

DEPENDENCE OF STREAMING POTENTIAL ON GRAIN DIAMETER AND PORE THROAT RADIUS

Nicholas Déry & Paul Glover Université Laval, Québec, Canada

UNIVERSITÉ LAVAL ABORATORY

ETROPHISCS Introduction

- The Helmholtz-Smoluchowski equation relates the streaming potential coupling coefficient (SPCC) to
 - zeta potential
 - Pore fluid dielectric permittivity
 - Pore fluid conductivity lacksquare
 - Pore fluid viscosity \bullet
- No implicit dependance on grain size
- 1999 Revil produced equations implying a grain size dependent model
- This presentation: SPCC as a function of grain size **
- This presentation: SPCC as a function of pore size **
- This presentation: SPCC as a function of pore throat size •••

$$C_{s} = \frac{\Delta V}{\Delta P} = \frac{\varepsilon_{r} \varepsilon_{o} \zeta}{\eta \sigma_{f}^{*}}$$

$$C_{s} = \frac{\Delta V}{\Delta P} = \frac{\varepsilon_{f} \zeta}{\eta_{f} \left(\sigma_{f} + 2\Sigma_{s} / \Lambda\right)}$$

Previous experimental determinations – only two

- Bull & Gortner (1932)
- Bolève et al (2007)
- This presentation: A set of new high quality SPCC measurements as a function of grain size and pore throat size.

SPCC as a function of grain diameter

Revil (1999) equations imply the model

$$\Lambda = \frac{d}{3(F-1)} \longrightarrow C_s = \frac{\Delta V}{\Delta P} = \frac{d \varepsilon_f \zeta}{\eta_f \left(d \sigma_f + 6\Sigma_s (F-1) \right)}$$

Our model (after Glover et al., 2006)

$$\Lambda \approx \frac{d}{2mF} \qquad \longrightarrow \qquad C_s = \frac{\Delta V}{\Delta P} = \frac{d \varepsilon_f \zeta}{\eta_f \left(d \sigma_f + 4\Sigma_s mF \right)}$$

Coïncident for spheres and F>>1

SPCC as a function of pore radius

Our model for all geometries

$$C_{s} = \frac{\Delta V}{\Delta P} = \frac{r \varepsilon_{f} \zeta \sqrt{a}}{\eta_{f} \left(r \sigma_{f} \sqrt{a} + 4 \Sigma_{s} \sqrt{2} \right)}$$

Our model for spherical particles (a=8/3)

$$C_{s} = \frac{\Delta V}{\Delta P} = \frac{r \varepsilon_{f} \zeta}{\eta_{f} \left(r \sigma_{f} + 2 \Sigma_{s} \sqrt{3} \right)}$$

- 12 grain sizes by laser diffractometry
- Measured pore throat diameters (Hg)
- Calculated pore radii (after Glover and Walker, 2009)
- Measured porosity (Hg and He)
- Measured permeabilities

Experimental methods

- NaCl electrolyte
- ✤ pH 6.9
- ♦ $C_f = 2 \times 10^{-4}$ and 2×10^{-3} mol/L
- ♦ σ_{f} = 2.44×10⁻³ and 2.41×10⁻² S/m
- ✤ T=25°C
- Omega PX302 pressure transducers
- Cypress Ag/AgCl electrodes
- Keithley microvoltmeter logger
- ✤ 4 flow rates
 - × 2 directions × 12 grain sizes
 - ×2 fluids

12/17

13/17

14/17

- The classical HS model cannot predict the SPCC as a function of grain size
- However, there are few data available to test the models
- New high quality measurements have been done as a function of
 - Grain size
 - Pore throat diameter
 - Pore size
 - for 12 particle sizes
 - 2 pore fluid salinities
 - ➤ 4 flow rates
 - each in 2 flow directions

- The Revil (1999) grain size dependent model agrees with the new high quality experimental data excellently
- The 'new' Glover and Déry grain size dependent model is an approximation of that by Revil (1999)
- It also performs very well
- A new pore radius dependent model has been developped.
- A new pore throat diameter dependent model has also been developped
- The pore throat diameter dependent model agrees with the new high quality experimental data excellently too

Acknowledgments

This work has been made possible thanks to funding by the

Natural Sciences and Engineering Research Council of Canada (NSERC)

Discovery Grant Programme