II P00 Porous X "~ Lead-through
Inlat - Sensor  Disc J
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waler inlet 1 electrode

Conclusions
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I\l Apparatus

DC measurement cells
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I\l Apparatus

DC measurement cells
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I\l Apparatus

DC measurement cells

Connector for
temperature
measurement

Connectors to measure
fluid pressure variation

Sample
with heat

shrinkale jacket

Fluid out

1

Connector to allow
confining gaz
circulation

Electrodes to
measure electrical
potential variation

Fluid In
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Apparatus

DC measurement cells

Mark 3 cell can be used at higher
Confining pressures within the
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\V\d Apparatus

Early AC measurement cells
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Dimensions of test cell: internal diameter: 1.75 in.; outer diam- directions
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Apparatus

Early AC measurement cellg Vertcalscale: 1square =1V

Horizontal scale: 1 square =5 ms
5000/ &/ 2180s 50008/ Stop £ [ 180v

Electrical potential from a fluid pulse : The

« Hammer test »
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. Ottawa sand Laboratory
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Apparatus

AC measurement cells

Measurements
can be made with
or without an
imposed DC fluid
flow

The design takes a piston
or a rubber membrane

An LVDT allows a servo-locked
amplifier to control the shaker
with precision
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S\l Apparatus

AC measurement cells
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\V\d Apparatus

AC measurement cells

Holes for fluid circulation or pressure
tranducers

| | Precision shaker

Fluid out \1

Spring  Mon-consolidated
ips Piston Plan

1 Introduction
‘ Origin

-!\ Theory
site for electrodes for electrical

potential measurements Membrane Apparatus

Laboratory

Perforated determination

end piece o
Applications

Conclusions

Future
directions

Section of the set-up 37 of 72
(0]







W UNIVERSITE

W\l | aboratory determinations

Pore fluid chemistry
Pore fluid salinity

Plan

Pore fluid pH

Introduction

Mineralogy ortom

Theory

G ral n S I Ze Apparatus

Laborator
Tem peratu re determinati)én

Applications

Sat U ratl O n Conclusions

Future

Freq Uen Cy directions

39 of 72

>
>
>
>
>
>
>
>




| UNIVERSITE

I\V\l |_aboratory determinations

Pore fluid chemistry
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Laboratory determinations

Pore fluid salinity |

— =« £ =8+26 logyy C; Pride and Morgan (1991)
—— (=-16.606+16.175log,, C; Saunders et al. (2008)

-4 -2
log,, salinity C; (mol/L)

Saunders et al. (2008)
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I\V\l |_aboratory determinations

Pore fluid salinity I
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I\V\l |_aboratory determinations
Pore fluid pH |

Quartz 28x65 mesh === Athabasca sand
Eau distillée KN03 10-3 N Fisher silica
Température 45°C
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I\V\l |_aboratory determinations
Pore fluid pH I

Scales et al.(1992)
Kosmulski & Matijevic (1992)
Kirby & Hasselbrink (2004)
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Y\l | aboratory determinations
Mineralogy |

x Fontainebleau sandstone <:Tuff Revil et al.

o: Albite
a: Orthoclase
e : Granite

v French Alps o Villejust Quartzite

o Nepal MCT zone @ Vosges sandstone
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I\V\l |_aboratory determinations

| | ]
£ = 8+26 log,q C; Pride and Morgan (1991)
£ =-16.606+16.175 log,; C; Saunders et al. (2008)

Mineralogy Il -

Introduction

sandstone Origin
sand
glass microspheres Theory
sandstone
sandstone Apparatus
limestone
quartz Laboratory

sandstone + carbonate determination
limestone zeolitised tuffs

fused glass beads * basalt Applications
sandstone limestone

. granite = sandstone Conclusions
sandstone = |limestone

glass beads granite Future
directions
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I\V\l |_aboratory determinations

Tem p el’atu e Reppert and Morgan (2003)
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The coupling coefficient varies significantly, but

. : Applications
erratically with temperature
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Stability is the main experimental problem
Future

The calculated zeta potential may be a function of temperature directions
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P\l | aboratory determinations

Saturation |

Jj =-00,iCC VR

Plan
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LAVAL Laboratory determinations

Saturation I

Linde et al. (2007)
Jackson (2008)

Glover (2009)
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I\V\l |_aboratory determinations

Frequency (AC measurements) |

No reliable data exists for rocks in the public domain
Here is the best data made on silica filters
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Conclusions

Filter A (72.5-87 pm). Modelled transition Filter B (35-50 um). Modelled transition Future
directions
frequency (269 Hz) corresponds to a pore frequency (710 Hz) corresponds to a pore

radius of 65 um. radius of 40 pum. 51 of 72
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I\V\l |_aboratory determinations

Frequency (AC measurements) Il

First data available for ottawa sand using the
Université Laval Petrophysics AC cell Mk 2
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Time (s) Time (s) Conclusions
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. . : — diroct
15 Hz — some improvement of S/N ratio 20 Hz — Problems with cavitation. irections

required Calculations have been carried out to avoid

. 52 of 72
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Applications

» Hydrocarbon exploration & production
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Water reservoir management
Remediation of polluted soils
Permafrost monitoring

Acid mine drainage monitoring
Volcano prediction

Earthquake prediction

Synthetic earthquakes

Geothermal HDR reservoir monitoring
Monitoring of CO, sequestering

Soil stabilisation

...many others
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Applications

Hydrocarbon exploration & production |

a) Inversion of data from level 10, Lynx Mine (plan view)
Count

Saunders et al. (2008
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b) Spectrogram of E-fleld record for shot 5 after filtering
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There are many impressive
examples of the use of
seismoelectric and electro-kinetic
prospection of hydrocarbon
reservoirs

Here is an application to mining
Instead — the discovery of zinc ore
by electroseismics

Introduction
Origin
Theory
Apparatus

Laboratory
determination

Applications
Conclusions

Future
directions

55 of 72




UNIVERSITE

| LAVAL

Saunders et al. (2008)

Applications

Hydrocarbon exploration & production Il
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As water approaches the borehole
it may be predicted by measuring
the increasing streaming potential

The well can be shut to improve
the reservoir production
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Applications

CO, Sequestration

Injection of CO2 produces a
dramatic decrease in the coupling
coefficient

Steady €O, Flow

SP Coupling Coeff (mV/0.1MPa)

'300 mV/MPa ‘ '30 mV/MPa Introduction

These differences would be easily Origin
detectable by measuring surface '

Theory

Apparatus

Progressive injection of a
reservoir with CO2 could be
monitored

Laboratory
determination

Applications

Conclusions

CO2 leaking from a
sequestration reservoir may also
be detected before it appears at

the surface 800 1200 1600 2 ofl 72
Pressure Drop (kPa)

SP Coupling Coeff (mV/0.1MPa)

Future
directions
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W\l Applications

Remediation of polluted soils

e———— Electrolysis lons

Extraction/
Exchange

— =3 ,- Electrophoresis colloids
rocessing Processing

Extraction/
Exchange

Electro-kinetic water extraction
Is also used to strengthen soils

Introduction

Acid Frent Ori i
andior Ancaic
Process Fiuid

Theory
Processed 1
Magia ;

Apparatus

Laboratory
determination

Electro-kinetic processes are used to

A. Extract polluted fluids and ions, or

B. Move polluted fluids into contact with
bioremediation or other active agents

% recovered
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Volcano prediction |

© John Freeman
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LAVAL A p p I | C atl ons First create a 2D finite element model

In Comsol Multiphysics

Volcano prediction Il

Courtesy of Emile Walker

: Temperature (K) 293.15 - 844.846
: Total heat flux NN . ; A 7

Colour
Arrows

Colour
Arrows

R AR AARARAARAANARI T ERBNAR Y Future

: Fluid pressure (Pa) : Introduction
: Fluid velocity field (m/s) : Oriai
rigin
Theory
Apparatus

Laboratory
determination

: Fluid density (kg/m?3)

Applicati
. Fluid velocity field (m/s) pplications
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WM Applications

Volcano prediction Il

Courtesy of Emile Walker

Colour : Electric field y-component (V/m)
Arrows: Electric field (V/m)

Plan

o Introduction
Colour : Magnetic field, z-component (A/m)

ArrowsElectric field (V/m) Origin
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Theory
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Laboratory
determination

Modelling is still at an early stage. Need to develop convective flow. Applications
A map of the electric potential across the surface will then be compared to Conclusions
The measured SP values.

Future
directions

Time dependent injection of magma will then be modelled
to see the SP values change with time. Sl
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Initial fault is submitted to a
shear stress

However, it Is locked

= Dy its surface geometry and
= Dy the effective stress

perpendicular to the fault .
flows in

Fluid flowing into a fault
Increases the fluid pressure

It decreases the effective
stress on the fault

Unlocks the fault for it to fall

Lubricates the faulting
process

Failure
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Y\V\l Applications

Earthquake prediction Il

* The inflow may cause an electrical potential difference
hence generating a streaming current —
and hence a magnetic field
by electro-kinetic processes
generating electro-magnetic and SP precursors

s The fluid flow can be caused by electrical potential
differences within the crust
associated with natural telluric currents >
induced by ionospheric currents
by electro-osmosis

s The fluid flow may be caused by elastic waves set in motion by
other earthquakes
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Earthquake prediction Il
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Introduction
Origin
Theory
Apparatus

Laboratory
determination
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Conclusions

Future

Red seismic stations received arrivals from small local earthquakes directions
that was triggered by a large distant earthquake (those in blue did not)

Independent of tectonic province — mediated by surface waves! SRl e
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Y\V\l Applications
Synthetic earthquakes |

MHD Generators — The Earthquake machine

Weight 18,000 kg
Maximum power 15 MW
Runtime 2 & 7 seconds
Output 1.5 kA at 1350 V

earthquakes (-)
A o

Number of local
[ %]

=
|

-10 0 10
Time before and after MHD run (days)
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Applications

Synthetic earthquakes Il

Distance A-B = 2L

Fluid flow into the fault reduces the
effective pressure, triggering the
earthquake

Current on
EQ danger zone

D

Fluid preddure in fault (MPa)

| | | |
120 150 180 210 240 270

Time (mins)

60 90

Pressure in the fault increases at
one rate and decreases at another.
Fracture fluid pressure may be over
a critical level for several days after

current injection
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P\ Conclusions |

* The electro-kinetic and (seismo-electric)
phenomena are well understood conceptually
and qualitatively

*» Unfortunately we do not have a sufficient
database of measurements to fully understand
guantitatively these phenomena in rocks

* Despite this fundamental lack both phenomena
have been pressed into practical application
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Conclusions |l

However, high quality apparatus is being
developed in a number of laboratories worldwide

Future data should give us a better quantitative
basis for the phenomena

Applications for the phenomena are huge with a
potential market amounting to billions of euros

The properties as a function of frequency and
saturation are particularly important
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P\ Future directions

Development of AC electrical
theory in rocks

Plan

Introduction

over a large range of rocks and WETTRER origin
parameters Theory

Apparatus

Particular importance given to AC measurements aboratons
and saturation measurements determination

Applications

Open research with industry

Conclusions

Ensure applications use the latest evelopments and | e
data
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