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In their otherwise excellent study of the electrical conductiv-
ity of mineral systems including albite and aqueous fluids in the 
continental crust, Guo et al. (2015) note that when Archie’s Law 
(Archie, 1942) is fitted to the data for bulk conductivity as a func-
tion of fluid fraction, the exponent values are negative for all mea-
surements made between 500 K and 900 K. They note that the 
negative values indicate that the bulk conductivity decreases with 
increasing fluid fraction and that this is opposite to the accepted 
behaviour (e.g., Glover, 2015). Guo et al. (2015) attempt to explain 
the behaviour by noting that the melting point of the Ab–Qtz–H2O 
system varies with increasing water content. However, there is an 
underlying problem with their use of the simple Archie’s law.

Archie’s Law is given by the equation

σb = σ f φ
n, (1)

where, σ f is the conductivity of the aqueous fluid (S/m), φ is the 
fluid fraction, σb is the bulk conductivity (S/m), and n is the ex-
ponent, which when expressed in terms of resistivity is termed 
the cementation exponent. Note that there is no preceding non-
unity constant C in Eq. (1) compared to the Guo et al. (2015)
implementation. This constant was introduced by Winsauer et al.
(1952) and has no physical basis because it forces the contradic-
tion σb = σ f = Cσ f when φ → 1. Nevertheless, it is often included 
as an empirical fitting parameter when Archie’s Law is used in the 
oil industry (Glover, 2015), where it allows reasonable fits to data 
that contain systematic errors. However, it is not this constant that 
is causing the problem for Guo et al. (2015). In fact, the inclusion 
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of the constant C taking a non-unity value has probably allowed 
the fitting to take place as well as it has.

The reason for the negative exponents is simply that Archie’s 
Law is only valid if the matrix material in which the fluid is em-
bedded has zero electrical conductivity. That assumption is gen-
erally valid at the low temperatures one would find in reservoirs 
in the upper crust, but is not valid at middle and lower crustal 
temperatures. This was recognised by Glover et al. (2000a), who 
generated a Modified Archie’s Law (MAL) that is valid when the 
matrix of a rock has non-zero conductivity. The Modified Archie’s 
Law has two exponents, each of which is related to the connect-
edness (Glover, 2009) of each conductive phase in the rock (i.e., 
the fluid and the matrix phase in this case). The modified Archie’s 
Law, appropriately modified for use in the Guo et al. application, is 
given by

σb = σs(1 − φ)p + σ f φ
n where p = log(1 − φn)

(1 − φ)
, (2)

and where σs (S/m) is the conductivity of the solid phase.
The Modified Archie’s Law was developed to model conduc-

tive magma at middle to lower crustal depths under the Pyrenees. 
At these depths the host rock also had a significant conductivity 
(Glover et al., 2000b). When applied to this problem, the Modified 
Archie’s Law was able to predict the bulk conductivity of the rock 
in an ancient subducting slab. Furthermore, inverting the Modi-
fied Archie’s Law and using magnetotelluric (MT) measurements of 
bulk conductance at depth allowed the melt fraction in the sub-
ducting slab to be determined, and was found to be significant, at 
no less than 4.7%. Indeed, volcanoes are not present in the Pyre-
nees only because this region is in a compressional regime rather 
than an extensional one.

Returning to the Guo et al. (2015) paper, at surface conditions 
albite has an electrical conductivity which is so much lower than 
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Fig. 1. The Electrical conductivity of Ab–(Qtz)–H2O system as a function of fluid 
fraction at different temperatures showing the Guo et al. (2015) data. The solid 
lines are fits using the Modified Archie’s Law (Glover et al., 2000a). Input parame-
ters are: 500 K (σs = 0.14 S/m, σ f = 0.005 S/m, n = 0.5), 600 K (σs = 0.11 S/m, 
σ f = 0.005 S/m, n = 0.4), 700 K (σs = 0.055 S/m, σ f = 0.005 S/m, n = 0.25), 
800 K (σs = 0.055 S/m, σ f = 0.005 S/m, n = 0.1), and 900 K (σs = 0.055 S/m, 
σ f = 0.005 S/m, n = 0.08).

that of most crustal fluids that the conventional Archie’s law can 
be used. However, as we descend into the continental crust, the 
electrical conductivity of the albite increases and the presence of 
surface conduction occurring within the interface between the al-
bite and the pore fluids also become significant. The combination 
of these two effects ensures that the electrical conductivity of the 
matrix is significant compared to that of the pore fluids. This prob-
lem becomes larger as temperature increases and it is possible that 
matrix may present a larger contribution to the overall conductiv-
ity than the pore fluids in the lower continental crust (Glover and 
Vine, 1994; Glover, 1996). Under these conditions the conventional 
Archie’s law will not work and it is important to use either the 
modified Archie’s law or some other mixing model that takes into 
account the conductivity of the matrix material.

The two exponents in the Modified Archie’s Law are inter-
related. This fact implies that in any three-dimensional porous 
medium there is a finite amount of connectedness that is possi-
ble. This hypothesis allowed Glover (2010) to produce a version of 
Archie’s Law that is valid for any number of conducting phases. 
While the version of Archie’s Law for n-phases is not required to 
model Guo et al.’s (2015) data, the application of the Modified 
Archie’s Law should provide exponents that make more sense, as 
well as producing better fits to their experimental data.

We have applied the Modified Archie’s Law to the Guo et al.
(2015) data, and the results are shown in Fig. 1. It is clear that the 
data is described by the Modified Archie’s Law, and provides posi-
tive values of the n-exponent. The values of σs , σ f and n that each 
of these models uses are given in the figure caption. In the absence 
of specific data, we have assumed that σ f = 0.005 S/m for all tem-
peratures, although this is unlikely to be the case in reality. Fits are 
possible for a matrix conductivity varying between 0.14 S/m and 
0.055 S/m, decreasing with temperature. The exponent n varies 
between 0.5 and 0.08 becoming smaller at temperature increases,
indicating that the electrical connectedness of the fluid fraction is 
increasing as temperature increases.
Recent information from the authors of the original paper has 
furnished experimentally measured values of the electrical con-
ductivity of the polycrystalline albite which was used in Guo et 
al. (2015) as 2.57 × 10−4, 6.58 × 10−5, 1.14 × 10−5, 1.10 × 10−6

and 4.16 × 10−8 S/m for temperatures of 900, 800, 700, 600 and 
500 K, respectively. However, these values cannot be used in mod-
elling the data incorporated in Fig. 6 of Guo et al. (2015) because 
they are many orders too small. The reason for the apparent in-
consistency between these values and the tendency in Fig. 6 of the 
original paper is not at present known and may be related to the 
conditions under which the measurements were made.

Earlier in the paper Guo et al. (2015) mention that Yoshino 
and Noritake (2011) concluded that graphite films are unstable 
and cannot exist for geologic timescales. Hence, the proposal that 
graphite might be the cause of high conductivities in the crust 
(Frost et al., 1989; Glover and Vine, 1992, 1995) seems not to be 
the case. However, in 2008 Glover and Adám (2008) combined MT 
and laboratory triaxial testing to show that it was possible for con-
ductivity due to graphite to increase as a result of shearing leading 
to high crustal conductivities and an increase in seismicity.
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