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ABSTRACT

Archie’s law has been the standard method for relating the
conductivity of a clean reservoir rock to its porosity and the
conductivity of its pore fluid for more than 60 years. Howev-
er, it is applicable only when the matrix is nonconducting. A
modified version that allows a conductive matrix was pub-
lished in 2000. A generalized form of Archie’s law is studied
for any number of phases for which the classicalArchie’s law
and modified Archie’s law for two phases are special cases.
The generalizedArchie’s law contains a phase conductivity, a
phase volume fraction, and phase exponent for each of its n
phases. The connectedness of each of the phases is consid-
ered, and the principle of conservation of connectedness in a
three-dimensional multiphase mixture is introduced. It is
confirmed that the general law is formally the same as the
classical Archie’s law and modified Archie’s law for one and
two conducting phases, respectively. The classical second
Archie’s law is compared with the generalized law, which
leads to the definition of a saturation exponent for each phase.
This process has enabled the derivation of relationships be-
tween the phase exponents and saturation exponents for each
phase. The relationship between percolation theory and the
generalized model is also considered. The generalized law is
examined in detail for two and three phases and semiquanti-
tatively for four phases. Unfortunately, the law in its most
general form is very difficult to prove experimentally. In-
stead, numerical modeling in three dimensions is carried out
to demonstrate that it behaves well for a system consisting of
four interacting conducting phases.

INTRODUCTION

Archie’s law has been the standard method for relating the con-
uctivity of a clean reservoir rock to its porosity and the conductivity
f the fluid saturating its pores for over 60 years. Initially an empiri-
al relationship for a narrow range of rocks and porosities, it has
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ound wide application. It has been verified recently by analytical
ethods for certain special cases �e.g., Sen et al., 1981; Mendelson

nd Cohen, 1982�, and has been extended for use when the surface
onduction is significant, such as at low salinities and in clay-bear-
ng lithofacies �e.g., Tiab and Donaldson, 2004�.

One form of the traditional Archie’s law can be expressed as
Glover, 2009�

� �� f�
m�

� f

F
, �1�

here � is the bulk effective conductivity of the rock; � f is the con-
uctivity of the fluid occupying the pores; � is the porosity, which is
ssumed to be fully saturated �i.e., identical to the volume fraction of
he fluid phase�; and m is the cementation exponent. The ratio of the
onductivity of the pore fluid to that of the rock �or of the resistivity
f the rock to that of the pore fluid� is called the formation factor �Ar-
hie, 1942�.

F�
� f

�
�

�

�f
. �2�

he term “formation factor” was originally used because it was ap-
roximately constant for any given formation. The formation factor
aries from unity, F�1, which represents the case where � �� f

i.e., when � →1� and increases as the porosity decreases, with F
� as � →0. It was Archie’s experimental work that led to the em-

irical finding that

F���m. �3�

rchie called the exponent in equation 3 the cementation exponent
factor or index� because he believed it to be related to the degree of
ementation of the rock fabric. In fact, the advantage that Archie’s
aw has always had over other mixing laws such as the Hashin-Sh-
rikman bounds �Hashin and Shtrikman, 1962�; Waff’s model �Waff,
974�; the parallel, perpendicular, and random models �Glover et al.,
000a�; and the modified brick-layer model �Schilling et al., 1997� is
hat it contains a “variable” parameter, the cementation exponent,
hat gives it flexibility of application �Glover et al., 2000a�. Table 1
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able 1. Some of the most common mixing models for electrical conductivity in porous media.

ame

Conducting
phases

Equation Reference NotesMin Max

odels without variable exponents

arallel
odel

1 Many
� eff� �

i�1

n
� i� i

Guéguen and
Palciauskas
�1994�,
Luo et al. �1994�,
Somerton �1992�

Arithmetic mean. Parallel layers
of constant arbitrary thickness
with conductivity � i arranged
axially to current flow.

erpendicular
odel

1 Many
1 / � eff � �

i�1

n
� i / � i

Guéguen and
Palciauskas
�1994�,
Luo et al. �1994�,
Somerton �1992�

Harmonic mean. Parallel layers
of constant arbitrary thickness with
conductivity � i arranged normally
to current flow.

andom
odel

1 Many
� ef f � �

i�1

n
� i

�i
Guéguen and
Palciauskas
�1994�,
Luo et al. �1994�,
Somerton �1992�

Geometric mean. Arbitrary shaped
and oriented volumes of conductivity
� i distributed randomly.

ashin-
htrikman
pper bound

2 2
� eff

� �� 2�1�
3�1��2��� 2�� 1�
3� 2��2�� 2�� 1� � Hashin and

Shtrikman �1962�
Commonly denoted HS�. Derived
from effective medium considerations.

ashin-
htrikman

ower bound

2 2
� eff

� �� 1�1�
3�2�� 2�� 1�

3� 1� �1��2��� 2�� 1� � Hashin and
Shtrikman �1962�

Commonly denoted HS�. Derived
from effective medium considerations.

aff model 2 2
� eff�

� 2� �� 1�� 2��1� �2�2 /3��
1� ��2 /3��� 1 /� 2�1�

Waff �1974� Based on concentric spheres of
varying sizes with volume of core
�fractional volume of phase 1� to
volume of shell �fractional volume
of phase 2� ratio constant. Function-
ally equivalent to HS�.

odified
rick-layer
odel

2 2
� eff�

� 2�� 2��1
2/3�1��� 1�1

2/3�
� 1��1��1

2/3��� 2��1
2/3��1�1�

Schilling et al.
�1997�

Modified to allow validity to be
extended to cover the range
0.00��1 �1.00 �0%–100%�.
Almost coincident with HS�.

odels with variable exponents

ichtenecker-
other
quation

1 2 � eff� �� 1
1/m�1��2��� 2

1/m�2�m Lichtenecker and
Rother �1936�
Korvin �1982�

Derived from the theory of functional
equations under appropriate boundary
conditions. Formally the same as
Archie’s law if �1�0.

ichtenecker-
other
quation
generalized�

1 Many
� eff� � �

i�1

n
� i

1/m� i�m
Lichtenecker and
Rother �1936�
Korvin �1982�

Logical extension of the Lichtenecker
and Rother model made in this work.

ussian
quation

2 2
� eff�� 2�2

m� 1�� 1 /� 2

1�� 1 /� eff
�m Bussian �1983� Derived from effective medium theory.

onventional
rchie’s law

1 1 � eff�� 2�2
m Archie �1942� Derived empirically, but provable

analytically for special cases.

odified
rchie’s law

1 2 � eff�� 1�1��2�p�� 2�2
m

where p�
log�1��2

m�
log�1��2�

Glover et al.
�2000a�

Derived from the conventional
Archie’s law by considering boundary
conditions implied by geometrical
constraints.

eneralized
rchie’s law

1 Many
� ��

i

n
� i� i

mi

where exact solution
mj� log�1� �

i�j

� i
mi� / log�1� �

i�j

� i�

first order approximation

mj��
i�j

� i
mi/�

i�j

� i

This work Derived from the conventional Archie’s
law by considering boundary conditions
implied by geometrical constraints.
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GeneralizedArchiea’s law for n phases E249
ummarizes the main electrical conductivity mixing models that are
urrently available.

It is important to note that Archie’s law was derived from empiri-
al observations for a relatively small number and type of rocks and
or a relatively small range of fluid conductivities and porosities �Ar-
hie, 1942�. Strictly speaking, Archie’s law should not be used out-
ide of these ranges. However, it has been commonly used outside of
hese ranges for over 60 years with a great degree of success.

In 1936, Lichtenecker and Rother �1936� derived a relationship
or the calculation of the effective value of a physical property of a
eterogeneous medium A that contains n distinct phases each having
value of the physical property Ai and each having a volume fraction
i.

A���
i�1

n

� iAi
b�1/b

when b�0, �4�

nd

A�exp��
i�1

n

� i ln Ai� when b�0. �5�

y writing m�1 /b and applying equation 4 for the conductivity of
heterogeneous porous medium, it is possible to obtain

� � ��1� 1
1/m��2� 2

1/m�m for m�� . �6�

For a sedimentary rock with an insulating matrix �� 1�0� and a
orosity �2��, which is completely saturated with a fluid of con-
uctivity � 1�� f, equation 6 becomes

� �� f�
m, �7�

hich amounts to a direct proof of Archie’s law and relates the ce-
entation exponent to the Lichtenecker and Rother mixing coeffi-

ient.
The range of values for the cementation exponent is relatively

mall. A value of m�1 is not observed for real rocks and represents
porous medium composed of a bundle of capillary tubes that cross

he sample in a straight line. Rocks with a low porosity but a well-de-
eloped fracture network sometimes have cementation exponents
hat approach unity because the network has flow paths that are fairly
irect. A cementation exponent equal to 1.5 represents the analytical
olution for the case in which the rock is composed of perfect
pheres �Sen et al., 1981; Mendelson and Cohen, 1982�. Most porous
renaceous sediments have cementation exponents between 1.5 and
.5 �Glover et al., 1997�. Values higher than 2.5 and as high as 3 are
sually found in carbonates in which the pore space is less well con-
ected �Tiab and Donaldson, 2004�. In general, the value of the ce-
entation exponent increases as the degree of connectedness of the

ore network diminishes. The concept of connectedness is fully de-
ned in the next section and in Glover �2009�.
Archie’s law does not take account of surface conduction. In clean

ocks, if the concentration of the pore fluid is greater than approxi-
ately 0.01 mol /L, it does not matter because the surface conduc-

ion is small compared with that provided by the pore fluid. Howev-
r, it was recognized early on that formations that contain significant
mounts of clay minerals may have a significant surface conduction
ven if the pore fluid is relatively saline �Glover et al., 2000a�. Sever-
l empirical adjustments have been proposed for this scenario and
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
re commonly used by the oil industry. One of the most important is
robably that of Waxman and Smits �1968�,

� �
1

F*
�� f�BQv�, �8�

here F* is the shaly sand formation factor and the additional term
ncludes the factor B, which is the average mobility of the counteri-
ns close to the grain surface �S m2 /meq�, and Qv, which is the ionic
oncentration per unit pore volume �meq /m3�, in which 1 mil-
iequivalent is a measure of ionic concentration. Another important

odel for shaly sands has been the Dual-Water model �Clavier et al.,
984�. It should be noted that these models represent a method of
mpirically compensating for the surface conduction rather than
epresenting conductivity mixing laws in their own right. Moreover,
s pointed out by Devarajan et al. �2006�, these models are not ex-
licit in their predictions of electrical conductivity with respect to
ock structure, spatial fluid distribution in the pore space, wettability,
r clay mineral distribution.

Even when it is modified to take surface conduction into account,
he classical Archie’s law is only applicable to the scenario in which
here is a nonconductive matrix and in which the only conducting
hase is a liquid �or solid� that completely saturates the pore space. It
s not applicable if there are two conducting phases or if the conduct-
ng phase does not completely fill the pore space.

Archie addressed the second of these issues by deriving a second
rchie’s law that describes how the resistivity of a partially saturated

ock varies with water saturation. He did not address the problem of
aving two or more conducting phases.

In 2000, Glover et al. �2000a� published a modified Archie’s law
or a rock with two conducting phases in response to the need for a
onductivity mixing model with a variable mixing parameter when
here was a conductive fluid occupying a matrix that was sufficiently
ot to also be considered conductive.

The modifiedArchie’s law takes the form

� �� 1�1
p�� 2�2

m, �9�

here � is the bulk effective conductivity of the rock, � 1 and � 2 are
he conductivities of the two conductive phases, �1 and �2 are the
olume fractions of the two conductive phases, and p and m are the
xponents of each phase. By convention, when one of the phases is a
onductive fluid occupying the pore space, phase 2 is used to repre-
ent it so that �2 is the porosity of the rock, m is the cementation ex-
onent, and � 2 is the conductivity of the fluid just as it was in the tra-
itional Archie’s law. If either the matrix is nonconducting �i.e., � 1

0� or the porosity is 100% �i.e., �1�0�, the modifiedArchie’s law
equation 9� collapses to the classicalArchie’s law �equation 1�.

If an electrolyte saturates a rock matrix and the whole matrix is
onductive, equation 9 becomes

� �� 1�1��2�p�� 2�2
m, �10�

ith � 1�0. The matrix exponent p can be calculated from the po-
osity and cementation exponent m using a relationship that takes
nto consideration the 3D topological arrangement of the two phas-
s,

p�
ln�1��2

m�
ln�1��2�

. �11�

It should be noted that for a typical rock with a typical porosity and
 SEG license or copyright; see Terms of Use at http://segdl.org/
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E250 Glover
ementation exponent, the value of the p exponent will be less than
nity. For example, if the porosity �2�0.1 and m�2, then p

0.095. The low value represents the great degree of connectivity
hat the matrix phase enjoys. Thus, exponent values less than unity
o have a physical interpretation. If such a rock is at low tempera-
ures, the overall conductivity of the rock will be controlled by the
ore fluid because the pore fluid will generally have a conductivity
uch greater than the matrix although it has a low connectedness.
owever, at higher temperatures �or at low temperatures if the ma-

rix contains sufficient conductive minerals� the matrix controls the
verall conductivity of the rock because it has a much higher con-
ectedness. If the porosity �2�0.1, m�2, and the conductivities of
he fluid and the matrix are the same, it is a trivial result that � �� 1

� 2; however, 99% of the conductivity is contributed by the ma-
rix, whereas only 1% is contributed by the pore fluid.

A summary of electrical conductivity mixing models is given as
able 1. A comparison of many of these models with the modified
rchie’s law for two conducting phases is given in Glover et al.

2000a�.
The two-phase Archie’s law has been used successfully in the
odeling of enhanced porosity concretes that have significant ma-

rix conductivity �Neithalath et al., 2006; Neithalath, 2007�, rock
elt fractions in which the temperature is high enough to induce a

onductivity in an otherwise low-conductivity rock matrix �Glover
t al., 2000b�, the distribution of crustal fluids �Mishina, 2009�, the
lectrical conductivity of partially crystallized basaltic samples
Gaillard and Marziano, 2005�, the prediction of a possible magma
hamber beneath Mount Vesuvius �Pichavant et al., 2007�, and even
n the electrical treatment of food materials for preservation �Leb-
vka et al., 2002� and the design of membranes for fuel cells �Mu-
akata et al., 2008�.

The purpose of this paper is to extendArchie’s law to its most gen-
ral form; that for n-phases, any of which may or may not be conduc-
ive.

CONNECTEDNESS AND CONNECTIVITY

Each of the n phases that occupy a 3D rock must share the same to-
al space. Hence, an increase in the connectedness of one of the phas-
s must lead to a reduction in the connectedness of at least one of the
ther phases. Here we deliberately use the phrase “connectedness”
nstead of “connectivity” because they are two different entities.

The connectedness of a porous medium G was defined by Glover
2009� as the physical availability of pathways for transport and
athematically as the ratio of the conductivity of the rock to the con-

uctivity of the pore fluid �i.e., the inverse of the formation resistivi-
y factor�

G�
�

� f
�

1

F
��m. �12�

ence, the connectedness of a given phase is a physical measure of
he availability of pathways for conduction through that phase that is
ased on the ratio of the measured conductivity to the maximum
onductivity possible with that phase �i.e., when that phase occupies
he whole sample�. This implies that the connectedness of a sample
omposed of a single phase is unity.

By contrast, the connectivity is defined as the measure of how the
ore space is arranged. The connectivity is given by
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
� ��m�1 �13�

nd depends on the porosity and the cementation exponent m. It
hould be noted that the connectedness is also given by

G��� , �14�

nd it is clear that the connectedness depends on the amount of pore
pace �given by the porosity� and the arrangement of that pore space
given by the connectivity�.

AN ARCHIE’S LAW FOR N-PHASES

The porosity of a rock is defined as the fractional amount of pore
pace. The porosity represents just one phase of many that are dis-
ributed within the rock. The sum of the fractions of all of the phases
resent must therefore always equal unity

�
i�1

n

� i�1, �15�

here there are n phases.
Archie’s law can be expanded in the following form:

� �� 1�1
m1�� 2�2

m2�� 3�3
m3� . . .�g�� i,	k�

��
i

n

� i� i
mi�g�� i,	 ij�, �16�

here each phase is represented by a term of the form � i� i
mi, and the

unction g�� i,	 ij� is the sum of the Stieltjes integrals that represent
he interactions between the phases and 	 ij represents the resonance
ensity functions between each pair of phases. The Stieltjes integral
etween any pair of phases is given as �e.g., Glover et al., 2000a�

f�� i,� j,	 ij���
0

�

� 	 ij�y�
�1/� i�y /� j�

�dy . �17�

n full, equation 16 becomes

� ��
i

n

� i� i
mi��

i�j
�
0

�

� 	 ij�y�
�1/� i�y /� j�

�dy, �18�

hich involves three independent terms for each of the n phases
conductivity, volume fraction, and phase exponent� as well as
�n�1� resonance density functions. It was discussed in Glover et
l. �2000a� that little was known about the properties of the Stieltjes
ntegral and that it is commonly regarded to be negligible as a first-
rder simplification. We follow the same approach in this paper.
quation 18 then becomes

� ��
i

n

� i� i
mi, �19�

ith
 SEG license or copyright; see Terms of Use at http://segdl.org/
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�
i�j
�
0

�

� 	 ij�y�
�1/� i�y /� j�

�dy�0, �20�

rovided that either the Stieltjes integrals are negligible or that their
atrix is symmetric �i.e., they cancel each other out�.
In equation 19, each of the phases has an electrical conductivity � i

nd a volume fraction � i. Because each phase is distributed differ-
ntly in the porous medium, each also has its own individual con-
ectedness Gi�� i

mi and connectivity � i�� i
mi�1; hence, each will

ave its own phase exponent mi. It should be noted that equation 19
an be written as � ��i

n� ci where � ci are the individual conductivi-
y contributions from each phase calculated in isolation. Hence,
quation 19 contains the implicit assumption that the sum of the in-
eractions between the phase components is zero, which is a restate-

ent of equation 20.
Because there is no physical meaning in the word “cementation”

or the ith phase of a complex multiphase mixture, from this point
orward the term “phase exponents” or just “exponents” will be used
hen referring to the exponents of the generalized model and “ce-
entation exponent” will be reserved for referring to the exponent in

he classicalArchie’s law.
In the generalized law, the phase exponents can take any value

rom zero to infinity. Values less than unity represent a phase with an
xtremely high degree of connectedness, such as that we would rec-
gnize as belonging to the solid matrix of a rock. Connectedness de-
reases as the phase exponent increases. Phase exponents of approx-
mately 2 represent the degree of connectedness that one might find
ssociated with the pore network in sandstone, whereas higher val-
es represent lower connectedness such as that in a vuggy limestone.
igher phase exponents would tend to be related to lower phase frac-

ions, although this form of the generalized law does not impose such
restriction.
Although equation 19 seems like a intuitive extension of the clas-

ical Archie’s law, it is important to point out some subtle but impor-
ant differences in the physical meaning of the exponents. Examin-
ng the twoArchie exponents and then the generalized law exponent,
e find that

� The classical Archie cementation exponent m is the exponent
applied to the volume fraction of pores �porosity� in the rock as-
suming the pores to be full of a single phase �water� with a char-
acteristic conductivity.

� The classical Archie saturation exponent n is the exponent ap-
plied to the water saturation, which is not the fraction of the wa-
ter in the rock but of that in the pores; hence, it is the exponent
applied to the volume fraction of a volume fraction of the rock.

� Each of the exponents in the generalized law mi is the exponent
applied to the volume fraction of that phase in the rock assum-
ing that phase to have a characteristic conductivity.

It is clear that the classical and generalized laws share the property
hat the exponents modify the volume fraction of the relevant phase
ith respect to the total volume of the rock. However, the exponents
n the generalized law differ from the classical exponent in that
ome of them have values that are not measurable because the phase
o which they refer has a negligible conductivity. Despite this, each
hase has a well-defined exponent providing �1� it has a non-zero
olume fraction and �2� the other phases are well defined.

The classical Archie’s law can be derived from the generalized
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
aw by considering a three-phase system in which equation 19 can be
ewritten explicitly as

� �� 1�1
m1�� 2�2

m2�� 3�3
m3�� m�m

mm�� g�g
mg

�� f�f
mf, �21�

here phases 1, 2, and 3 have been assigned to mineral matrix, gas,
nd pore fluid, respectively.

Assuming that the mineral is not conductive, � m�0, and the pore
pace is fully saturated with water �g�0, equation 21 becomes

� �� f�f
mf. �22�

ote that the gas phase can take any conductivity in this analysis.
Because � ��g��f and �g�0, we have � ��f and equation

2 becomes the classicalArchie’s law

� �� f�
m. �23�

his is a trivial result analytically, yet important for two reasons.
irst, it shows that the classical Archie’s law can be generated from

he generalized law. Second, it shows that each of the exponents in
he generalized law share the same physical meaning as those in the
lassical Archie’s law because the same result is possible by setting
ny combination of two phases to zero conductivity and noting that
he same logic applies to n phases.

It is important to state that all of the results and theoretical devel-
pment in this paper depend upon equation 20 being true for porous
edia. We have stated but not proven that the hypothesis that the

um of the Stieltjes integrals for n interacting phases in a porous me-
ium is zero because of its nontrivial nature. However, it should be
cknowledged that, since its initial proposal �Bergman, 1978; 1980;
982; McPhedran et al., 1982; McPhedran and Milton, 1990; Mil-
on, 1980; 1981�, the use of a Stieltjes approach has been developed
e.g., Zhang and Cherkaev, 2008; 2009; Cherkaev and Zhang, 2003�
nd applied particularly to the calculation of the frequency-depen-
ent dielectric permittivity of multiphase mixtures �Zhang and Cher-
aev, 2008�. Although I have not found any application to mixtures
f electrical conducting phases, the apparent success of this ap-
roach leads me to be hopeful that further research into the Stieltjes
pproach might �1� show that equation 20 is exactly or approximate-
y true or �2� provide an expression for the interaction between the
hases that will improve the model. The use of the Stieltjes approach
o calculate the frequency-dependent dielectric permittivity of mix-
ures �Zhang and Cherkaev, 2009� holds the hope that it might also
e used to calculate the frequency-dependent electrical conductivity
f multiphase systems.

PRINCIPLE OF CONSERVATION
OF CONNECTEDNESS

We have already stated in equation 15 the classical result that the
um of the volume fractions of all of the phases in a porous medium
ust equal unity. Now we consider an analogous result for the con-

ectedness. We have already shown that the connectedness of a sys-
em that contains only one phase is unity as a result of equation 12.
ntuitively, it seems reasonable that as one or more phases increase
heir connectedness, other phases must lose connectedness. This
dea leads to the hypothesis that there is a fixed maximum amount of
onnectedness possible in a 3D sample. It is possible to distribute it
etween whichever phases are present in an infinite number of ways,
 SEG license or copyright; see Terms of Use at http://segdl.org/
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ut the total connectedness must not exceed some maximum value
hat is defined by the topology of the 3D space.

Equation 19 must be valid for all combinations of the conductivity
f the phases that are present. Hence, we can use the special case
here � i�� for any value of i to generate the relationship

�
i

n

� i
mi��

i

n

Gi�1. �24�

ow it is possible to say not only that the sum of the volume fractions
f the phases composing a 3D medium is equal to unity, but so is the
um of the connectednesses of those phases. In other words, equa-
ion 24 is a statement of the principle of conservation of connected-
ess. In a multiphase system, the decrease in connectedness of one
hase is balanced by increases in the connectedness of the other
hases such that the overall connectedness remains unity.

CALCULATION OF PHASE EXPONENTS

In the application of equation 19, one assumes that the conductivi-
y of the individual phases and their fractions are known. The ques-
ion arises whether it is possible to find a relationship for the calcula-
ion of the phase exponents along the same lines as that in Glover et
l. �2000a�. Equation 19 is symmetric in the sense that no phase
olds a special place in the relationship. Therefore, it can be rewrit-
en as

�
i�j

� i
mi��1��

i�j
� i�mj�1, �25�

nd therefore

�1��
i�j

� i
mi���1��

i�j
� i�mj; �26�

ence, we arrive at

mj� log�1��
i�j

� i
mi� /log�1��

i�j
� i� . �27�

hich is the exact solution of equation 26 for the phase exponent of
he jth phase in an ensemble of n phases.

Provided that the sum of all of the phases except the jth is signifi-
antly less than unity �i.e., �i�j� i�1�, it is possible to expand the
ight-hand side of equation 26 in the form

�1�x�a	1�
ax

1!
�

a�a�1�x2

2!
� . . . , �28�

rom which we find that

mj�

�
i�j

� i
mi

�
i�j

� i

�

�
i�j

Gi

�
i�j

� i

�

�
i�j

� i� i

�1�� j�
. �29�

ence, the phase exponent of a particular phase is the sum of the
onnectednesses of all of the other phases divided by the sum of their
ractions.

Because mj� log�� j
mj�/log�� j�� log�Gj�/log�� j�, equation 29

ay also be stated as
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
log�� j
mj�

log�� j�
�

�
i�j

� i
mi

�
i�j

� i

, and �30�

log�Gj�
log�� j�

�

�
i�j

Gi

�
i�j

� i

. �31�

lthough these results are attractively elegant, they are only a first-
rder approximation of equation 26 that is valid for �i�j� i�1.
For two phases, we can easily also derive a second-order approxi-
ation of equation 26 using the expansion of the sum given by equa-

ion 28. Equation 26 can be written as

1��
i�j

Gi��1��
i�j

� i�mj, �32�

hich for two phases becomes

1�G1� �1��1�m2. �33�

pplication of the second-order approximation of the expansion
quation 28 gives

���1
2

2
�m2

2���1�
�1

2

2
�m2��1

m1�0, �34�

rom which the roots m2 can be calculated

m2�

���1�
�1

2

2
�����1�

�1
2

2
�2

�4��
�1

2

2
����1

m1��1/2

��1
2

�35�

nd

m2�
��4�1�2�1

2�� �4�1
2�4�1

3��1
4�8�1

2�1
m1�1/2

�4�1
2 .

�36�

t is the positive root that provides the physical solution.

PHASE AND SATURATION EXPONENTS

We start once more by writing equation 19 explicitly for three de-
ned phases as in equation 21. This time, we assume that neither the
ineral nor the gas is conductive, i.e., � m�0 and � g�0, but we al-

ow the pore space to be partially saturated with water such that �g

0. Equation 21 now becomes

� �� f�f
mf. �37�

his is the same equation as equation 22 but is valid for a different set
f scenarios:

� Equation 37 is valid for �g�0, whereas equation 22 is valid
only for � �0.
g
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� Equation 37 requires that � g�0 but equation 22 does not.

he distinction may be deemed trivial, but it is formally necessary
or the analysis.

Because �g�0, the pore space is partially saturated with gas and
artially saturated with water. It is possible to write

�f��Sw and

�g���1�Sw� where

Sw�
�f

�
�38�

quation 37 can then be rewritten as

� �� f�f
mf�� f��Sw�mf�� f�

mfSw
mf. �39�

omparison with the classical second Archie’s law, which can be
ritten as �Tiab and Donaldson, 2004�

� �� f�
mSw

n , �40�

hows structural similarity. However, equation 39 is expressed rela-
ive to the phase volume fraction of the fluid in the rock whereas the
lassical second Archie’s law is expressed relative to the porosity of
he rock. Note also that there is no constraint on the value that the sat-
ration exponent n can have at this stage.

By setting 39 equal to 40 and invoking equation 12 we can write

�m��mfSw
�mf�nf�, �41�

Gpore�GfSw
�nf, �42�

Gf�GporeSw
nf, �43�

Gg�GporeSg
ng, �44�

nd

Gi�GporeSi
ni . �45�

n equations 41–45, we have recognized that �1� the classical Archie
aturation exponent refers to saturation with water and is hence re-
amed as nf, and �2� the symmetry of the system allows us to write
quivalent equations for the gas phase �and any other phase that may
e present�, with a gas saturation exponent ng that acts on the gas sat-
ration Sg, where

�g��Sg and

�f���1�Sg� where

Sg�
�g

�
�46�

quation 42 states that the connectedness of the pore volume Gpore

no matter what material occupies it� is equal to the connectedness of
he water phase Gf multiplied by a factor that depends on the frac-
ional water saturation of the pore space Sw. Rearrangement of equa-
ion 42 gives equations 43 and 44, which describe the relationships
etween the connectedness of each phase and the connectedness of
he volume that the phases occupy. If the two phases occupy the pore
pace exclusively �i.e., Sw�Sg�1, or �f��g���, the sum of
heir connectednesses is constant G �G �G , which is less than
f g pore

Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
nity because there is a finite and non-negligible connectedness as-
ociated with the �here nonconducting� mineral phase. We have gen-
ralized equations 43 and 44 to give the equation 45, which is true for
ny number of phases occupying the pore space.

Note that equations 43–45 are an intuitive extension of the classi-
al Archie’s law. We can write Archie’s law using our new symbolo-
y as

� �� f�
mSw

nf, �47�

hich is the same as

Gf��mSw
nf�GporeSw

nf. �48�

ll one needs to do is replace Gf with Gi, nf with ni, and Sw with Si to
btain equations 42–44. Hence, the new approach is also consistent
ithArchie’s second law.
Equation 45 implies that the term Si

ni is always less than or equal to
nity �i.e., Si

ni �1�, which constrains the values of the saturation ex-
onents ni to be positive �in the range 0 to ���.

If we combine equation 45 with equation 24, we obtain

1� �
i�1

n

Gi�Gm� �
i�1

n�1

Gi�Gm� �
i�1

n�1

GporeSi
ni, �49�

here the nth phase is the mineral matrix and Gm�Gpore�1, allow-
ng us to write

�
i�2

n

Si
ni�1. �50�

ence, the application of the generalized model within an n�1 sub-
et of the n phases in the multiphase system provides a form of the
eneralized model that is expressed relative to the saturations Si of
ach of the phases within the subset volume with the saturation ex-
onent for each phase replacing the phase exponent. Here Si

� i /�i�1
n�1� i, which is a generalized form of equations 38 and 46.

We can map equation 24 to equation 50 and find that

� i↔Si

mi↔ni . �51�

his is equivalent to saying that suppose we take a multiphase medi-
m described by equation 24 and we dissolve, discount, or otherwise
emove one phase, the behavior of the other phases can be written as
quation 50 relative to the original medium or by using equation 24
nd acting as if the removed phase never existed. Hence, equations
4 and 50 are formally equivalent but are valid in two different
rames of reference. The frame of reference for equation 24 is that
here the phases being considered compose the whole multiphase
edium. The frame of reference of equation 50 is that where the

hases being considered compose a subset of a multiphase medium
ith at least one more phase than those being considered.
Comparison of equations 24 and 50 is remarkable in that it shows

hat the generalized Archie’s law as formulated in this paper is truly
eneral in that it leads to �1� the classical Archie’s law for 100% wa-
er saturation and �2� the classicalArchie’s second law for partial sat-
ration. The generalized Archie’s law provides a deeper underlying
ymmetry from which the classical laws can be derived as special
ases and in which the concept of connectedness is embodied. Equa-
ion 24 describes the conservation of connectedness in an n-phase

edium and is expressed relative to volume fractions, whereas
 SEG license or copyright; see Terms of Use at http://segdl.org/
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quation 50 describes the same conservation of connectedness in an
�1 phase medium and is expressed relative to fractional volume
aturations instead. Although one could distinguish between the
hase volume connectedness Gi�� i

mi and, say, the phase saturation
onnectedness Hi�Si

ni depending on in which regime one wants to
ork, the two are essentially interchangeable and depend only on the

rame of reference being used.
One might even envisage a process of “phase erosion” being car-

ied out recursively. In this process, equation 24 would be applied to
given n-phase medium, and equation 50 would be used to describe

he behavior of an n�1 phase subvolume of it. The relationships in
quation 51 would then be used to describe the n�1 phase subvol-
me as a complete multiphase medium in its own right �i.e., dis-
ounting the first phase�, to which equation 24 now applies, with the
ew phase exponent being the previous saturation exponent. Equa-
ion 50 could then be used again on an n�2 phase subset by dis-
ounting a further phase, and the procedure would then be carried
urther, recursively. The implications of and applications for this
rocedure are still to be worked out.

Although further work will need to be done to ascertain why real
ocks seem to prefer saturation exponents near 2, which may be
inked to the classical exponent value close to the percolation thresh-
ld �Montaron, 2009�, we now have a theoretical link between the
hase �cementation� exponents for a given set of phases and their
aturation exponents.

PERCOLATION

It is interesting to consider the role of percolation effects within
he generalized model. In percolation theory, the bulk value of a giv-
n transport property is only perturbed by the presence of a given
hase with a well-defined phase conductivity after a certain phase
olume fraction has been attained. This critical volume fraction is
alled the percolation threshold.

This works well for a two-phase system when one phase is non-
onductive. The Kirkpatrick effective medium theory model, which
as the first to consider percolation effects in porous media �Kirk-
atrick, 1973�, is in good agreement with Monte Carlo simulations
f conductivity for a random resistor network on a simple 3D cubic
rid representing a bond and site model �Montaron, 2009�. The Kirk-
atrick model has a percolation threshold of 0.342, which compares
ith the theoretical value for a two-phase cubic block model of
.3116 �Montaron, 2009�. For such a system �one nonconducting
hase and one conducting� the conductivity depends on the conduc-
ivity of the conducting phase, its volume fraction, and how connect-
d it is. It is intuitive that there will exist a phase volume fraction be-
ow which the conducting phase is not connected and the bulk con-
uctivity will be zero.

What happens then, when we introduce another conducting phase
hat is in electrical contact with the first phase at certain points? The
ercolation idea is not applicable to individual phases anymore be-
ause current is shared between the two phases as it crosses the sam-
le. Perhaps we can apply percolation ideas to the combined two
onducting phase system, but we would have to take into account the
ariable conductivity of the phase combination.

At first sight, it might be apparently reasonable to ask what hap-
ens when all conductive phases have volume fractions smaller than
he percolation threshold. However, the question itself presupposes
hat all transport phenomena in rocks operate within a fixed and inert
noncontributing� mineral framework. This is an assumption that
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
omes from our long habit of using the classical Archie’s law. In the
eneralized model, the mineral framework is one �or more� of the
hases. In this conceptual approach, it is not possible that all conduc-
ive phases have volume fractions smaller than the percolation
hreshold because if all but one have phases less than their percola-
ion threshold, the remaining phase, by definition, is extremely well
onnected. We could define individual percolation thresholds for
ach of n phases in isolation by considering all other phases to have
ero conductivity, but the procedure would be academic — as soon
s two �or more� of such phases are combined in a real sample, the in-
erchange of current between the phases makes the calculated perco-
ation thresholds meaningless.

It becomes clear that if we have more than two phases in which
ach has a non-zero conductivity, the applicability of the percolation
deas becomes unclear. Furthermore, it may be that the statement
hat �i

nGi�1 �i.e., equation 24� in the generalized model contains
nough information to make the explicit inclusion of percolation ef-
ects unnecessary. This is a hypothesis that will need to be tested ro-
ustly before it can be considered to be valid.

EXAMPLE OF THE USE OF THE
GENERALIZED LAW

Let us assume that we have an arbitrary 3D medium with four dis-
inct phases as set out in Table 2. In this example, phases 1, 2, and 3
ave well-defined fractions, conductivities, and phase exponents
rom which their connectednesses and connectivities can also be cal-
ulated. Phase 4, although having a well-defined electrical conduc-
ivity, has a volume fraction, phase exponent, connectedness, and
onnectivity that depend on the other three phases. In the table, the
efined values are shown in bold type, while the values calculated
rom the equations developed in this paper are shown in normal type.

In this example, phase 1 represents the fluid-filled pore space,
ith a phase volume fraction of �1�0.1, a phase exponent of m1

2, and has been filled with a hypothetical electrolyte with a con-
uctivity of � 1�10 S /m. These values are similar to that which one
ight use in an application of the classicalArchie’s law.
Phase 2 represents the electrical double layer. This has been as-

igned an arbitrary conductivity of � 2�50 S /m and a phase expo-
ent of m2�2 �equal to that of the pore fluid�. There is no reason
hy phase 2 should not have a different phase factor from that of the
hase 1; however, it is likely to be similar because the complexities
f the pore network and the surface of that pore network are likely to
e similar. The electrical double layer �phase 2� has been assigned a
hase volume fraction of �2�0.05, which implies that the total po-
osity of the rock is � �0.15, but the mobile pore fluid has a fraction
etween 0.10 and 0.15. There are no fundamental theoretical diffi-
ulties that arise from considering the electrical double layer volu-
etrically as in this example. However, if the reader finds it awk-
ard, he/she could imagine phase 2 as a conductive mineral coating

nstead.
Phase 3 represents that part of the rock matrix that is iron pyrites,

eS2.Ahigh-volume fraction ��3�0.2� has been assigned arbitrari-
y to phase 3 together with a phase conductivity of � 3�100 S /m
Lide, 2009�. This phase was considered to be dispersed throughout
he rock with a low connectivity; hence, it has been assigned a higher
hase exponent than phases 1 and 2. A phase exponent value of m3

4 was used initially.
The remainder of the rock is composed of quartz for which an ar-

itrary and very low conductivity has been assigned ��
 4
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10�20 S /m�. Neither the fraction nor the phase exponent of the
uartz phase has been assigned. However, they can be calculated
rom the equations developed in this paper.

In the first part of Table 2, we can see that the phase exponent of
he quartz phase is m4�0.03296 using equation 27 �exact solution�

able 2. Example using the generalized law.

hase

��
Type
���

Fraction
� i

���

Phase
conductivity

� i

�S/m�

Phase
�cementation�

exponent
mi

���

cenario 1 — base case

Exact solut

Fluid 0.1 10 2

EDL 0.05 50 2

FeS2 0.35 100 4

Quartz 0.50 10�20 0.03296

um 1

First approxim

Fluid 0.1 10 2

EDL 0.05 50 2

FeS2 0.35 100 4

Quartz 0.50 10�20 0.0403

um 1

cenario 2 — increasing the phase 3 volume fraction, �3�0.

Exact solut

Fluid 0.1 10 2

EDL 0.05 50 2

FeS2 0.35 100 4

Quartz 0.50 10�20 0.0402

um 1

First approxim

Fluid 0.1 10 2

EDL 0.05 50 2

FeS2 0.35 100 4

Quartz 0.50 10�20 0.0550

um 1

cenario 3 — increasing the phase 3 volume fraction to �3�

Exact solut

Fluid 0.1 10 2

EDL 0.05 50 2

FeS2 0.35 100 3

Quartz 0.50 10�20 0.0822

um 1

First approxim

Fluid 0.1 10 2

EDL 0.05 50 2

FeS2 0.35 100 3

Quartz 0.50 10�20 0.1108

um 1
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
nd m4�0.0403 using equation 29 �first-order approximation�. In
oth cases, this is less than unity because the quartz phase is by far
he best connected phase of all of those present although it does not
ontribute to the overall conductivity of the rock. This is demonstrat-
d by its calculated connectedness G4�0.9859 and 0.9828 and its

ectedness
Gig

���

Connectivity
� i

���

Conductivity
contribution

� ci

�S/m�

Percent
contribution

���

uation 27)

.01 0.1 0.1 25.97

.0025 0.05 0.125 32.47

.0016 0.008 0.16 41.56

.9859 1.517 9.86
10�21 2.56
10�18

0.385

(equation 29)

.01 0.1 0.1 25.97

.0025 0.05 0.125 32.47

.0016 0.008 0.16 41.56

.9828 1.512 9.83
10�21 2.55
10�18

.9969 0.385

uation 27)

.01 0.1 0.1 5.79

.0025 0.05 0.125 7.24

.0150 0.0429 1.500 86.96

.9725 1.9449 9.724
10�21 5.6356
10�19

1.726

(equation 29)

.01 0.1 0.1 5.79

.0025 0.05 0.125 7.24

.0150 0.0429 1.500 86.96

.9625 1.9252 9.6259
10�21 5.5782
10�19

.9901 1.726

nd reducing m3 to m3�3

uation 27)

.01 0.1 0.1 2.22

.0025 0.05 0.125 2.77

.0429 0.1225 4.288 95.01

.9446 1.8892 9.4463
10�21 2.0934
10�19

4.5125

(equation 29)

.01 0.1 0.1 2.22

.0025 0.05 0.125 2.77

.0429 0.1225 4.288 95.01

.9261 1.8522 9.2611
10�21 2.0523
10�19

.9815 4.512
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onnectivity � 4�1.517 and 1.512 for the exact solution and the
rst-order approximation, respectively. It should be noted that the
um of the connectednesses of all of the phases is exactly unity when
sing equation 27, which is the value predicted theoretically. The
um of all of the connectednesses is 0.9969 if the first-order approxi-
ation is used, which is close to unity and shows that the first-order

pproximation is a reasonable solution in this example. The last two
olumns of Table 2 show the conductivity contributions �� ci� from
ach phase as an absolute value and as a percentage. The calculated
ulk effective conductivity is � �0.385 S /m and it is clear that
here are significant contributions from phases 1, 2, and 3 �25.97%,
2.47%, and 41.56%, respectively�. However, the conductivity con-
ribution from phase 4 is negligible despite phase 4 having the great-
r fraction, connectedness, and connectivity. In this example, each of
hases 1-3 contribute significantly to the conductivity of the rock de-
pite some having a low connectedness �i.e., phase 3�, and others,
uch as phase 1, having a relatively low conductivity.

If we increase the volume fraction of the iron pyrites to 35% ��3

0.35� at the expense of the quartz, which then has a volume frac-
ion of 50% ��4�0.50�, �Table 2, second part� we can recalculate
he phase exponent of the fourth phase, obtaining m4�0.0402 and
.0550 using the exact solution �equation 27� and the first-order ap-
roximation �equation 29�, respectively. This is still considerably
ess than unity because the quartz phase remains by far the best con-
ected phase of all of those present as shown by its calculated con-
ectedness G4�0.9725 and 0.9625 and its connectivity � 4�1.945
nd 1.926 for the exact solution and the first-order approximation,
espectively. It should be noted that the sum of all of the connected-
esses remains exactly unity when using equation 27, as before, and
s 0.9901 if the first-order approximation is used, which is also close
o unity. It is clear that there are not insignificant conductivity contri-
utions from phase 1 and phase 2 �5.79% and 7.24%, respectively�,
ut now phase 3 �the iron pyrites� is dominant, contributing 86.96%
f the bulk conductivity. The bulk conductivity has risen to �

1.7256 S /m. The phase 3 contribution is now approximately 10
imes what it was for the initial scenario ��3�0.2, m3�4, �4

0.65� and over 10 times the contribution from phase 1 or phase 2.
he conductivity contribution from phase 4 remains negligible de-
pite it continuing to have the largest volume fraction ��4�0.50�,
onnectedness �G4�0.9725 and 0.9626, for the exact and first-or-
er solution, respectively�, and connectivity �� 4�1.945 and 1.925,
espectively�. The increase of the volume fraction of the iron pyrites
rom 20% to 35% has overcome its lower phase exponent �m3�4�
o become the main conduction contributor.

In the above discussion �second part of Table 2�, we increased the
olume fraction of the iron pyrites from 20% to 35% but did not
hange its phase exponent. We would expect such an increase in
hase volume fraction to result in a lower phase exponent because of
n increase in the connectedness of the phase. If the phase exponent
f the iron pyrites had dropped from 4 to 3 because of its increased
hase volume fraction �Table 2, third part�, we find that the phase ex-
onent of the fourth phase becomes m4�0.0822 for the exact solu-
ion �equation 27� and m4�0.1108 for the first-order approximation
equation 29�, which are still much less than unity because the quartz
hase remains by far the best connected phase with a connectedness
4�0.9446 and 0.9261 and connectivities � 4�1.8892 and 1.8522

or the exact and first-order approximation solution, respectively.
he sum of the connectednesses of all phases remains exactly unity
hen using equation 27, as before, and is 0.9814 if the first-order ap-
roximation is used. The bulk effective conductivity has risen again
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
nd is now � �4.51 S /m. The conductivity contribution from
hase 3 is now much the most dominant, amounting to 95% of the
ulk conductivity, which is 27 times its value for the initial scenario
�3�0.2, m3�4, �4�0.65�. Now the contributions from phases 1
nd 2 each remain smaller than 3% of the bulk conductivity �2.22%
nd 2.77%, respectively�, and that of phase 4 remains negligible.

An example such as that shown in Table 2 is useful in a semiquan-
itative fashion but represents only one set of scenarios. We have ex-
mined the behavior of the generalized Archie’s law theoretically
nd in more detail in the following two sections.

APPLICATION TO TWO PHASES

The first test of the generalized Archie’s law should be against the
riginal. However, it is immediately extremely clear that this pro-
ess is a triviality with no meaning because it is clear from equations
9–23 that the generalizedArchie’s law collapses to give the original
rchie’s law if one considers a single phase.
Amore interesting test is a comparison of the generalizedArchie’s

aw with the results of the modified Archie’s law for two phases
Glover et al., 2000a�. However, in such a procedure it is wise to re-
ember that the generalized Archie’s law and the modified Archie’s

aw for two phases are derived in a similar manner. A distinction
hould also be made among �1� the formal statement of the general-
zed Archie’s law as embodied in equation 19 with equation 27, �2�
he first-order simplification of the expansion of the sum described
y equation 19 with equation 29, and �3� the second-order or higher
implifications.

Figure 1 shows the results of using the generalized Archie’s law
nd the modified Archie’s law for a suite of two phase systems in
hich phase 2 has a fixed conductivity �� 2�1 S /m� whereas phase
has been assigned a range of conductivity values that vary from � 1

0.01 to 1000 S /m. The figure has six parts, which are arranged in
airs according to the phase 2 exponent, m2�1, 2, and 3. Parts a, c,
nd e show the change of conductivity on a log scale as a function of
he fraction of phase 2 for all values of the conductivity of phase 1.
arts b, d, and f show the change of conductivity on a linear scale as a
unction of the fraction of phase 2 but for only those values of the
onductivity of phase 1 that are less than unity. This has been done to
ccentuate the very small differences between the curves when � 1

1 S /m. Each panel contains four different calculated bulk con-
uctivity curves: �1� that calculated using the modified Archie’s law
rom Glover et al. �2000a� as a solid line, �2� that calculated using the
xact solution of the generalized Archie’s law �equation 19 with the
hase exponent of phase 1 calculated from equation 27� also as a sol-
d line, �3� that calculated using the first-order simplification of the
eneralized Archie’s law �equation 19 with the phase exponent of
hase 1 calculated from equation 29� as a dotted line, and �4� that cal-
ulated using the second-order simplification of the generalized Ar-
hie’s law �equation 19 with the phase exponent of Phase 1 calculat-
d from equation 36� as a dashed line.

The most important observation is that the result of the exact solu-
ion of the generalized Archie’s law is exactly the same as the solu-
ion of the modified Archie’s law from Glover et al. �2000a� for all
ested values of �1� the phase exponent of phase 2, �2� the relative
onductivity of the two phases, and �3� the relative volume fraction
f the two phases. This is demonstrated in Figure 1 by the solutions
f both approaches being colinear �i.e., producing one indistinguish-
ble solid line for all values of �1, �2, m2, � 1, and � 2�.

Furthermore, for m �1 �parts a and b�, all of the solutions are the
2
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GeneralizedArchiea’s law for n phases E257
ame, which represents a trivial solution to equation 27 that results in
he connectedness of each phase being equal to the volume fraction
f that phase.

For m2�1, the question arises whether an approximation of equa-
ion 26 can provide sufficiently good results. Although the second-
rder approximation performs better than the first-order approxima-
ion, as expected, the first-order approximation itself provides a suf-
ciently good solution providing that �1� the conductivity of the
hase with the unknown exponent �here phase 1� is smaller than that
f the other phase by at least 1 order of magnitude, or �2� the volume
raction of phase 2 remains less than approximately 40% �less than
pproximately 60% for the second-order approx-
mation solution�.

Figure 2 shows the calculated phase exponents
f phase 1 as a function of the same exponent cal-
ulated with the modified Archie’s law for two
hases using the exact generalized Archie’s law
nd the two approximations to it. These results do
ot change with varying relative conductivity of
he two phases but do vary with the phase expo-
ent of phase 2. All values are colinear for
2�1, and the result of the exact generalized law

s colinear with the modified Archie’s law for all
alues of m2. However, increasing m2 induces er-
ors in the solutions from the first and second ap-
roximation methods, with the errors being larger
or the first-order approximation method, for
mall volume fractions of phase 1, and for large
alues of m2.

Although the conclusions that can be drawn
rom the application of the generalized law to a
wo-phase system are limited, it has become clear
hat the exact solution performs perfectly �i.e., the
se of equation 19 with the phase exponent of
hase 1 calculated from equation 27�, whereas
here are large ranges of parameters for which the
pproximations to the calculation of the missing
xponent are approximately valid �i.e., using
quation 19 with the phase exponent of phase 1
alculated from equation 29 for the first-order ap-
roximation or equation 36 for the second-order
pproximation�.

APPLICATION TO THREE PHASES

It is instructive to examine the behavior of the
eneral model for three phases. The problems that
ppear are not caused so much by complications
n the model as in finding a reasonable way to rep-
esent the results of the model. The root of this
roblem arises from the fact that although the
um of the connectednesses of all phases is unity,
he connectednesses depend on the phase fraction
nd the phase exponent, and all three phase frac-
ions and the three phase exponents are inter-re-
ated. To examine a model, we would normally fix
given exponent and then examine how the cal-

ulated conductivity varies with the phase frac-
ion. To begin, we will show that such an ap-
roach is not instructive when attempting to de-
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cribe the behavior of three interacting phases �with Figure 3�, and
hen we will describe an alternative and more instructive way of rep-
esenting the data �in Figure 4�.

We begin with phase 1 and define a constant phase fraction ��1

0.1�, a constant phase conductivity �� 1�0.02�, and a constant
hase exponent �m1�2�, from which a constant phase 1 connected-
ess �G1�0.01� and constant connectivity �� 1�0.1� can be calcu-
ated. These values represent an unchanging conducting phase that is
istributed through the rock. These parameters also allow us to com-
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igure 2. A comparison between the results of the exponent of phase
calculated with the generalized Archie’s law �y-axis, this paper�

nd the modified Archie’s law �x-axis, Glover et al., 2000a� for three
efined values of the imposed exponent of phase 2. �a� m2�1, and
ll three solutions of the generalized Archie’s law are colinear and
xactly the same as the solution of the modified Archie’s law. �b� m2

2, and the exact solution of the generalizedArchie’s law is exactly
he same as the solution of the modified Archie’s law but there is a
iscrepancy in the first- and second-order approximate solutions. �c�
2�3, and the exact solution of the generalized Archie’s law is ex-

ctly the same as the solution of the modified Archie’s law but there
s a larger discrepancy in the first- and second-order approximate so-

utions.
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0.1, m1�2, G1�0.01,0��2 �0.9,0.9��3 �0. �a� m2�2, �b�
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GeneralizedArchiea’s law for n phases E259
ute the contribution to the total conductivity of the sample provided
y phase 1 �� c1�0.0002�. In the remainder of this paper, the sym-
ols � ci are used to represent the conductivity contribution from
ach of the i phases.

The remaining volume fraction of the rock is considered to be split
nto two parts �phase 2 and phase 3�. The phase 2 fraction �2 varies
etween zero and 0.9 and has a constant phase conductivity �� 1

0.1�. We will, for the time being, define a constant phase 2 expo-
ent m2�2, 3, or 4.As before, we can calculate the phase 2 connect-
dness G2, connectivity � 2, and hence a phase 2 conductivity contri-
ution � c2 that all vary with the phase 2 volume fraction �2.
The phase 3 parameters can now be calculated. The phase 3 frac-

ion �3 varies between 0.9 and zero and is calculated with equation
5. The phase 3 conductivity has been taken to be � 3�3. The phase
exponent m3 can then be calculated directly and exactly using

quation 27 or by using the first approximation �equation 29�. If the
rst approach is taken, then the connectedness of phase 3 can be
eadily calculated and then it can be confirmed that the sum of all
hree connectednesses is unity. If the second approach is taken, the
um of all of the connectednesses must be calculated to confirm that
he first approximation method is valid for the parameter set being
sed. We recommend that the sum of all connectednesses should
onform to the limits 0.95��i

nGi �1 for the first approximation
ethod to be considered satisfactory. Finally the phase 3 connectivi-

y � 2 and phase 3 conductivity contribution � c3 can be calculated as a
unction of the phase 3 volume fraction �3.

The total conductivity of the system is the sum of the individual
ontributions according to equation 19 �i.e., � �� c1�� c2�� c3.
igure 3 shows the results of this calculation. In each case, the con-
ectednesses and exponents of phase 2 and phase 3 and the total con-
uctivity are shown as a function of the volume fraction of phase 3.
he conductivity contribution from phase 1 is very small.As the vol-
me fraction of phase 3 increases from zero to 0.9, the conductivity
ncreases nonlinearly until it reaches a value of 2.97 S /m at �1

0.1 and �3�0.9, irrespective of the value of m2.As the fraction of
hase 3 increases from zero to 0.9 and that of
hase 2 decreases from 0.9 to zero, the connect-
dness of phase 3 increases and the connected-
ess of phase 2 decreases concomitantly. The ex-
onent of phase 2 is constant and greater than uni-
y, whereas that of phase 3 describes a complex
hape and is less than unity.At first sight all seems
orrect. However, there are various issues that
ill be described for the case where m2�2 �Fig-
re 3a� but have analogues for all other sets of the
nput parameters.

� The value of the total conductivity at �1

�0.1 and �3�0.0001 �solution at exactly
zero is not possible� is approximately 0.622
when it should be 0.0812. This is because
the connectedness of phase 3 at �1�0.1 and
�3�0.0001 is 0.18018 when it should be
close to zero.

� The calculated exponent of phase 3 has a
complex form that is difficult to interpret
physically.

hese two observations are not caused by failures
n the general law or of the analytical method that
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as used to derive it; rather, they arise because we have made an as-
umption in its application that is not correct for real porous media.
he false assumption is that the exponent of phase 2 remains con-
tant �here at m2�2� for all values of the phase volume fraction of
hase 2. This is clearly an unreasonable expectation because we may
magine that even a small decrease �increase� in the volume fraction
f a given phase will lead to a reduction �increase� in its connected-
ess and consequently a reduction �augmentation� of the relevant
hase exponent. A description of the relationships between connec-
ivity and porosity is given in Glover and Walker �2009�.

The relationship between the exponents of the phases that com-
ose a given porous medium and their volume fraction are funda-
ental properties of the porous medium and are defined by the ar-

angement of its various components. For a porous medium consist-
ng of n phases in which each phase has a volume fraction � i, there
xists a set of functions f i �� i��mi that obey two sets of constraints.
he first set arises from the generalized Archie’s law and are �i�1

n � i

1 and �i
n� i

mi�1. The second set results from the necessary
oundary conditions that lim�i→0�� i

mi��0 and lim�i→1�� i
mi��1 as

ell as lim�i→1� f i�� i���0. The constraint that lim�i→0� f i�� i����
hat might be imagined also to exist is not necessary because the
hase exponent may take any value in the previously defined limit
im�i→0�� i

mi��0. The solution of the problem f i �� i��mi is in the
omain of mathematicians and will be the subject of a further paper.

For the moment, let us keep the phase 1 parameters constant ��1

0.1 and f1��1��m1�2� and impose a general condition for
hase 2 that �2
0,0.9� with the exponent function defined arbitrarily
s

f2��2��m2�C�A��1��2�B. �52�

or example, if we take A�9.905, B�2, and C�10, the exponent
f phase 2 varies nonlinearly from 0.095 to 10 as the volume fraction
f phase 2 varies from 0.9 to zero �i.e., phase 3 varies from zero to
.9�.
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E260 Glover
This is much more realistic for a real porous medium and is shown
n Figure 4. In this figure, all parameters are shown as a function of
he volume fraction of phase 3. The phase 1 parameters are kept con-
tant ��1�0.1 and m1�2�. In other words, phase 1 remains physi-
ally unchanged no matter what variations occur to the other parts of
he porous medium. The exponent function of phase 2 is defined by
quation 52 with A�9.905, C�10, and B taking values of 0.5, 1,
nd 2, shown by the green curves in the figure.

The purple curves show how the connectedness of phase 2 be-
aves, starting at a value near unity �0.99, 0.9989, and 0.9898 for the
hree values of B, respectively� for �1�0.1 and �2�0.8999, and
ecreases sigmoidally as the volume fraction of phase 2 decreases
phase 3 increases� until it becomes zero for all curves at �1�0.1
nd �2�0.

The black curves show the variation of the connectedness of phase
, which mirrors that of phase 2 because the constraint that the sum
f all connectednesses is unity. Hence, the connectednesses of phase
are all equal to 0.99 at �3�0.9 �the connectedness of phase 1 is

.01, which ensures the unity sum� and become almost zero when

1�0.1 and �3�0.0001 �2.15
10�5, 7.32
10�5, and 1.77
10�4, respectively, for the three values of B�. This represents a
uch more reasonable physical behavior than was encountered in
igure 3.
Consequently, the total conductivity �red curves� also behaves
ore reasonably. The total conductivity at �1�0.1 and �3

0.0001 is 0.099262 S /m, 0.099412 S /m, and 0.099712 S /m for
�0.5, 1, and 2, respectively, which are close to the theoretical val-
e �0.09918 S /m�.

The shape of the exponent of phase 3 �blue curves� is still com-
lex, but it is now possible to attempt to interpret it. The initial de-
rease in the exponent of phase 3 �between �3�0 and 0.65� repre-
ents an increase in the number of pathways of conduction available
n phase 3, which mirrors the increase in the connectedness of phase

�black curves�. This augmentation of pathways of conduction
vailable to phase 3 happens at the expense of those for phase 2, and
t can be seen that this is represented by a concomitant increase in the
hase exponents of phase 2 �green curves� and a diminution in its
onnectedness �purple curves�. The subsequent increase in the expo-
ent of phase 3 �between �3�065 and 0.9�, which occurs while the
hase exponent of phase 2 continues to increase, results from the
onversion of phase 2 to phase 3 without significant increase in the
umber of pathways available to phase 3.

Modeling has been carried out for combinations of �1�0.1, 0.2,
.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9; m1�1, 2, 3, 4, and 5; and for rela-
ive values of the electrical conductivity of each phase as well as for
ombinations of values of A, B, and C. In each case, the results were
ound to behave in a consistent manner. Unfortunately there is insuf-
cient space to display all of the results here. Figure 5 shows some of

he results that indicate the importance of minor phases. In each part
f this figure we have plotted the exponents and connectednesses of
hases 2 and 3 together with the total conductivity. As in Figure 4,
here are three curves for each parameter that represent B�0.5, 1, or
. The other phase 2 exponent coefficients are different from Figure
�A�4.9 and C�5�. Figure 5a and b shows the results when �1

0.1 and m1�2 and for when �1�0.1 and m1�3. The effect of
hanging the exponent of phase 1 from 2 to 3 makes the connected-
ess of phase 1 10 times smaller �going from 0.01 to 0.001�, which
llows the connectedness of phase 3 to be higher at any given phase 3
raction and hence allows the exponent of phase 3 to be smaller. In
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
ther words, a larger phase 1 exponent allows more flexibility in the
rrangement of the other two phases.

Figure 5c-f shows the effect of increasing the volume fraction of
hase 1. Figure 5c is the same as Figure 5a except the volume frac-
ion of phase 1 has been doubled to 0.2. The differences are subtle
ut important: The exponent of phase 3 does not reach such low val-
es as in Figure 5a because it is constrained by the greater volume of
hase 1. More importantly, the phase 3 exponent curves do not ex-
end all of the way across the diagram. Why is this? The missing
hase 3 exponent curves for values of the phase 3 volume fraction
ess than approximately 0.05 is entirely consistent with the general-
zed Archie’s law. It indicates that there is no solution of the law for

1�0.2, m1�2, m2�5�4.9��1��2�B when �3 �0.05 �i.e., �2

0.75� because the sum of the connectednesses �i
n� i

mi  1. In other
ords, phases 1 and 2 take up so much connectedness that there is no

oom for phase 2 although the requirement that �i�1
n � i�1 demands

t. However, if one increases the exponent of phase 1 to, say, 3 as in
igure 5d, the connectedness of phase 1 once again diminishes suffi-
iently for the phase 3 exponent to be well defined for the entire
ange of its volume fraction. Figure 5e and f shows the same effect
ut for �1�0.3. The missing curves imply that for Figure 5c and e
ur imposition that m2�5�4.9��1��2�B is not consistent with
he other parameters in the model.

Having analytically examined the behavior of the generalized Ar-
hie’s law, it would be best to validate the law experimentally. Un-
ortunately the experimental substantiation of equations 19, 24, 27,
nd 29–31 requires a suite of experiments that would be unmanage-
bly vast and technically extremely difficult, as discussed in the next
ection.

CONCERNING EXPERIMENTAL DATA

Ideally it would be possible to provide experimental validation for
he generalized law in the same manner as for the modified law for
wo phases �Glover et al., 2000a�. However, a broadly ranging re-
iew of the literature covering all sciences has not found any data-
ase that we could use for such a validation.

One might say that reservoir engineers have large amounts of
hree-phase data for the rock/air/water system. Unfortunately, these
ata are not helpful because although this is a three-phase material
ystem, it is only a two-phase conductivity system, with the conduc-
ivity of the rock matrix and the air being zero.

The validation of this model in a true three-phase conductivity
ystem is a large body of work that we have begun and to which we
ould invite anyone interested to cooperate or to carry out in paral-

el. In this section, I outline some of the technical difficulties that are
nvolved.

To validate the generalized law experimentally for each of the n
hase systems �i.e., 3, 4, 5, etc.�, it is necessary to measure indepen-
ently the volume fractions, the exponents, and the conductivities of
ll of the phases.

There are three possible independent variables: �1� the phase vol-
me fraction, �2� the phase conductivity, and �3� the phase connect-
dness. Of these three, the first two may be controlled. Hence, it is
est to carry out tests as a function of phase conductivity and phase
olume fraction, deriving in each case a measure of the phase con-
ectedness �e.g., Gi or mi� that can then be compared with that pre-
icted by the model �and other models if they exist�. For example,
or a three-phase system, it is sufficient to confirm that �1� the mea-
ured bulk effective conductivity as a function of the conductivity of
 SEG license or copyright; see Terms of Use at http://segdl.org/
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ach of the phases matches that obtained from the model �equation
9�, and �2� the use of equation 24 produces predicted values
f the missing exponent that matches calculated from experi-
ental data using the equation m3� �log�� �� 1�1

m1�� 2�2
m2�

log�� 3�� / log��3�. Effectively, this is the same scheme that was
sed in the validation of the modified Archie model for two phases
Glover et al., 2000a� but extended to three phases.

The difficulty lies in the creation of valid 3D samples in which
ach phase is sufficiently mechanically stable for its phase volume
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igure 5. The solution of the generalizedArchie’s law for three phase
ariation of connectednesses and exponents of phases 2 and 3 togethe
raction of phase 3. Green�m2, blue�m3, purple�G2, black�G
raph: � 1�0.02 S /m, � 2�0.1 S /m, � 3�3 S /m, A�4.9, B�0.

A��1��2�B. �a� �1�0.1, m1�2, G1�0.01,0��2 �0.9,0.9�
0.2, m1�2, G1�0.04,0��2 �0.8,0.8��3 �0; �D� �1�0.2,
0.09,0��2 �0.7,0.7��3 �0; �F� �1�0.3, m1�3, G1�0.02

2�A�2
�B, 1��3 �0.1, � 3�3 S /m�. �A� �1�0.1, m1�1,2,3

1,2,3, �E� � �0.5, m �1,2,3.
1 1
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raction and phase exponent to be measured independently. A broad
pproach to this problem might take the following form:

� Take a cylindrical sample space.
� Create within it a solid framework of material A with conduc-

tivity � A �measured independently�.
� Calculate the volume fraction of material A using the density

and weight of the material used and the volume of the sample
space.
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E262 Glover
� Measure the effective conductivity of the material A/air two-
phase system.

� Calculate the exponent of phaseA.
� Create a solid framework of material B with conductivity � B

�measured independently� within the sample space and inter-
penetrating phaseA.

� Ensure that there is reasonable electrical connection between
phaseAand B.

� Gravimetrically calculate the volume fraction of material B as
before.

� Measure the effective conductivity of the material A/material
B/air three-phase system.

0� Calculate the volume fraction of void space.
1� Calculate the exponent of phase B.
2� Fill remainder of sample space with material C �a set of aque-

ous electrolytes � C 	10�4 �� f �10 S /m, measured indepen-
dently�.

3� Measure the effective conductivity of the material A/material
B/electrolyte three-phase system for several different electro-
lyte conductivities.

4� Confirm that the effective conductivity as a function of phase C
conductivity data is well fitted by equation 19.

5� Calculate the phase exponent of phase C from the experimental
data.

6� Predict the phase exponent of phase C from the generalized
model �equation 19� and compare with the experimentally ob-
tained value.

t would be necessary to carry out the above procedure for many
amples composed of different volume fractions and arrangements
f materialAand B.

There are several significant technical hurdles to be passed also,
ncluding sourcing material A and material B, which should be me-
hanically stable, chemically inert, insoluble in water, and with con-
tant electrical conductivities that are sufficiently different to be dis-
inct, while both being within the range of values taken by the NaCl
lectrolyte �10�4 �� f �10 S /m�.

In the face of such experimental difficulties, we have chosen to
est the equations using numerical modeling, with the warning that a
ull validation of these equations by modeling represents a much
reater corpus of work than it would be possible to include in a single
aper.

igure 6. �a� Geometry of the numerical model �here a 5
5
5
odel is shown for simplicity; the real size was 20
20
20� and

he tetragonal grid used in the numerical modeling �red�10 V�. �b�
n example of a numerical solution of electrical potential across the

ube �blue�0 V�.
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
NUMERICAL MODELING METHODOLOGY

In a stationary coordinate system, the point form of Ohm’s law
tates, in its most general form, that

J��E�Je, �53�

here J is the total current density, � is the conductivity, E is the
lectric field, and Je is a externally imposed current density �if
resent�. The static form of the equation of continuity then gives us

� ·J��� · �� �V�Je��Qj, �54�

here Qj is an externally generated current source �if present�. In this
odeling, there is no externally imposed current; hence, Je�0 and
j�0.
The model is composed of 8000 cubic blocks �20
20
20�.

hus, each percentage of the volume fraction is represented by 80
locks. The conductivity �isotropic or anisotropic� for each block
an be specified. An example of the geometry of the model is shown
n Figure 6a, but for a 5
5
5 grid for simplicity.

At the input face to the 3D model, we have specified inward cur-
ent flow according to

�n ·J�Jn, �55�

here the normal component Jn is positive representing current flow
nto the model. The opposite face of the model we have specified as
rounded �i.e., V�0�. All other faces of the model are specified as
nsulating, where n ·J�0 �i.e., that there is no current flowing
cross the boundary�. All interior boundaries are conservative �i.e.,
ontinuity boundary conditions�,

n · �J1�J2��0. �56�

he relevant interface condition at interfaces between two different
hases is n2 · �J1�J2��0, where n2 is the outward normal from
hase 2 and J1 and J2 are the current densities in each of the two ad-
oining phases. This is fulfilled by the natural boundary condition

n · 
�� �V�Je�1� �� �V�Je�2���n · �J1�J2��0.

�57�

he electrical potential was solved using Comsol’s Femlab 3.0 on a
nite element mesh, which consisted of tetrahedra created by con-
trained Delaunay triangulation. The mesh consisted of 768,000 tet-
ahedra, which provides 96 tetrahedra per cubic block such that each
etrahedron represents approximately 1.3
10�6 of the total volume
raction. Figure 6a shows a typical mesh, but for a 5
5
5 grid for
implicity. The electrical potential at the input and output faces was
alculated using the integration functions that are built into the Fem-
ab software.

Initially, all blocks were set to the same conductivity. Several ad-
oining cells were chosen stochastically to create a set of pathways
cross the model with a predefined fraction and a predefined expo-
ent. The predefined exponent cannot be simply forced on the mod-
l; we have to try several pathways until the calculated exponent is
he desired value. The only constraint imposed was that all path-
ays, whether dead ends or not, were initially continuous, with their

omponent cubes making contact face to face, not edge to edge or
ertex to vertex. This was called phase 1 and was kept constant dur-
ng the subsequent modeling.

The other cubes represent the volume occupied by the other three
hases. Several of these cubes were chosen stochastically to create a
 SEG license or copyright; see Terms of Use at http://segdl.org/
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econd set of pathways across the model with a predefined fraction
nd a predefined exponent as before. The same face to face contact
onstraint was imposed again. This was called phase 2, and was also
ept constant during the subsequent modeling.

The remaining cubes represent the volume occupied by the re-
aining two phases. Again, several of these cubes were chosen sto-

hastically using the same constraints to create a third set of path-
ays across the model with a predefined fraction and a predefined

xponent as before. This was called phase 3 and was changed during
he subsequent modeling. All cubes not assigned to phase 1, 2, or 3
ere automatically assigned to phase 4.
The conductivity of each of the cubes composing each of the phas-

s was then assigned to give the initial starting conditions for each
et of model solutions. At this point, the conductivity and fraction of
ach phase is known, but their exponents are not. The exponent of
ach phase was measured separately by solving equation 53 across
he model with the conductivity of the other phases set to zero. The
nite element solution of the electrical potential may then be carried
ut throughout the model. The potentials and current at each face
ere then calculated by integrating their values over each face;
ence, the modeled conductivity was calculated.

Several cubes of phase 3 were then transformed into phase 4 by re-
llocating their conductivities to increase the fraction of phase 4 by
pproximately 1% and reduce the fraction of phase 3 by the same
mount �i.e., 80 cubes�.Although the choice of the reallocated cubes
as random, two constraints were applied. These were that the posi-

ions of the new phase 4 cubes were �1� in face-to-face contact with
xisting phase 4 cubes, and �2� were not in contact with more than
wo pre-existing phase 4 cubes. The first constraint avoids the devel-
pment of infinite current densities at vertex-to-vertex contacts,
hereas the second ensures that the reallocated cubes significantly

hange the connectedness of the phase instead of just “filling in the
aps.”

The exponents of phases 3 and 4 were then recalculated with the
ame method as before �the exponents of phase 1 and phase 2 do not
hange because their geometry has not changed�. The model was

able 3. Conditions associated with the numerical modeling.

hase Fraction Number of cubes Type

uite 1

0.05 800 EDL

0.1 400 Fluid

0.2–0 1600–0 FeS2

0.65–0.85 5200–6800 Quartz

uite 2

0.06 480 EDL

0.09 720 Fluid

0.2–0 1600–0 FeS2

0.65–0.85 5200–6800 Quartz

uite 3

0.03 240 EDL

0.12 960 Fluid

0.2–0 1600–0 FeS2

0.65–0.85 5200–6800 Quartz

Single values indicate a constant during a suite of measurements; a
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
hen solved again before the fraction of phase 4 was increased once
ore in the same manner. This process was reiterated until phase 3
as exhausted �approximately 20 realizations per suite of measure-
ents�. Figure 6b shows a typical electrical potential solution for a

5
5 geometry for simplicity. The results described below were
arried out on a 20
20
20 grid.

It should be noted that this type of numerical simulation is ex-
remely costly on processor time and on memory. We carried out our
imulations on a standard desktop PC �2.4 GHz, 4 core, 3 Gb RAM�
unning Comsol’s Femlab 3.0 �now Comsol Multiphysics 3.5a� and
ound that the 20
20
20 grid took almost 2 h to solve and used al-
ost all of the available memory.Although the solutions were gener-

lly stable, we found it was not possible to increase the size of the
rid within our computing resources.

NUMERICAL MODELING RESULTS

Three suites of measurements were carried out in total. Table 3
hows their starting and finishing conditions.

Figure 7 shows the results of the modeling as plots between the
onductivity predicted from numerical modeling and those predict-
d from the generalizedArchie’s law and the traditionalArchie’s law
which in this case is the same as applying theArchie’s law modified
or two phases because phase 4 has such a low conductivity�. The re-
ults of the generalizedArchie’s law agree very well with the numer-
cal results and have been taken to validate, at least in part, the equa-
ions developed in this work.

When the traditional Archie’s law is used, there are errors that are
ecause the conductivity contributions from phases 1 and 2 have not
een taken into consideration. The constant difference between the
esults of the traditional Archie’s law and the generalized Archie’s
aw in Figure 7 arises because we kept phases 1 and 2 geometrically
nd electrically constant within a suite of modeling results but differ-
nt between each suite. The sensitivity of the final results to small
hanges in the parameters describing phases 1 and 2 indicates how

Conductivity Exponent Connectedness

10 2.3 0.00102

50 2.1 0.00794

100 3–4.75 0.008–0

10�20 0.0397–0.0554 0.9830–0.9910

10 2.2 0.00205

50 2.2 0.0050

100 3–4.33 0.008–0

10�20 0.0352–0.0436 0.9849–0.9929

10 2.5 0.000156

50 2 0.0144

100 3–3.78 0.008–0

10�20 0.0529–0.0902 0.9774–0.9854

of values indicates a starting and finishing value.
range
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mportant it is to control the contributions from all phases in the mul-
icomponent system.

SUMMARY

The main findings of this paper can be summarized by saying that
3D medium composed of n phases has the following properties:

� The sum of the fractions of all of the phases is equal to unity,
�i�1

n � i�1.
� The sum of the connectednesses of all of the phases is equal to

unity, �i�1
n Gi��i�1

n � i
mi�1.

� Connectedness is conserved — loss of connectedness for one
phase is balanced by gains of connectedness in the other phases
that compose the rock.

C
on

du
ct

iv
ity

fr
om

th
e

nu
m

er
ic

al
m

od
el

(S
/m

) 14000

12000

10000

8000

6000

4000

2000

0
14000120001000080006000400020000

Conductivity from the generalized model (S/m)

)
C

on
du

ct
iv

ity
fr

om
th

e
nu

m
er

ic
al

m
od

el
(S

/m
) 14000

12000

10000

8000

6000

4000

2000

0
14000120001000080006000400020000

Conductivity from the traditional Archie's law (S/m)

)

igure 7. Results of numerical modeling of a four-phase system. �a�
onductivity from the numerical modeling as a function of that pre-
icted from the generalized Archie’s law for the three suites of mod-
ling results. �b� Conductivity from the numerical modeling as a
unction of that predicted from the traditional Archie’s law for the
hree suites of modeling results. Note that because the conductivity
f phase 4 is so low, this diagram is also a plot of the conductivity
rom the numerical modeling as a function of that predicted from the
odifiedArchie’s law for two phases �Glover et al., 2000a�.
Downloaded 21 Dec 2010 to 132.203.71.130. Redistribution subject to
� The generalized Archie’s law for n phases takes the form �
��i�1

n � i� i
mi

� The phase exponent of the jth phase can be calculated using the
equation mj� log�1��i�j� i

mi� / log�1��i�j� i�.
� The phase exponent of the jth phase can also be calculated us-

ing a first-order approximation by the equation mj

��i�jGi /�i�j� i.
� An n�1 subset of phases has the property that �i�1

n�1Si
ni�1,

where the saturation of each phase is Si�� i /�i�1
n�1� i and ni is

the saturation exponent of each phase. This equation represents
a form of the equation for the sum of connectednesses but with
reference to an n�1 subset of the original n-phase medium.

he classical Archie’s law for 100% fluid saturation and Archie’s
econd law for partial saturation can be derived from the generalized
odel as special cases. Examination of the exact solution of the gen-

ralized Archie’s law for n phases shows it to also be formally the
ame as the modifiedArchie’s law for two phases.

There exist at least two approximations of the generalized law. Of
hese, the second-order approximation performs better than the first-
rder approximation, as expected, and there is a wide range of pa-
ameters in which the approximations provide a good estimate of the
xact solution of the generalized law.

It may be that the generalized law as set out in this paper is too
omplex for general use. However, its applications should grow de-
ending on the growth of the requirement to model increasingly
omplex rock mixtures, something that is becoming more common
s nonconventional hydrocarbon resources are exploited. On a more
undamental level, its immediate contribution is more likely to be in
he sphere of improving our seminal understanding of why empirical
aws such asArchie’s seem to work so well.

It is conceptually extremely difficult to imagine a method for ex-
erimentally verifying this generalized law, let alone to find data sets
hat are sufficiently comprehensive. Here, the generalized law has
een partially verified by 3D numerical modeling and found to work
ell for four phases that were subject to the constraints that we ap-
lied to the modeling. I urge other researchers to carry out further
nd more exhaustive testing of the model experimentally and using
umerical modeling with larger grids.
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