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Introduction IIntroduction I
Wh lWh l ki i i ?ki i i ?What are electroWhat are electro--kinetic properties?kinetic properties?

Electro kinetic phenomenaElectro-kinetic phenomena
The generation of an electrical potential difference across a 
porous medium by the flow of fluid through it, or vice versa
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Flow causes potential Electro-kinetics
Potential causes flow Electro-osmosis
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Electro-seismic phenomena
The generation of an electro-magnetic wave in a porous 
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determinationg g
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Introduction IIIntroduction II
P i i l li iP i i l li iPrincipal applicationsPrincipal applications

Electro-kinetic phenomenaElectro kinetic phenomena
Hydrocarbon production
Water reservoir management
Remediation of polluted soils

PlVolcano prediction
Earthquake prediction
Synthetic earthquakes
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Polymer sciences, membrane sciences, catalysis, microfluidics, 
food science, medical science   

Electro-seismic phenomena

Theory

Apparatus

Laboratory
determinationElectro-seismic phenomena

Hydrocarbon exploration & production
Water reservoir management
Volcano prediction

determination

Applications

Conclusions

Future
p

Earthquake prediction
Future 

directions

55 of 72of 72



OriginsOriginsOriginsOrigins



OriginOrigin

The electrical “double” layer
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Debye thickness
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Origin Origin -- The electrical double layerThe electrical double layer

There exists:

An 
undisturbed 
central

f Plzone of 
laminar flow,

and
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A surface 
boundary 
layer of 
turbulent flow
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Origin Origin -- The electrical double layerThe electrical double layer

There exists:

A -ve charged
rock surface,

and
Pl

A layer of +ve
adsorbed
ions,
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and

A net –ve diffuse 
layer
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determinationlayer

[thickness 
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fluid
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Origin Origin -- The electrical double layerThe electrical double layer

Boundary of 
moveablemoveable
fluids is in 
diffuse layer

Flow separates – Plp
ve charges
to the right

and
Shear plane
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+ve charges are 
left behind

this
Shear plane
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D b hi k IID b hi k IIDebye thickness IIDebye thickness II
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PET Visualisation of the electrical double layer
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OriginOrigin
S f d iS f d iSurface conductionSurface conduction

Two conduction 10

mechanisms

A. via the bulk fluid
B i th diff d

(S
/m

)

1
Clean SST (Berea)

PlB. via the diffuse and 
Stern layers

The latter is surface of
 R

oc
k 
0.1
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Introduction

Origin

conduction
Surface conduction 
more effective than 

du
ct

iv
ity

 

0.01
Clayey SST

(Darley Dale)
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bulk fluid conduction
At low salinities – the 
EDL is thick – Surface 

C
on

d

0.0001

0.001
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Conductivity of Solution (S/m)
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ElEl i i ii i iElectroElectro--seismic conversionseismic conversion

Haines et al. (2007)
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TheoryTheory

DC Theory
The Helmholtz-Smoluchowski equation

Pl

Formulation in continuous media
What controls the zeta potential?
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TheoryTheory
DC hDC h Hi i lHi i lDC theory DC theory -- HistoricalHistorical

Helmholtz (1879) Simple mineral surface 
t li d b lneutralized by a monolayer 

of counterions from the fluid

Pl
Gouy (1910) &
Chapman (1913)

Replaces monolayer with a 
diffuse layer composed of 
counterions and coions 

Plan
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Origin

(monolayer affected by 
thermal agitation)

Theory

Apparatus

Laboratory
determination

Stern (1924) Proposes amalgamation of 
the two previous models
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TheoryTheory
Th H l h lTh H l h l S l h ki iS l h ki iThe HelmholtzThe Helmholtz--Smoluchowski equationSmoluchowski equation

ζ

By equating the convective and conductive currents (Overbeek, 1952)

C is the electro kinetic coupling
PV

s
f

Δ
⎟
⎠
⎞

⎜
⎝
⎛

Λ
Σ

+
−=Δ

2
ση

εζ Cs is the electro-kinetic coupling 
coefficient is defined as the ratio of the 
streaming potential to the fluid pressure 
difference that created it (V/Pa) Pl⎠⎝

VC εςΔ 2 s∗ Σ
+h

( ) Plan

Introduction

Origin

sC
P ησ ∗= =

Δ
s

fσ σ= +
Λ

where Theory

Apparatus

Laboratory
determination

Sources of error
1. Not including surface conduction
2 Using  = 80 at low fluid salinities
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Conclusions

Future2. Using ε = 80 at low fluid salinities
3. Using bulk fluid pH (zeta potential is a strong function of pH)
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TheoryTheory
F l i i i diF l i i i diFormulation in continuous mediaFormulation in continuous media

Darcy’s law, L11 = k/η k permeability (m²)

σ fluid conductivity (S/m)

⎥
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⎡
∇
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⎣

⎡
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⎦

⎤
⎢
⎣

⎡
ϕ
P

LL
LL

J
Q 1211

σf fluid conductivity (S/m)

ε fluid dielectric constant
ζ zeta potential (V)

Pl⎦⎣∇⎦⎣⎦⎣ ϕLLJ 2221

Ohm’s law
Electro-kinetic 
phenomena

η fluid viscosity (Pa.s)

P fluid pressure (Pa)

ϕ electrical potential (V)
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Ohm s law, 
L22 = σf

phenomena
L21 = L12 = εζ/η Q fluid flow (L/m²), 

J electric current density (A/m²) 
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TheoryTheory
Wh l h i l?Wh l h i l?What controls the zeta potential?What controls the zeta potential?

The streaming potential depends upon 4The streaming potential depends upon 4 
parameters

Fluid* dielectric constant Pl

Fluid* viscosity
Fluid* conductivity

Plan

Introduction

Originy
Zeta potential

Th f t l f th t i t ti l

Theory

Apparatus

Laboratory
determinationTherefore any control of the streaming potential 

exercised by the rock rests in the zeta potential
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Applications

Conclusions

Future

What controls the zeta potential?
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TheoryTheory
C l h i lC l h i lControls on the zeta potentialControls on the zeta potential

SalinitySalinity
pH
Porosity PlPorosity
Pore microstructure – connectedness G
Flow rate
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OriginFlow rate
Fluid viscosity
Pore/fracture surface roughness
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Apparatus
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determinationPore/fracture surface roughness

Saturation
Temperature, applied, pore and effective pressure
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Chemical composition of mineral and fluid
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Theory Theory -- AC Theory IAC Theory I

We propose

( ) fV f ε ζ
ωΔ ∗

For the hydraulic coupling coefficient

( ) f

f fP
f ω

η σ ∗=
Δ

Glover (2007)
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= −⎢ ⎥
Δ ⎢ ⎥⎣ ⎦ Packard (1953)
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The streaming potential coupling coefficient becomes

( ) ( ) ( )12fV J ka
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ε ζω ⎡ ⎤Δ
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Packard (1953)
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TheoryTheory
AC Theory IIAC Theory IIAC Theory IIAC Theory II

Hydraulic coupling 
coefficient is almost Plcoefficient is almost 
Debye-like

Streaming coupling 
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Introduction

Origing p g
coefficient is not 
Debye-like

The smaller the grain

Theory

Apparatus
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determinationThe smaller the grain 

size the higher the 
frequency of the 
dispersion
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Early DC measurement cells
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DC measurement cells at ULaval
Early AC measurement cells
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ApparatusApparatus
E l DC llE l DC llEarly DC cellsEarly DC cells

• From two existing cells: 
Jouniaux et al. (2000)
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DC llDC llDC measurement cellsDC measurement cells
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DC llDC llDC measurement cellsDC measurement cells

PlanPlPlan

Introduction

Origin

Th

Plan

Introduction

Origin

Theory

Laboratory
determinations

Applications

Theory

Apparatus

Laboratory
determination

Conclusions

Future 
directions

Mark 3 cell can be used at higher
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same hydraulic press
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ApparatusApparatus
E l AC llE l AC ll V ti l l 1 1 VEarly AC measurement cellsEarly AC measurement cells

Electrical potential from a fluid pulse : The 
« Hammer test »

Vertical scale: 1 square = 1 V
Horizontal scale: 1 square = 5 ms
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Satured with 0.1M de NaCl
Glover (2007)
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ApparatusApparatus
AC llAC llAC measurement cellsAC measurement cells

The design takes a piston 
or a rubber membrane
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lifi l h h k PlPlan
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Laboratory determinationsLaboratory determinations
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Pore fluid chemistry
Pore fluid salinity
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Laboratory determinationsLaboratory determinations
P fl id h iP fl id h iPore fluid chemistryPore fluid chemistry
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Laboratory determinationsLaboratory determinations
P fl id li i IP fl id li i IPore fluid salinity IPore fluid salinity I
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P fl id li i IIP fl id li i IIPore fluid salinity IIPore fluid salinity II
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P fl id H IP fl id H IPore fluid pH IPore fluid pH I
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P fl id H IIP fl id H IIPore fluid pH IIPore fluid pH II

Scales et al.(1992)
Kosmulski & Matijevic (1992)
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Zeta potential measured as a function of pH and 

counterion concentration

pH dependence of temperature-
corrected (20oC), normalized zeta 

potential
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Mi l IMi l IMineralogy IMineralogy I
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Laboratory determinationsLaboratory determinations
G i iG i iGrain sizeGrain size
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Laboratory determinationsLaboratory determinations
TTTemperatureTemperature Reppert and Morgan  (2003)
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The coupling coefficient varies significantly, but 
erratically with temperature

Stability is the main experimental problem
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The calculated zeta potential may be a function of temperature

However, its form is controlled by the effect of temperature on the fluid conductivity
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Laboratory determinationsLaboratory determinations
S i IS i ISaturation ISaturation I
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S i IIS i IISaturation IISaturation II
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Laboratory determinationsLaboratory determinations
F (AC ) IF (AC ) IFrequency (AC measurements) IFrequency (AC measurements) I

No reliable data exists for rocks in the public domain
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Here is the best data made on silica filters
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Filter A (72.5-87 μm). Modelled transition 
frequency (269 Hz) corresponds to a pore 

radius of 65 μm.

Filter B (35-50 μm). Modelled transition 
frequency (710 Hz) corresponds to a pore 

radius of 40 μm.
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F (AC ) IIF (AC ) IIFrequency (AC measurements) IIFrequency (AC measurements) II

First data available for ottawa sand using the
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Université Laval Petrophysics AC cell Mk 2
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Applied pressure difference in red Streaming potential in blue
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5252 of Xof X

15 Hz – some improvement of S/N ratio 
required

20 Hz – Problems with cavitation. 
Calculations have been carried out to avoid 

this phenomenon.
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ApplicationsApplications
Hydrocarbon exploration & production
Water reservoir management
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Permafrost monitoring PlPlan
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Permafrost monitoring
Acid mine drainage monitoring
Volcano prediction
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Earthquake prediction
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Geothermal HDR reservoir monitoring
Monitoring of CO2 sequestering
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H d b l i & d i IH d b l i & d i IHydrocarbon exploration & production IHydrocarbon exploration & production I

Saunders et al. (2008)

There are many impressive 
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examples of the use of 
seismoelectric and electro-kinetic 
prospection of hydrocarbon 
reservoirs PlPlan
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reservoirs

All are impossible to publish!!!
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Here is an application to mining 
instead – the discovery of zinc ore 
by electroseismics
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H d b l i & d i IIH d b l i & d i IIHydrocarbon exploration & production IIHydrocarbon exploration & production II

Saunders et al. (2008)

As water approaches the borehole 
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it may be predicted by measuring 
the increasing streaming potential

The well can be shut to improve PlPlan
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The well can be shut to improve 
the reservoir production
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COCO22 SequestrationSequestrationCOCO22 SequestrationSequestration
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Injection of CO2 produces a 
dramatic decrease in the coupling 
coefficient PlPlan
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coefficient

-300 mV/MPa -30 mV/MPa

These differences would be easily 
detectable by measuring surface
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detectable by measuring surface 
SP

Progressive injection of a 
reservoir with CO2 could be
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reservoir with CO2 could be
monitored

CO2 leaking from a 
sequestration reservoir may also
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sequestration reservoir may also
be detected before it appears at
the surface
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R di i f ll d ilR di i f ll d ilRemediation of polluted soilsRemediation of polluted soils

Electrolysis ions
Electo-osmosis water
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Electrophoresis colloids

Electro kinetic water extraction PlPlan
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Electro-kinetic water extraction
Is also used to strengthen soils
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Electro-kinetic processes are used to
A. Extract polluted fluids and ions, or
B. Move polluted fluids into contact with 

bioremediation or other active agents
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bioremediation or other active agents

Active from ppt upwards
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V l di i IV l di i IVolcano prediction IVolcano prediction I

© Google Earth © John Freeman
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First create a 2D finite element model 
in Comsol Multiphysics
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ApplicationsApplications
V l di i IIV l di i II

First create a 2D finite element model 
in Comsol Multiphysics

Volcano prediction IIVolcano prediction II
Colour : Temperature (K)
Arrows: Total heat flux

293.15 - 844.846

Courtesy of Emile Walker
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Colour : Fluid pressure (Pa)
Arrows: Fluid velocity field (m/s)
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Colour : Fluid density (kg/m3)
Arrows: Fluid velocity field (m/s)

670 - 891
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V l di i IIIV l di i IIIVolcano prediction IIIVolcano prediction III

Colour : Electric  field y-component (V/m)
Arrows: Electric field (V/m)

Courtesy of Emile Walker
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Arrows: Electric field (V/m)
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Colour : Magnetic field, z-component (A/m)
ArrowsElectric field (V/m)
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Colour : Fluid density (kg/m3)
Arrows: Fluid velocity field (m/s)
Modelling is still at an early stage. Need to develop convective flow.
A map of the electric potential across the surface will then be compared to
The measured SP values.
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Time dependent injection of magma will then be modelled 
to see the SP values change with time.
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Initial fault is submitted to a
shear stress

H it i l k d
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However, it is locked 
by its surface geometry and 
by the effective stress
perpendicular to the fault PlPlan
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perpendicular to the fault

Fluid flowing into a fault 
increases the fluid pressure
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It decreases the effective
stress on the fault

Unlocks the fault for it to fail
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Lubricates the faulting
process
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What causes the fluid flow?
What can the fluid flow cause?
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E h k di i IIE h k di i IIEarthquake prediction II Earthquake prediction II 

The inflow may cause an electrical potential difference

Plan

hence generating a streaming current
and hence a magnetic field 

by electro-kinetic processes
ti l t ti d SP

ΔP ΔV
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generating electro-magnetic and SP precursors

The fluid flow can be caused by electrical potential
differences within the crust
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associated with natural telluric currents
induced by ionospheric currents

by electro-osmosis

ΔV ΔP Theory
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The fluid flow may be caused by elastic waves set in motion by
other earthquakes

U d t di th li k l d t i t i bilit
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Understanding these links may lead to improvement in our ability 
to predict the time of earthquakes
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Red seismic stations received arrivals from small local earthquakes 
that was triggered by a large distant earthquake (those in blue did not)
Independent of tectonic province – mediated by surface waves!
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S h i h k IS h i h k ISynthetic earthquakes ISynthetic earthquakes I

MHD Generators – The Earthquake machine
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Weight 18,000 kg
Maximum power 15 MW
Runtime 2 & 7 seconds
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Runtime 2 & 7 seconds
Output 1.5 kA at 1350 V
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one rate and decreases at another. 
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effective pressure, triggering the 
earthquake

Fracture fluid pressure may be over 
a critical level for several days after 

current injection
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Conclusions IConclusions I
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The electro-kinetic and (seismo-electric) 
phenomena are well understood conceptually
and q alitati el PlPlan
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and qualitatively

Unfortunately we do not have a sufficient

Plan

Introduction

Origin

Theory

Laboratory
determinations

Applications

database of measurements to fully understand
quantitatively these phenomena in rocks
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Despite this fundamental lack both phenomena
have been pressed into practical application

determination

Applications

Conclusions

FutureAcknowledg-
Ments

6868 of Xof X

Future 
directions

6868 of 72of 72



Conclusions IIConclusions II
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However, high quality apparatus is being
developed in a number of laboratories worldwide
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Future data should give us a better quantitative
basis for the phenomena
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Applications for the phenomena are huge with a
potential market amounting to billions of euros
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The properties as a function of frequency and
saturation are particularly important
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Future directionsFuture directions

Development of AC electrical 
theory in rocks
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theory in rocks
Development of AC electro-kinetic 
and seismo-electric theory PlPlan
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y
Better basic measurements made
over a large range of rocks and
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parameters
Particular importance given to AC measurements
and saturation measurements
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and saturation measurements
Open research with industry
Ens re applications se the latest e elopments and

determination

Applications

Conclusions

FutureAcknowledg-
Ments

7171 of Xof X

Ensure applications use the latest evelopments and
data
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