

A THEORETICAL MODEL OF STREAMING POTENTIAL AND ZETA POTENTIAL IN ROCKS

Paul Glover & Emilie Walker Université Laval, Québec, Canada

> Matthew Jackson Imperial College, London, UK

ETROPHISCS Introduction

- The classical Helmholtz-Smoluchowski equation relates the streaming potential coupling coefficient (SPCC) to
 - zeta potential
 - Pore fluid dielectric permittivity ۲
 - Pore fluid conductivity ۲
 - Pore fluid viscosity ${\color{black}\bullet}$
- Developped for capillary tubes **
- Commonly applied to rocks **
- However, never been validated for rocks (no measure of zeta potential) ••••
- Never even been a theoretical model applied to real rocks **
- **DESPITE** most of the theoretical tools being available since 1998 •••

$$C_{s} = rac{arepsilon_{f} \zeta}{\eta_{f} \left(\sigma_{f} + 2\Sigma_{s} / \Lambda
ight)}$$

In this presentation:

Development of the required theoretical tools **Compilation** of a SPCC dataset for rocks **Compilation** of a zeta potential dataset for rocks **Modelling SPCC of rocks as a function** of salinity Modelling ζ of rocks as a function of salinity

UNIVERSITÉ LAVAL

Database

SPCC vs. Pore fluid salinity Silica, glass, sand and sandstone 11 sources

Acknowledgments to Jaafar (2009)

6. Conclus

Zeta potential vs. Pore fluid salinity Silica, glass, sand and sandstone 7 sources

Acknowledgments to Jaafar (2009)

1. Introduction 2. Database

3. The

4. Plenar

5. Individ

5/18

UNIVERSITÉ LAVAL Theoretical model PETROPHSKS. LABORATORY

The method is as follows:

Calculate the pore fluid conductivity (salinity and temperature) 1.

$$\sigma_f(T, C_f) = (d_1 + d_2T + d_3T^2)C_f - \left(\frac{d_4 + d_5T}{1 + d_6C_f}\right)C_f^{3/2}$$

Sen and Goode (1992)

Calculate the pore fluid relative permittivity (salinity and temperature) 2.

$$\varepsilon_f(T, C_f) = \varepsilon_o(a_0 + a_1T + a_2T^2 + a_3T^3 + c_1C_f + c_2C_f^2 + c_3C_f^3)$$

Olhoeft (1980)

3. Calculate the pore fluid viscosity (salinity and temperature)

$$\eta_f(T, C_f) = e_1 + e_2 \exp(\alpha_1 T) + e_3 \exp(\alpha_2 C_f^m) + e_4 \exp(\alpha_3 T + \alpha_4 C_f^m)$$

Phillips et al. (1978)

PERCHASS Theoretical model

Define the physical chemistry of the double layer 4.

UNIVERSITÉ LAVAL

LABORATORY

>SiOH^o \Leftrightarrow >SiO⁻ + H⁺ >SiOH^o + Me⁺ $\Leftrightarrow >$ SiOMe^o + H⁺

5. Calculate or set the pore fluid pH (SiO₂-H₂O-CO₂)

$$C_{H^+}^3 - (C_a - C_b)C_{H^+}^2 - (K_w + K_1)C_{H^+} - 2K_1K_2 = 0$$

 $K_{w} = 6.9978 \times 10^{-16} + 5.0178 \times 10^{-16} T - 2.4434 \times 10^{-17} T^{2} + 7.1948 \times 10^{-19} T^{3}$ Lide (2009); Revil et al. (1999)

6. Calculate the Debye screening length and shear plane distance

$$\chi_{d} = \sqrt{\frac{\varepsilon_{o}\varepsilon_{r}k_{b}T}{2000\text{N}e^{2}I_{f}}} \text{ and } I_{f} = \frac{1}{2}\sum_{i}^{n}Z_{i}^{2}C_{i}^{f} \qquad \chi_{\zeta} = 2.4 \times 10^{-10} \text{ m}$$
oduction
2. Database
3. Theory
4. Plenary
5. Individual
6. Conclusions
7/18

7. Calculate the Stern plane potential

$$\varphi_d = \frac{2k_bT}{3e} \ln \left(\frac{\sqrt{8 \times 10^3 \varepsilon_r \varepsilon_o k_b T N} \left(10^{-pH} + K_{Me} C_f \right)}{2e \Gamma_s^o K_-} \left[\frac{C_a + C_b + C_f + 10^{-pH}}{\sqrt{I_f}} \right] \right)$$

Revil and Glover (1997; 1998)

8. Calculate the zeta potential

$$\zeta = \varphi_d \exp\left(-\chi_{\zeta}/\chi_d\right)$$

Revil and Glover (1997; 1998)

UNIVERSITÉ LAVAL

9. Calculate the surface conductance $\Sigma_s = \Sigma_s^{EDL} + \Sigma_s^{Prot} + \Sigma_s^{Stern}$

$$\Sigma_{s}^{Stem} = \frac{e\beta_{s}\Gamma_{s}^{o}K_{Me}C_{f}}{\left(10^{-pH} + K_{-}\left(\frac{\sqrt{8 \times 10^{-3}\varepsilon_{r}\varepsilon_{o}k_{b}TN}\left(10^{-pH} + K_{Me}C_{f}\right)\left[\frac{C_{a} + C_{b} + C_{f} + 10^{-pH}}{\sqrt{I_{f}}}\right]\right)^{2/3} + K_{Me}C_{f}\right)}$$

$$\Sigma_{s}^{EDL} = R\left(\left[\left(B_{Na^{+}}C_{f} + B_{H^{+}}10^{-pH}\right)\left(\left[S\left(\frac{10^{-pH} + C_{f}K_{Me}}{2e\Gamma_{s}^{o}K_{-}}\right)\right)^{-1/3} - 1\right]\right] + \left[\left(B_{CT}C_{f} + B_{OH^{-}}10^{pH-pK_{f}}\right)\left(\left[S\left(\frac{10^{-pH} + C_{f}K_{Me}}{2e\Gamma_{s}^{o}K_{-}}\right)^{+1/3} - 1\right]\right]\right)\right]\right]$$

$$R = \sqrt{\frac{2 \times 10^{-3}\varepsilon_{r}\varepsilon_{o}k_{b}TN}{C_{f} + 10^{-pH}}}$$

$$S = \sqrt{8 \times 10^{-3}\varepsilon_{r}\varepsilon_{o}k_{b}TN}\left(C_{f} + 10^{-pH} + 10^{pH-pK_{s}}\right)$$
Revil and Glover (1997; 1998)
1. Introduction 2. Database 3. Theory 4. Plenary 5. Individual 6. Conclusions 9/18

10. Calculate the SPCC

$$C_{s} = \frac{\Delta V}{\Delta P} = \frac{d \varepsilon_{f} \zeta}{\eta_{f} \left(d \sigma_{f} + 4 \Sigma_{s} m F \right)}$$

Glover and Déry (in press)

- Fundamental constants (k_b and N_A etc.).
- Environmental conditions (T etc.).
- Fluid parameters (salinity, pH, pK_w , pK_1 and pK_2 etc.).
- **\diamond** Rock microstructure parameters (*F*, *m*, ϕ , *d* etc.).
- ✤ Rock-fluid interface parameters, i.e., the electro-chemical parameters associated with surface adsorption reactions (pK_{me} , pK_{-} etc.).

Parameter	Symbol	Value or range	Units	Reference			
Model variables							
Temperature	Т	25	°C	Experimental condition			
Pore fluid salinity	C _f	10 ⁻⁵ – 3.98	mol/L	Varied between limits			
Pore fluid pH	рН	6 - 8	(-)	Varied between limits			
Fundamental constants							
Dielectric permittivity in vacuo	E ₀	8.854×10 ⁻¹²	F/m	Lide (2009)			
Boltzmann's constant	k _b	1.381×10 ⁻²³	J/K	Lide (2009)			
Charge on an electron	е	1.602×10 ⁻¹⁹	С	Lide (2009)			
Avagadro's number	N	6.02×10 ⁺²³	/mol	Lide (2009)			
Fluid parameters							
Added acid concentration	C _a	variable	mol/L	Calculated from pH			
Added base concentration	C _b	variable	mol/L	Calculated from pH			
Surface mobility	β_{s}	5×10 ⁻⁹	m²/s/V	Revil and Glover (1997)			
Reaction constant carbonisation	рК1	7.53	(-)	Wu et al. (1991)			
Reaction constant dehydrogenisation	<i>рК</i> ₂	10.3	(-)	Wu et al. (1991)			

Parameter	Symbol	Value or range	Units	Reference				
Rock parameters								
Grain size (diameter)	d	2×10 ⁻⁴	m	St Bee's SST (Jaafar et al., 2009)				
Cementation exponent	m	1.86	(-)	Calculated $m = -\log F / \log \phi$				
Formation factor	F	19.80	(-)	St Bee's SST (Jaafar et al., 2009)				
Porosity	ϕ	0.19	(-)	St Bee's SST (Jaafar et al., 2009)				
Rock/fluid interface parameters								
Surface site density	Γ_s^{o}	1×10 ⁺¹⁹	sites/m ²	Adjusted to fit data				
Binding constant for cation (sodium) adsorption on quartz	рК _{те}	7.1	(-)	Adjusted to fit data				
Disassociation constant for dehydrogenisation of SiOH	рК ₍₋₎	7.5	(-)	Adjusted to fit data				
Shear plane distance	XE	2.4×10 ⁻¹⁰	m	Revil and Glover (1997)				
Surface conduction (protonic)	Σ_s^{Prot}	2.4×10 ⁻⁹	S	Revil and Glover (1997)				
Surface mobility	β_s	5×10 ⁻⁹	m²/s/V	Revil and Glover (1997)				

UNIVERSITÉ LAVAL PETROPHSICS LABORATORY

Plenary Model

SPCC vs. Pore fluid salinity Silica, glass, sand and sandstone

3 different pHs 4 different grain sizes

General properties of the SPCC database and absolute values are well described

Grain size can be extremely important

3. Theoi

4. Plenary

UNIVERSITÉ LAVAL PETROPHYSICS-LABORATORY

Plenary Model

vs. Pore fluid salinity Silica, glass, sand and sandstone 3 different pHs Database measurements are very scattered

Highly sensitive to changes in pН

4. Plenary

- Compiled: A database of SPCC vs. pore fluid salinity for silica-based rocks
- Compiled: A database of zeta potential vs. pore fluid salinity for silicabased rocks
- Developped: A method for modelling the SPCC and zeta potential of porous media as a function of pore fluid salinity
- Theoretical model: Shows systematic variations with pH and grain size
- Using whole database: The theoretical approach is capable of describing the general properties of the database as well as the absolute values of SPCC and zeta potential
- Using individual rocks: The theoretical approach is capable of describing some of the fine structure apparent in the individual SPCC and zeta potential determinations as a function of salinity

Acknowledgments

This work has been made possible thanks to funding by the

Natural Sciences and Engineering Research Council of Canada (NSERC)

Discovery Grant Programme