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spread along the bedding planes/first-
generation slaty cleavage (which are  
almost parallel to the bedding except in 
the hinge zones of the first-generation 
folds) in an elongated pattern forming an 
unusual type of lineation in the rock1. On 
close examination in each bird’s feather-
like structure, the solution starts spread-
ing from the centre and spreads outward 
forming a corona-like structure at the 
margin (Figure 3). Viscosity contrast  
between calc-silicate and the pegmatitic 
material seems to have given rise to the 
development of lobate and cuspate types 
of margins5 (Figures 2 and 3). The 
patches are sporadically distributed on 
the surface. They vary from 0.5 to 1 mm 
in thickness. These structures range from 
5 to 12 cm in length and from 1 to 3.5 cm 

in width. When slightly thicker they give 
a pseudo impression of highly com-
pressed and elongated pebbles of a con-
glomerate similar to the one exposed 
near Barr3.  
 The linear structure appears to be 
unique in its mechanism of formation. Its 
significance in the structural analysis of 
complexly deformed rocks is likely to 
contribute significantly in establishing a 
relationship between the particular phase 
of deformation and the time of emplace-
ment of pegmatite in the region. In the 
present case, the bird’s feather lineation 
has developed due to penetration of 
pegmatitic solution along the sub-vertical 
crenulation cleavage planes (Figure 4) 
associated with the second deformation 
in the Delhi Supergroup and the struc-

tures are oriented parallel to the axis of 
the second-generation folds. Therefore, the 
emplacement of pegmatite bodies in the 
region has taken place during the second 
deformation in the Delhi Supergroup of 
rocks. 
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Nonlinear electrical conductivity response of shaly-sand reservoir 
 
I would like to draw the attention of the 
readers to a number of errors in the sci-
entific paper1. These errors, taken to-
gether, are sufficiently important to make 
all four of the paper’s conclusions inva-
lid.  
 The paper1 contains a review of three 
different approaches to the modelling of 
electrical conductivity of reservoir rocks 
composed of two conducting phases. The 
three approaches are (i) Bussian’s 
model2, (ii) a model that they call the 
Mixing model, but which in fact would 
be better attributed to Korvin3 or Ten-
chov4, and (iii) the model of Glover et 
al.5. According to Sri Niwas et al.1, all 
these equations are nonlinear. A nonlin-

ear system is one in which the variable(s) 
to be solved for cannot be written as a 
linear combination of independent com-
ponents, i.e. it is a system which does not 
satisfy the superposition principle. Only 
the Bussian equation fulfils this criterion. 
Both the Korvin3 and Glover et al.5 mod-
els are linear and can be solved exactly, 
without recourse to numerical solution.  
 In their figure 1, Sri Niwas et al.1 pur-
port to show the calculation errors when 
using the three models. By this they mean 
the errors induced in using their nonlin-
ear inversion code, which uses the bisec-
tion method. The figure correctly shows 
that the error in the Bussian nonlinear 
inversion is low (10–4 to 10–8 S/m). How-

ever, it shows the errors for the Glover5 
and Korvin3 models to be in the range 
100–10–2 S/m (i.e. much higher). As I 
have already discussed, the Korvin3 and 
Glover5 models are not nonlinear. They 
can be solved analytically and exactly 
using a calculator or a computer. In other 
words, the error associated with their 
computation is the same as a computer 
(i.e. about 10–499 S/m) and is independent 
of the other parameters in the model. It is 
not clear from the paper how the authors 
have generated the curves in figure 1 for 
the Korvin3 and Glover5 models. It is 
possible that the large error values are 
caused by instabilities in their numerical 
routines when applied to linear models. 

 
 

Figure 4. Formation of Bird’s feather lineation. 
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What is clear is that figure 1 is not cor-
rect and the conclusions that the authors 
draw from it are also not correct.  
 The interpretation of the low fluid 
conductivity version of the Glover et al.5 

equation derived by Sri Niwas et al.1 
(their eq. (11)) is wrong in two respects. 
First, it should not contain an approxima-
tively equal sign but an equality sign be-
cause the Glover et al.5 model is equally 
true for the entire range of fluid conduc-
tivities. In other words, eq. (11) of Sri 
Niwas et al.1 is the same as the general 
equation for the Glover et al.5 model (eq. 
(7) in Sri Niwas et al.1). Second, the 
Glover et al.5 model is symmetric in the 
sense that one may swap the two phases 
without changing the formal structure of 
the model. The observation in Sri Niwas 
et al.1 that the low fluid conductivity ver-
sions of the three models ‘. . . reveals that 
for a given value of φ and for low σw, σ0 
is linearly proportional to σs in the case 
of Glover and Mixing equations, whereas 
it is linearly proportional to σw for the 
Bussian equation.’ is correct. This is a 
strength of the Korvin3 and Glover et al.5 

equations and a weakness in the Bussian2 
equation because it means that the con-
ductivity of the bulk rock is controlled 
by the matrix when the conductivity of 
the fluid is too small to contribute.  
Instead Sri Niwas et al.1 use it to gene-
rate the paper’s first conclusion; that 
‘. . . empirical linear models based on 
parallel conductor concept are unable to 
simulate effective conductivity of a 
shaly-sand formation saturated with wa-
ter of low conductivity’. Such a conclu-
sion is actually at odds with the analysis 
in the body of the paper.  
 The analysis of the models for the 
case, where m = 0, i.e. 100% porosity, is 
also in error. Sri Niwas et al.1 state that 
‘In this case, Glover, Mixing and Bus-
sian equations give σ0 equal to (σs + σw), 
max(σs, σw) and σw respectively. Thus, 
Bussian equation simulates physics of 
the situation more realistically.’ In fact 
both the Glover et al.5 and Bussian2 

model give σ0 = σw for m → 0. The  
paper’s second conclusion is that ‘the ex-
isting nonlinear equation of Glover et al. 
and the Mixing equation studied by Lima 
et al. are able to simulate the effective 
conductivity curves for the entire range 
of water conductivity only for low poro-
sity and these fail to simulate the real  
behaviour as the porosity increases’. Not 
only is the conclusion not true because it 
is based on erroneous interpretation, de 

Lima et al.6 never ‘studied’ or even men-
tioned the Glover et al.5 equation.  
Instead the Glover et al.5 paper was ref-
erenced once in the introduction support-
ing the fact that the traditional Archie’s 
law fails in freshwater reservoirs, which, 
ironically is a claim that the paper does 
not make.  
 The third of the paper’s conclusions is 
that ‘The Bussian equation simulates the 
effective conductivity curves for all ranges 
of porosity and water conductivity’. Al-
though this would not be considered a 
particularly revolutionary conclusion, 
there is no evidence in the paper to sup-
port it – that is to say, no experimental 
data or numerical modelling by the au-
thors or others. Without some recourse to 
experimental data the paper cannot, in 
my view, comment on what works and 
what does not. Experimental data not-
withstanding, if one is to examine the 
behaviour of the models, as Sri Niwas et 
al.1 have done in their figure 2, there is 
clear evidence in three of the four panels 
that the Bussian model is behaving sig-
nificantly worse than the Korvin3 or 
Glover et al.5 models especially at low 
fluid conductivities, where it takes values 
that are significantly less than those de-
manded by the limits imposed by the ma-
trix conductivity. In order to make this 

clear, I have taken the parameters in fig-
ure 2 part b (viz. m = 1.5, φ = 0.439, 
σs = 0.22) and repeated the calculations 
(Figure 1). Here the classical Archie7, 
Korvin3 and Glover et al.5 models are 
calculated in a straightforward manner as 
they are linear, whereas the nonlinear 
Bussian2 model is calculated using a con-
formal mapping technique. This is an 
elegant method of solving the equation 
that takes only seven lines of code. We 
can see that the value of the effective 
conductivity as σw → 0 stabilizes at 
0.092 S/m and 0.156 S/m for the Korvin3 

and Glover et al.5 models respectively. 
This indicates that the conductivity is 
dominated by the fixed matrix compo-
nent (with a slightly different value pro-
vided by each model). In contrast, the 
bulk conductivity from the Bussian2 

model is still controlled by the conduc-
tivity of the fluid, and decreasing with 
fluid conductivity at the same rate as the 
classical Archie’s law7. 
 The fourth of the paper’s conclusions 
is that ‘. . .the Bussian equation which is 
more consistent with the physics, reduces 
to the existing linear models, and thus is 
consistent with these models. Hence, for 
nonlinear interpretation of well log data 
Bussian equation is the most appropriate 
one’. We have seen that, of the equations 

 
 
Figure 1. Effective conductivity as a function of fluid conductivity obtained for the four mod-
els used by Sri Niwas et al.1, viz. Glover et al.5, Mixing (Korvin3), Bussian2 and Archie7 for 
m = 1.5, φ = 0.439 and σs = 0.22. These parameters are the same as those in figure 2 panel b in 
Sri Niwas et al.1. Axes have been adjusted for the usual range of physical values of a pore fluid. 
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mentioned by the authors, the Bussian 
equation is the only nonlinear one, and 
while it does reduce to some existing  
linear models, it does not reduce to those 
of Glover et al.5 and Korvin3. I could not 
recommend it as the most appropriate 
one to use in general.  
 I am led to the conclusion that (i) the 
conclusions reached by Sri Niwas et al.1 
are either erroneous or not supported by 
evidence, (ii) both the Korvin3 and 
Glover et al.5 models do a fairly good job 
at describing the bulk conductivity of a 
reservoir rock composed of two conduct-
ing phases, and (iii) certain weaknesses 
exist in the Bussian2 model. I would rec-

ommend that a full and high quality re-
view of all the models available is 
carried out so that we can really under-
stand the models available to us.  
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