High Resolution Aperture Determinations of Rough Fractures

S. OGILVIE, E. ISAKOV, C. TAYLOR & P. GLOVER

Department of Geology and Petroleum Geology, University of Aberdeen, UK.

petrophysics.webhop.net

Background: Fractures

- The impact of fractures upon fluid flow has many practical applications:
 - Flow channelling and compartmentalisation in hydrocarbon & water reservoirs
 - Control of contamination by domestic & chemically toxic industrial waste, & remediation
 - Design of safe repositories for nuclear waste
 - Hot dry rock/Geothermal energy projects

Macro-Properties of Fault damage zone:-

Type
Orientation
Frequency
Thickness

• Throw

• Geometry

Cements

surface

Undeformed Sandstone

> Damage zone not identified on seisn Wider => axial strain

Type

Open

Closed

Fractures.

Cements

Fluorite

Fracture cements: Large "geohistory" component to faultseal analysis:-

- Timing
- Lateral continuity
- Volumes & distribution
- **9** Types & Origin

Micro-Scale Analysis

Sample number	Sample Location	Swi (%)	Porosity (%)			Klinkenberg Permeability (mD)		
		MICP	Helium	MICP	Image analysis	Kn	PDPK	
1	Deformation band	62.5	13.3	9.01	4 - 10	555	0.0034 - 397	
2	Transitional	23.2	20.5	18.35	10 - 15	677	29.6 - 899	
3	Host rock	11.3	25	19.95	15 - 21	1750	397 - 3080	

Storage Capacity

Swi and Capillary Pressure

Permeability Profiles

Zone of cataclastic faults in porous sandstone

1 cm grid resolution

Highly porous sandstone

Permeability Profiles

Leg	e	nd
0.00026	to	1.22
1.22	to	2.52
2.52	to	4.46
4.46	to	6.87
6.87	to	11.5
11.5	to	13.6
13.6	to	16.5
16.5	to	20.7
20.7	to	25.1
25.1	to	30.7
30.7	to	39
39	to	1070

Clay-rich faults in immature sandstone

Surface Roughness Profiling

- In absence of filling materials, flow of fluids controlled by roughness of fracture walls & physical separation
- Stress regime, mean aperture, fluid properties and flow rate etc. also affect fluid flow
- Fracture roughness profiles measured using mechanical profilometers and optical methods:-
 - 1. Time consuming
 - 2. Expensive
 - 3. Low resolution

Rocks

1 sandstone, 1 limestone, 1 granite, 1 granodiorite, 2 syenites

Petrophysical data:

- 1. Porosity (effective & non-effective)
- 2. Permeability (K_L)
- 3. Grain density
- 4. Water saturation
- 5. Capillary pressure
- 6. Composition

The Framework

Digital Optical Imaging

Resolution of method:

Camera pixel array: 640 x 480 (307200 pixels). Widest zoom: 100 x 100 mm of fracture surface imaged with resolution of 200 μ m. Highest Zoom mode, 10 x 7.5 mm of surface imaged with resolution of 15.6 μ m. Vertical resolution same as above at 8-bit grey-scale depth.

HFPM Construction

HFPMs produced by casting from moulds of rock fractures

HFPM Resolution

SEM used to see how well and to what scale the original rock has been reproduced in the epoxy resin replica. Resolution = 1 micron

Calibration Devices

Tile with pocket areas of known thickness filled with dye (1g/l). Greyscale image obtained

Supporting data from wedge with max thickness of 4.3 mm

Calibrating the Dye

Individual tile pocket intensities

Optical Profiling of Fractures

Computational Flow Models require the geometry of flow channel to be prescribed. An optical method was chosen to explore the fracture surface profiles.

Features of the choice:

- Cheap, does not require an expensive equipment.
- Fast (relatively), whole fracture surface to be scanned simultaneously.
- Accuracy of the method is subject of particular technique to be used.

Technical Reality

Profiling Methodology

- Individual calibration of the pixels of CCD matrix.
- Stacked images to be taken with further averaging to neglect the camera noise.
- Clearfield equalization.
- Comparison of several images allow to recognize effectively bubbles and particles in liquid.

The methodology is implemented as a software algorithm.

Profiling Software

Automatic Defect Recognition

map

Resulting image

Sample of Profiling Result

Profiling Sample: Red Granite

Fracture Profiles & Aperture Maps

Sandstone

Granite

Fracture parameterisation & synthetic models

Fracture Parameterisation

🤯 ParaFrac ν0.2(Pre) - Fracture Parametrization and Analisys								
Project Compose / Edit Statistics Fo	urier analysis							
File Info: Computed: Physical size (mm): -1.00								
Min elevation (mm): 0.00 0.00 Max elevation (mm): 11.04 11.04		-18000						
Mean level (mm) Top surface: Unknown 6.09 Bottom surface: Unknown 4.13 Aperture: 0.00 1.95		-16000						
Std. deviation (mm) -1.00 1.61 Top surface: 1.56		-14000						
Aperture: 0.50		-12000						
		-10000 -8000						
GEOL Mean X: 1.75 Y: 1.79		-6000						
Hystogramm O Top O Bottom		-2000						
Size: Unknown								

 Statistical Analysis Spectral Analysis Fractal Analysis Correlative Analysis **Set of Fracture Parameters**

Numerical Synthesis of Fractures

• Fractal synthesis is used to generate fracture surfaces.

Fracture surfaces match at macroscale

Synthesis methods

Present method

Scale

0

Software for Numerical Synthesis

Result of Numerical Synthesis

Pearly granite fracture surface

Synthesized fracture surface

Flow Experiments

Fluid Flow through Rough Fracture

Fracture surface halves are mated and secured in a fluid - flow rig.

Outflow

Flow manifolds at input & output ports

Inflow

Clear water is replaced by dyed water in the flow through a rough fracture.

Flow Conditions

- HFPM cleaned with detergent & dried using compressed air
- Black dye (5g/l) pumped through HFPM using peristaltic pump
- Also performed at 90° to original HFPM
- Variable flow rates, fluid viscosities & densities.
- Pressure gradient set-up across HFPM

2-D Flow Modelling

Summary

- An optical technique developed in this study has provided high-resolution aperture determinations of rough fractures.
- Quicker & cheaper than PET/NMR techniques & also used to observe and monitor fluid flow through fractures
- Rough fractures be profiled, and numerical synthetic fractures can be produced to high precision

Summary

- A new methodology was developed to generate a synthetic numerical models of rough fractures in rocks.
- The technique allows to parameterise surfaces of a real fractures in rocks.
- After tuning parameters of the numerical model, the synthetic numerical fracture surfaces have properties, which are quite close to real ones.
- Both numerical and real fracture surfaces can be used in computational flow modelling.

This work is funded by NERC as part of Micro to Macro thematic programme ongoing in the U.K.

Digital Optical Imaging Method

The absorption of light passing through the fracture filled with dye can be used to derive the 2D aperture distribution using Lambert-Beer Law.

Camera records images directly onto TV monitor connected to a PC-based workstation.

