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Abstract

Conventional analysis of borehole images involves fitting sinusoidal curves to borehole/structure intersection curves, and
assumes that the sedimentary features are planar. If trough cross-bedding occurs the conventional technique can result in large
errors in the direction of the trough axis (up to +35° in dip and ±90° in azimuth) due to the unknown offset between the borehole
axis and the trough axis. We present an analytical model describing the curves from the intersection of a vertical borehole with a
mathematically generalized trough cross-bedded structure. The new model shows deviations of the trough axis from sinusoidal
behavior that increase as the dip and the width of the trough decreases, and as the offset increases. The conventional and new
techniques have been compared by using both of them to analyze blindly a set of mixed plane and trough cross-bedded electrical or
acoustic image data. This analysis shows that the new technique provides (i) improved accuracy in dip and azimuth determinations,
(ii) additional information concerning the width of the trough and the offset, and (iii) enhanced vertical resolution arising because
accurate directional data can be obtained for individual structures, enabling each structure to be accurately and uniquely mapped in
three dimensions in the sub-surface. The new model may be modified to provide intersection curves between elliptical boreholes
with hemi-cylindrical or elliptical sub-surface structures. The limitations of the new model are that its useful applicability is
controlled by the resolution of image log data, the size and quality of the borehole, and the use of a centralized tool.
© 2006 Published by Elsevier B.V.
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1. Introduction

This paper sets out to analyze intersection curves
from image logs that are likely to contain trough-bedded
structures with two methods. The first method is that
which is followed conventionally by the logging in-
dustry and major exploration companies. It involves
fitting sinusoidal curves to the image log data and
assumes that all structures that intersect the borehole are
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planar, and provides the apparent dip and azimuth of the
plane (Rider, 1996). The second method is developed
within this paper. It involves fitting the intersection
curves with an equation that has been generated from the
analysis of the intersection of a cylindrical borehole with
a generalized hemi-cylindrical structure. It assumes that
the tool is centralized in the borehole. In principal the
mathematical model developed in this paper can be
extended to take account of an elliptical borehole, any
hemi-elliptical subsurface structure, and non-verticality
of the borehole. These extensions will be the subject of
further publication.
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This method is equally applicable to planar or trough-
like structures and provides the dip, azimuth, size and
offset position of the structure with respect to the
borehole. These data are fundamental to the analysis of
paleocurrents, which can provide detailed information
concerning the lateral distribution of oil and gas
reservoirs by allowing the reconstruction of paleogeo-
graphic maps (e.g., Glennie, 1972; Hurley et al., 1994).

The basic assumption in paleocurrent analysis is that
bedforms migrate down-current, and hence produce a
sequence of inclined foreset laminae that plunge in the
direction of flow. The mean direction of transport can be
found by measuring the direction of the plunge
(azimuth), plotting the azimuth values as rose diagrams,
and then calculating their eigenvalues (Curray, 1956)
and vector means (Scheidegger, 1965).

As bedforms migrate, they fill local hollows in the
morphology of the depositional system, such as a river
channel, or they aggregate laterally on a point bar
surface (Pettijohn et al., 1987). During this process of
net deposition the cross-beds form. Several types of
cross-bedding occur, which can be broadly classified as
(i) planar/tabular, (ii) trough, (iii) hummocky, and (iv)
mixed, and can develop a significant complexity (Lofts
et al., 1997).

For planar and tabular cross-bedding the foresets are
near parallel and dip in the direction of the paleoflow
between 10° to 35°, while the bounding surfaces have a
much lower dip (0°–10°).

Trough cross-beds form where higher flow intensities
are present (Rubin, 1987) which cause erosional scours
at the base of the slip slope of transverse bedforms
(Pettijohn et al., 1987). The trough cross-bedding com-
prises a scoop-shaped or cylindrical scour filled by
curved foreset laminae, with the axis of the scoured
trough and the crescentic fill laminae oriented parallel to
the local principal flow direction (Trexler and Cashman,
1990). The trough-shaped basal scour surfaces form the
bounding surfaces of the sedimentary packages, and
have a low dip (0° to 15°) that increases in the direction
of sediment transport (Cameron et al., 1993; Rider,
1996). The foreset laminae are also trough-shaped, and
have dips ranging between 10° and 35° in the direction
of paleoflow (Trexler and Cashman, 1990). The foreset
surfaces can, in most cases, be described as cylindrical
(Singerland and Williams, 1979; DeCelles et al., 1983),
but channel trough-beds are also known to occur with
elliptical cross-section with half-width to thickness
ratios of 4.25 and 5.2, and also with non-axisymmetric
cross-sections (Robinson and McCabe, 1997). It should
also be noted that it is rare that a full hemi-cylindrical
cross-section is found as subsequent erosion normally
removes much of the original trough deposit, leaving
just the lowermost parts of the hemi-cylinder.

A range of cross-bedding styles can be observed
using electrical or acoustic image techniques (e.g.,
Borehole Televiewer (BHTV)). Conventionally, such
imaging data are analyzed by fitting blindly sinusoidal
curves to layers of the same resistivity on the unwrapped
borehole image. This procedure works well for plane
cross-bedded structures such as foresets and set
bounding surfaces in planar/tabular cross-bedding. It
also works approximately for set bounding surfaces and
foreset surfaces in trough cross-bedding if the borehole
intersects the axis of the trough by chance.

However, the common case is that the borehole axis
intersects the trough at some unknown offset from the
trough axis. In this case it is clear that the planar as-
sumption will lead to overestimations in dip and
inaccuracies in azimuth of the axis of both the basal
trough-bounding surface and its foreset layers that are
caused by the steeper trough flanks. The errors in
azimuth are a recognized problem that result in broader,
more variable azimuth rose diagrams, and azimuth
histograms where the trough foresets cannot be
distinguished from the set-bounding surfaces. This
variability is corrected for approximately by obtaining
the vector mean azimuth from a depth interval, and
assuming that the errors in azimuth caused by the trough
sides cancel out evenly (Rider, 1996). Such a procedure
requires a set of azimuthal data for a depth interval
commonly greater than 30 m, in which the lithology and
structural style of the sediment does not vary. The vector
means therefore have a low depth resolution.

2. Intersection curves

Only perfectly planar bedding surfaces produce a true
sinusoidal signature in image logs. All other non-planar
surfaces produce curves which represent smooth oscilla-
tions, and may even appear similar to sinusoidal curves,
but they are not sinusoidal. The deviation of these curves
from the true sinusoid is a direct function of the deviation
of the bedding surface from a perfect plane (Fig. 1).

If a vertical borehole intersects a plane structure of
dip θ=10° and azimuth α=0° (Fig. 1a), the intersection
curve on the electric or acoustic image data appears as a
sinusoidal curve with its minimum in the direction of the
maximum dip (i.e., the azimuth of the plane), and its
amplitude being related to the size of the dip (Fig. 1b).
The z values span z=0, which is the depth at which the
borehole axis intersects the plane.

If the same vertical borehole intersects a trough with
a trough axis dip θ=10°, azimuth α=0°, and at some



Fig. 1. Representation of planar and non-planar (trough-bedded) borehole images on a flat surface. (a) Borehole intersects a planar structure
(dip=10°, azimuth=0°), and (b) the resulting sinusoidal intersection curve. (c) Borehole intersects a non-planar (trough) structure (dip=10°,
azimuth=0°, arbitrary trough width and offset), and (d) the resulting non-sinusoidal intersection curve. Solid arrows represent the actual azimuth,
open arrows represent apparent azimuth (angle of greatest dip around the borehole).
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offset from the trough axis (Fig. 1c), the intersection
curve is no longer sinusoidal (Fig. 1d). The minimum of
this curve shows the azimuth of the local maximum dip
at the borehole, which is not the same as the paleoflow
direction along the azimuth of the trough axis. The
amplitude of the curve is still related to the dip of the
trough axis, but it is also a function of the trough width
and the offset between the borehole axis and trough axis.
In both cases, it is assumed that the tool is centralized in
the borehole.

If the mathematical form of the intersection curve
between the borehole and a generalized trough cross-
bedded structure can be obtained and fitted to an ob-
served intersection curve, we have a technique for
obtaining accurately (i) the trough axis dip, (ii) the
trough axis azimuth, (iii) the position of the trough axis
with respect to the borehole, and (iv) the width of the
trough, for the individual structure. This approach is
only practical for small trough cross-bedded structures.
For larger ones, the trough becomes increasingly
indistinguishable from a planar structure, and this will
be apparent from the fitted parameters.

In this paper we recognize that fitting a simple
sinusoid is often an oversimplification. Instead we
model the trough-bedded structure as an inclined hemi-
cylinder, which is cut by a vertical cylinder representing
the borehole. The following sections examine the model
intersection curves derived from the conventional and
the new approaches. Subsequently, we apply the new
technique to electric image log data by using both the
new equation and the sinusoidal model in order to
distinguish between trough cross-bedded and plane
cross-bedded structures and to characterize the geome-
tries of the intersected troughs. In each case we have
applied statistical measures of goodness of fit.

It should be noted that the new approach is not a
stand-alone technique, but the use of a more general
equation within the conventional method for image log
analysis, and hence should be simple to incorporate into
professional procedures.

3. A new non-planar approach

Unlike the conventional approach, we do not assume
that every structure penetrated by the borehole is planar.
Instead, we fit a generalized equation, which is equally
applicable to both planar and axisymmetric hemi-
cylindrical trough-like structures, to each intersection
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curve. We obtain this generalized equation by analyzing
the three dimensional geometry of the intersection
between a generalized axisymmetric hemi-cylindrical
trough cross-bedded structure and a vertical borehole
with a circular cross-section. The generalized equation
is given by (Appendix A)

z ¼ −
1

cosh
sinhcosða−uÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−ðsinða−uÞ−bÞ2

q� �
:

ð1Þ

The parameters of Eq. (1) are shown diagrammati-
cally in Fig. 2. In this equation z is the distance of the
locus of the bed (axial to the borehole) as a function of
the angular distance around the borehole α. The ordinate
z is also a function of the true dip of the structure θ, the
diameter ratio d, the offset ratio b and a phase lag φ.
The true dip θ is the dip of the plane or the trough that
intersects the borehole in the azimuth direction. The
diameter ratio d describes the width of the trough
normalized to the diameter of the borehole and has no
units. Consequently, a value of d=1 represents a trough
which has a diameter equal to that of the borehole
intersecting it, while the trough becomes planar as
d→∞. In practice values of d larger than about 25 can
be considered as approaching planar behavior. Most
trough-bedded systems that can be recognized on image
logs have values of d between 1 and 15. Values of d
greater than 25 occur for trough-bedded systems that are
approaching planar behavior. The offset ratio b is the
perpendicular distance between the trough axis and the
borehole axis divided by the borehole radius and also
Fig. 2. The geometry and the parameters used in the derivation of the
mathematical model for the intersection curve of a single vertical
cylindrical borehole of unit diameter, and a hemi-cylindrical trough
with a given diameter ratio d, dip θ and trough axis azimuth ψ, at an
offset described by an offset ratio b as a function of azimuth α.
has no units. It describes the effect of the borehole
intersecting the trough structure at some position which
is not on the axis of the trough. It is interesting to note
that for the case the true dip θ=0, if the diameter ratio is
much greater than the offset ratio (i.e., d≫b), Eq. (1)
gives a value of z=−d. The phase lag φ is a variable
that arises due to lack of a priori knowledge of the
absolute direction of α=0°. It has been included to
ensure that Eq. (1) is completely generalized.

This simple analytical equation for the general case
of a plane or trough cross-bedded structure of any
location, size, dip and azimuth intersecting a borehole
with a defined location, size, dip and azimuth can be
fitted easily to individual intersection curves from image
logs, with a range of statistical measures of accuracy.
The fitting procedure allows the dip and azimuth of the
sub-surface structure to be obtained, together with
information describing the width of the trough and the
relative position of the trough axis and the borehole axis.
Because it is purely analytical, the new method requires
no assumptions other than the trough surfaces and the
borehole are approximately cylindrical. As the tech-
nique can be applied uniquely to each intersection curve,
it has a spatial resolution equal to the resolvable bed
scale in the original images.

4. Characteristics of the new model

We compare the new model with the case of a plane
cross-bedded horizon while varying each of the three
independent parameters in the new model (dip θ,
diameter ratio d, and offset ratio b). Figs. 3–5 show
examples of intersection curves for trough cross-bedded
structures of varying dip θ (Fig. 3), trough diameter
ratio d (Fig. 4), and offset ratio b (Fig. 5). In each case
the corresponding plane cross-bedded data is shown for
comparison. It should be noted that the apparent
paleocurrent azimuth by conventional sinusoidal fitting
is indicated by the angle at which the intersection curve
is at a minimum, but the actual paleocurrent direction in
all cases is 0°.

Eq. (1) describes the intersection between the
borehole and the trough structure. Consequently, if
one would like to compare curves for different dips,
diameter ratios or offset ratios, the curves will be
translated vertically one from another, and that transla-
tion could be significantly larger than the amplitude of
the intersection curve. In order to ease the comparison of
the shapes of the curves for each case, we have chosen to
remove the contribution to the vertical position of the
intersection curve that is independent of azimuth so that
the azimuth-dependent contribution can be compared.



Fig. 3. Forward modeled intersection curves from (a) the sinusoidal
model (planar beds), and (b) the trough cross-bedded model (non-
planar beds), as a function of dip (θ=0° to 45° in increments of 5°) and
as a function of azimuth α. In both cases the azimuth of the plane or
trough (i.e., paleocurrent direction) ψaxis=0°. For the trough model,
the diameter ratio d=10, and the offset ratio b=3 are held constant. (c)
The difference between the sinusoidal model and the trough cross-
bedded model as a function of dip and azimuth α.

182 P.W.J. Glover, P. Bormann / Journal of Applied Geophysics 62 (2007) 178–191
This has been effected by adding a term that is constant
for any given set of dip, and d and b ratios. The addition
of this term gathers all the curves so that they all pass
through the same value at α=0° and have approximately
the same mean value. The correction is given by

z V¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−b2

cos2h
;

r
ð2Þ
where,

z ¼ z Vþ zWð f ðaÞÞ: ð3Þ

The appendix explains that Eq. (1) is written in terms
of the ratio of trough diameter and the horizontal offset
to the borehole diameter. Consequently, it gives the
locus of the intersection curve as the ratio of the vertical
position to the borehole diameter, and one must mutiply
its result by the borehole diameter to obtain the inter-
section curves in physical units. The curves shown in
Figs. 3–5 represent the result of Eq. (1) multiplied by an
arbitrarily chosen borehole diameter of R=10 cm, to
provide the final curves in units of centimeters.

Fig. 3 shows intersection curves for both the plane
cross-bedded and the trough cross-bedded cases as a
function of dip (θ=0° to 45° in 5° increments) with
constant azimuth (α=0°), diameter ratio (d=10) and
offset ratio (b=3). The plane cross-bedded data is
always a perfect sinusoid (Fig. 3a). When the dip of the
structure increases, the intersection curves for the plane
cross-bedded case retain their sinusoidal character,
increasing in amplitude, but retaining a constant
paleocurrent direction (Fig. 3a). By comparison, the
intersection curves for the trough cross-bedded case
(Fig. 3b) present a more complex picture. The curves
have a sinusoidal style, but are not perfectly sinusoidal.
Fig. 3c shows the difference between the plane cross-
bedded case and the trough cross-bedded case for plane/
trough azimuth of 0°. The difference between the shape
of the trough cross-bedded curves and their
corresponding plane cross-bedded equivalents depends
upon the value of the diameter and offset ratios to such
an extent that these curves would not be recognized as
sharing the same dips as the associated curve for the
plane cross-bedded case in Fig. 3a. However, we can
recognize that the trough cross-bedded curves also
increase in amplitude as the dip increases, providing the
other parameters are held constant. At low dips the
apparent paleocurrent direction is not 0° due to the effect
of the diameter and offset ratios. However, as the dip
increases, the apparent paleocurrent direction, indicated
by the minimum in each curve, migrates towards the
true value. This is because the high dips compensate to
some extent for the perturbation in paleocurrent
direction caused by the steep edges of the trough that
occur either at large offset ratios or for small diameter
ratios (Fig. 3c). Migration of the azimuth (dip direction)
with increasing dip angles of the bedding planes is
sometimes recognized on electric and acoustic image
data plots, and could be indicative of trough cross-
bedded sequences. In this case the trough axis direction



Fig. 4. (a) Forward modeled intersection curves from the trough cross-
bedded model (non-planar beds) and the sinusoidal model (planar
beds) as a function of diameter ratio (d=5 to 20 in increments of 5,
then d=35 and d=100) and azimuth α, with the dip (θ=20°), trough
azimuth (ψaxis=0°), and offset ratio (b=3) held constant. The dashed
line represents planar behavior. (b) The difference between the
sinusoidal model and the trough cross-bedded model as a function of
diameter ratio and azimuth α.

Fig. 5. (a) Forward modeled intersection curves from the trough cross-
bedded model (non-planar beds) and the sinusoidal model (planar
beds) as a function of offset ratio (b=1 to 8 in increments of 1) and
azimuth α, with the dip (θ=20°), trough azimuth (ψaxis=0°), and
diameter ratio (d=10) held constant. The dashed line represents planar
behavior. (b) The difference between the sinusoidal model and the
trough cross-bedded model as a function of offset ratio and azimuth α.
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(paleocurrent direction) would be closest to the dip
azimuth of the bedding plane with the highest dip angle.

Fig. 4a shows intersection curves for the trough
cross-bedded case as a function of diameter ratio (d=5
to 20 in increments of 5, then d=35 and d=100), with
the dip (θ=20°), azimuth (α=0°), and offset ratio (b=3)
held constant. Fig. 4a also shows the intersection curve
for the plane cross-bedded case with the same dip and
azimuth for comparison. The plane cross-bedded case
has d→∞ where z≠ f (b) and is shown by the dashed
line in the figure. The trough cross-bedded data show
significant variations from the plane cross-bedded case
at low diameter ratios, but approach the plane cross-
bedded case as the diameter ratio increases, as expected.
Fig. 4b shows the difference between the plane cross-
bedded case and the trough cross-bedded case for plane/
trough azimuth of 0°. Once again the effect of a trough-
bedded structure is significant. The convergence with
the plane case is fairly slow, reaching reasonable
correspondence at d=100 (whence the adjusted R2

statistic calculated by regression reaches 97.85).
Fig. 5a shows intersection curves for the trough

cross-bedded case as a function of offset ratio (b=0 to
8 in increments of 1), with the dip (θ=20°), azimuth
(α=0 °), and diameter ratio (d=10) held constant. Fig.
5a also shows the intersection curve for the plane cross-
bedded case with the same dip and azimuth for
comparison. At zero offset ratio, the borehole intersects
the axis of the trough. In this case the apparent
paleocurrent direction coincides both with its actual
value and the value obtained from the plane cross-
bedded case. However, the intersection curves will not
necessarily have the same shape as those for the plane
cross-bedded case depending on the values of the dip
and ratio of the radius of the trough to that of the
borehole. As the offset ratio increases, the borehole
intersects the trough further up the steep sidewall of the



Fig. 6. Apparent trough dip when fitting a simple sinusoidal model to
trough data as a function of actual trough dip for various offset ratios
and for a diameter ratio d=10.
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trough, perturbing the apparent paleocurrent direction
away from its real value, as can be seen in Fig. 5a, where
the minima of successive curves migrate away from 0°.
The intersection of the borehole with the steeper trough
wall at large offset ratios also leads to an increase in the
amplitude of the intersection curves, increasing the
apparent dip and leading to large overestimations in dip
if a sinusoidal curve is fitted to an intersection curve
between a trough cross-bedded structure and a borehole.
It should be noted again that the plane cross-bedded case
has d→∞ where z≠ f(b). This requires that we set b=0
in Eq. (1), as shown by the dashed line in the Fig. 5a.
Fig. 5b shows the difference between the plane cross-
bedded case and the trough cross-bedded case for a
structural azimuth of 0°.

Figs. 3–5 show that the trough cross-bedded
intersection curves look very similar to the sinusoidal
curves expected from planar cross-bedded features. We
have fitted sinusoidal curves blindly to a suite of trough
cross-bedded intersection curves with known para-
meters for dips ranging between 5° and 25° and offset
ratios ranging from 0.1 to 8.5. The results show
extremely good matches with the sum of the root
mean squared residuals for the blind sinusoidal fittings
within 96% coincidence of the sum of the root mean
squared residuals from fitting Eq. (1). The similarity
between the two types of curves is smallest for small
dips and offset ratios (∼96%), increases to reach a peak
at about 99.5% at a offset ratio b=d/2, and decreases
again to∼98.5% as the offset ratio approaches the width
of the trough. This implies that the trough cross-bedded
curves are often very similar to some sinusoidal curve,
and blindly fitting a sinusoidal curve to trough cross-
bedded data will produce an apparently good fit. The
problem is that a sinusoid fitted in this way can be the
wrong one in the great majority of cases, and hence
provide the wrong dip and azimuth unless the borehole
intersects or is close to the axis of the trough by chance.

For example, if we take the trough cross-bedded
intersection curves shown in Fig. 5 (θ=20°, d=10,
b=4) and assume wrongly that the structure is planar,
the blind fitting of a simple sinusoid gives a difference in
the paleocurrent azimuth of +46°, and a difference in dip
of +10.6°.

We have calculated the dip by carrying out the best
blind sinusoidal fit on a range of trough-bedded
intersection curves with actual trough axis dips ranging
between 0° and 25°, offset ratios ranging between 0.1
and 6, and for d=10 and show the results in Fig. 6. It is
clear that large offset ratios can lead to large differences
due to blindly fitting sinusoidal curves to trough-bedded
data. This must be taken into consideration when using
electric or acoustic data to construct dip histograms as
such differences could lead to a completely erroneous
interpretation of the paleoenvironment when propagated
over an entire field.

5. How to use the new model

The aim of the analysis is to extract true values of dip
θ, trough axis azimuth ψaxis, diameter ratio, d and offset
ratio b from each intersection curve. We have developed
the following procedure for doing this. First we obtain the
largest scale image logs possible.We examine and digitize
the images as carefully as possible, remembering that
trough cross-bedded curves are similar to plane cross-
bedded ones when examined by eye. There are 4
unknown parameters in Eq. (1) (the dip θ, the phase lag
φ, the diameter ratio, d and the offset ratio b). It is
therefore necessary to have at least 8 digitized points
defining each curve. We normalize the curves to the
physical scale and then renormalize them to the borehole
diameter. Then we can fit Eq. (1) to the data using a non-
linear fitting code which provides θ, d, b, and φ. The
fitting can be carried out with any commercial curve
fitting routine for which the general form of Eq. (1) can be
defined. At this stage the trough axis azimuth ψaxis is not
derived. If we substitute the derived values of θ, d, b and
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φ into Eq. (1) for values of α varying in the range
0≤α≤360° it is possible to forward-model the intersec-
tion curve. Theminimum in this curve represents the local
direction of maximum gradient αmin on the intersected
trough surface, which is not equal to the trough axis
azimuth ψaxis except when b=0 (i.e., the borehole
intersects the trough axis), as shown in Fig. 2. However,
it is possible to derive the trough axis azimuth ψaxis from
the forward modeled curve and its inverse by following
the next step (Fig. 7). First we plot the result of equation 1
using the parameters θ, d, b, and φ for values of α
varying in the range 0≤α≤360° (Fig. 7, Curve A). Then
we plot the result of equation 1 again on the same diagram,
but this time using the parameters θ, d, minus b, and φ
(Fig. 7; Curve B). These two curves intersect each other
twice. One intersection is closer to the minimum of Curve
A than the other. Symmetry considerations ensure that the
trough axis direction ψaxis is the value of α where the
curves intersect that is closest to theminimum inCurve A.
In the case of Fig. 7, this is at an azimuth of about 18°. It
should be noted that the last procedure assumes only that
the trough is axisymmetric.

This procedure provides the values of the para-
meters θ, d, b, and ψaxis for each intersection curve
together with statistical tests for the appropriateness of
fit. The values of d and b can then be used together
with the borehole radius and the angular data to cal-
culate the actual trough width, borehole offset, and
hence the position of each trough or plane structure can
be mapped in 3D space.

6. Application to test data

The Formation Micro Imager (FMI) is an electrical
image logging tool produced by Schlumberger. We have
analyzed a 166 ft (50 m) long section of FMI data with
the new technique. The lithologies penetrated consist of
fine-grained trough cross-bedded sandstones and shales.
Fig. 7. The derivation of azimuth from fitting by the new model.
The bit-size is 7.875 in. (20 cm). The borehole is on-
gauge and of circular cross-section throughout the
section. The borehole size controls the FMI borehole
surface coverage, and is 55% in this case with the FMI
tool in 4 pad mode. The mean structural dip in the
section is 14° with an azimuth of 308°, the borehole
deviation from the vertical is small (b10°), and the
borehole conditions are good.

We examined the data and found 40 possible cross-
bedded features. The resistivity images for each feature
were digitized, scaled to actual vertical offset and
azimuth, and normalized to the borehole diameter. Both
the conventional sinusoidal model and the new trough
cross-bedded model were fitted to the data using two
numerical non-linear fitting engines (NLRG and
DATAfit from Oakdale engineering). Two methods
were used to ensure that the fitting was reliable.

The parameters derived from each model, together
with statistical data indicating goodness and appropri-
ateness of fit are given in Table 1. There is a clear
difference in both the dip and azimuth determinations
between the two techniques, which is shown clearly by
cross-plotting the two techniques (Fig. 8). For dip
(Fig. 8a), the sinusoidal method tends to provide larger
dip values. This is consistent with the hypothesis that
these determinations are affected by local dip caused by
the steeper trough sidewalls, and that the use of
sinusoidal fitting to trough cross-bedded data introduces
inaccuracies in the determination of trough dip. Only
five curves give dips that are larger when analyzed by
the trough cross-bedded technique, and all of these have
very low values of b, indicating that the borehole is
intersecting the trough axis.

No apparent correlation exists for the azimuth
determinations (Fig. 8b). This behavior also arises
from the effect of the steep trough sides that is not
accounted for in the sinusoidal model. The expected
error in azimuth associated with this effect can be as
high as ±90° according to our forward modeling. The
gross scatter observed in Fig. 8b indicates that dif-
ferences in azimuth as large as ±90° are present in
practice with only three data points with a difference
greater than ±90°, which are erroneous.

The diameter ratios d derived using the new trough
cross-bedded model varied from 2.6 (representing a
trough 0.52 m wide) to 165 (approaching planar), and
the offset ratios b varied from zero (borehole intersect-
ing the trough axis) to 22.7 (borehole 2.27 m from the
trough axis). The condition dNb+1 (Eq. (A-7)) is
honored for all the data which is consistent with all fits
being reasonable. Values of low diameter ratio and high
offset ratio were associated with a large discrepancy



Table 1
Geometrical and statistical data from analysis of FMI data using the conventional (sinusoidal) and the new (trough cross-bedded) techniques

Curve
code

Depth
(m)

Sinusoidal method New method Type

θ
(°)

ψaxis

(°)
Σx2

(m)×10−3
Standard error
(m)

Mean deviation
(m)

R2

(%)
Ra
2

(%)
Durbin Watson
coefficient

θ
(°)

ψaxis

(°)
d b Σx2

(m)×10−3
Standard error
(m)

Mean deviation
(m)

R2

(%)
Ra
2

(%)
DurbinWatson
coefficient

1 24.00 7.1 20 12.3 0.022 0.0175 94.36 93.91 0.508 1.1 292 8.6 1.0 4.4 0.014 0.0097 97.96 97.61 0.919 T
2 24.23 21.4 108 27.1 0.030 0.0240 98.83 98.75 0.654 2.5 168 62.2 22.7 26.7 0.031 0.0237 98.84 98.68 0.615 P
3 24.32 18.9 100 13.4 0.020 0.0154 99.33 99.29 0.676 18.9 101 18.8 0.18 10.1 0.018 0.0130 99.50 99.43 0.620 X
4 24.55 6.7 132 18.5 0.023 0.0152 92.97 92.57 0.485 6.1 106 22.3 −1.1 16.9 0.022 0.0156 93.57 92.79 0.544 P
5 24.60 5.1 132 9.26 0.015 0.0150 94.84 94.59 0.436 3.2 174 16.6 1.2 3.7 0.010 0.0075 97.92 97.71 0.868 X
6 27.75 2.3 92 18.6 0.025 0.0188 59.17 56.45 0.471 1.3 10 6.3 0.3 7.0 0.016 0.0124 84.75 82.57 1.126 T
7 27.96 20.2 93 29.2 0.028 0.0249 98.91 98.85 0.407 12.1 146 10.2 2.9 5.0 0.012 0.0083 99.81 99.79 1.368 T
8 28.18 15.0 67 47.3 0.039 0.0284 96.55 96.32 0.460 14.0 87 5.3 0.5 25.1 0.029 0.0219 98.17 97.91 0.640 T
9 28.35 10.3 145 5.4 0.013 0.0095 98.99 98.93 0.846 6.8 73 19.9 3.4 2.4 0.009 0.0067 99.55 99.50 1.545 X
10 28.48 12.2 142 15.4 0.024 0.0182 98.03 97.89 0.421 4.7 75 15.7 3.0 12.2 0.022 0.0173 98.45 98.21 0.562 X
11 28.78 16.1 163 15.4 0.020 0.0160 98.92 98.86 0.658 4.3 88 7.9 2.1 5.2 0.021 0.0085 99.64 99.59 1.665 T
12 28.81 17.4 174 42.3 0.032 0.0244 97.87 97.77 0.445 5.6 102 6.1 −2.0 17.4 0.021 0.0153 99.12 99.03 0.876 T
13 28.90 15.9 153 3.22 0.011 0.0082 99.70 99.68 1.762 14.7 129 165 −17.8 3.2 0.011 0.0082 99.71 99.66 1.775 P
14 35.53 9.3 315 10.8 0.023 0.0171 96.38 96.04 0.754 5.1 11 16.2 −2.1 6.8 0.019 0.0141 97.73 97.25 1.073 X
15 35.57 7.9 2 3.9 0.012 0.0098 98.58 98.47 1.244 5.0 54 20.3 2.2 2.6 0.010 0.0079 99.08 98.92 2.198 P
16 35.73 16.7 1 64.1 0.048 0.0226 95.45 95.12 1.079 11.4 48 8.2 −1.7 55.0 0.046 0.0232 96.09 95.49 1.037 T
17 35.86 14.8 359 39.5 0.039 0.0329 96.52 96.25 0.353 7.4 59 5.8 1.3 11.3 0.022 0.0167 99.01 98.84 0.707 T
18 35.95 9.9 17 36.7 0.037 0.0276 91.28 90.63 0.376 9.3 34 4.7 −0.2 16.1 0.025 0.0159 96.18 95.57 0.908 T
19 41.43 30.4 278 36.3 0.035 0.0275 99.33 99.28 0.385 24.1 319 11.0 −3.6 14.9 0.023 0.0183 99.73 99.68 0.967 T
20 41.47 15.8 327 211.8 0.090 0.0375 83.71 82.46 0.959 12.2 7 16.4 −2.4 210 0.094 0.0357 83.84 81.15 0.932 X
21 41.63 13.8 327 19.4 0.028 0.0218 97.48 97.28 0.683 13.3 342 7.3 −0.4 3.1 0.011 0.0084 99.60 99.53 1.583 T
22 51.68 15.9 153 75.7 0.040 0.0318 99.24 99.20 0.376 30.7 321 13.2 −3.5 68.2 0.039 0.0302 99.31 99.25 0.404 T
23 51.43 33.7 293 18.4 0.023 0.0180 99.36 99.32 0.466 12.5 304 12.5 1.9 10.4 0.017 0.0138 99.64 99.60 0.712 T
24 52.94 23.0 252 10.9 0.017 0.0124 99.55 99.52 0.624 1.9 166 36.5 −11.7 9.1 0.016 0.0118 99.62 99.58 0.676 P
25 53.00 18.8 70 7.0 0.015 0.0118 98.65 98.56 0.707 10.9 89 19.8 −0.2 2.9 0.010 0.0074 99.44 99.36 1.252 X
26 53.55 10.9 93 26.3 0.027 0.0229 99.19 99.14 0.561 19.0 15 13.0 3.0 16.6 0.022 0.0158 99.49 99.42 0.661 T
27 53.82 23.2 51 14.6 0.022 0.0167 99.37 99.33 0.791 13.6 353 17.8 4.1 7.8 0.016 0.0112 99.66 99.62 1.369 X
28 53.92 20.3 46 8.9 0.017 0.0130 99.52 99.48 1.308 2.6 328 30.0 9.1 8.0 0.017 0.0129 99.56 99.50 1.426 P
29 54.02 17.9 15 51.0 0.041 0.0274 97.18 97.00 0.424 14.9 53 31.8 5.8 49.8 0.042 0.0266 97.25 96.85 0.492 P
30 54.11 17.9 19 99.9 0.051 0.0460 96.61 96.43 0.376 19.4 71 5.1 0.7 12.0 0.018 0.0137 99.59 99.55 0.888 T
31 54.16 20.8 50 5.9 0.015 0.0100 99.80 99.79 1.009 16.2 101 20.0 6.3 3.1 0.011 0.0085 99.89 99.88 1.384 X
32 54.27 24.4 71 9.5 0.019 0.0145 99.62 99.59 0.820 18.5 160 27.5 11.3 6.6 0.016 0.0100 99.74 99.69 1.255 P
33 54.37 24.0 44 6.9 0.017 0.0123 99.31 99.25 0.692 9.4 318 18.0 −3.3 3.2 0.012 0.0090 99.68 99.62 1.502 X
34 63.67 15.2 230 263.4 0.088 0.0642 97.98 97.86 0.572 41.6 232 2.6 −.01 95.8 0.055 0.0410 99.26 99.17 1.118 T
35 54.01 42.5 235 2.4 0.008 0.0056 99.70 99.68 0.878 11.7 200 26.3 1.8 1.5 0.007 0.0053 99.81 99.79 1.220 P
36 54.08 12.0 1 46.5 0.034 0.0291 98.05 97.95 0.448 18.5 62 7.5 0.8 8.7 0.015 0.0122 99.63 99.59 0.922 T
37 54.16 19.1 43 18.8 0.022 0.0167 99.54 99.52 0.770 12.6 113 10.1 3.7 1.0 0.017 0.0121 99.76 99.73 1.316 T
38 54.29 25.1 51 28.7 0.031 0.0269 98.40 98.29 0.418 20.5 63 9.2 0.0 8.7 0.018 0.0135 99.52 99.45 1.186 T
39 54.35 20.2 63 18.8 0.024 0.0186 98.95 98.88 0.777 18.6 58 13.1 −0.6 8.2 0.017 0.0131 99.54 99.48 0.974 T
40 54.41 18.8 66 22.1 0.026 0.0191 97.90 97.76 0.445 13.4 13 7.4 0.4 11.7 0.020 0.0145 98.88 98.73 0.724 T

The column labelled θ contains the dip of structure in degrees, that labelled ψaxis contains the azimuth of structure, and d and b are the displacement and offset ratios, respectively. These 4 parameters are
derived from the fitting of intersection curves to the digitised data. In the case of the conventional case, only the dip and azimuth are obtained, while the new method provides all four. Statistical tests are
shown in the table for the comparison of the best fit model from each method and the digitised data, whereΣx2 is the sum of squares of deviations (i.e. residuals), the standard error and mean deviation are
standard measures, and R2 and Ra

2 are the ordinary and adjusted regression coefficients, respectively. The Durbin–Watson test is discussed in the text; it tests the applicability of a certain function to a set of
data (Montgomery et al., 2001). The codes T, P and X represent our qualitative interpretations of the statistical data, and stand for tough-bedded, plane-bedded and intermediate, respectively.
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Fig. 8. Crossplots of the (a) dip and (b) azimuth values obtained from
the trough cross-bedded model plotted as a function of those obtained
from using the sinusoidal method for the test data.
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between the dips and azimuths derived from the trough
cross-bedded model and the sinusoidal model, indicat-
ing that large offset from small troughs was producing
large inaccuracies in the dip and azimuth determinations
with one or both models. The dip, azimuth, diameter
ratio and offset ratios derived from all the curves for
both the sinusoidal and new trough cross-bedded
models tested are shown in Fig. 9.

We have carried out a number of statistical tests to
discriminate whether the trough cross-bedded or the
plane cross-bedded model describes each intersection
curve best. These statistical tests included: (i) The sum
of squares of the residuals from the fit. (ii) The standard
error. (iii) The mean absolute deviation (residuals). (iv)
The simple coefficient of multiple determination (R2).
(v) The adjusted coefficient of multiple determination
(Ra

2), i.e., R2 adjusted to take account of variations in the
number of data points in each fit. (vi) The Durbin–
Watson autocorrelation test.

The Durbin–Watson test for autocorrelation (Mon-
tgomery et al., 2001) is a statistic that indicates the
likelihood that the deviation (residual) values for the
regression have a first order autocorrelation component.
The regression process assumes that the residuals are
uncorrelated. However, if a non-periodic function, such
as a straight line, is fitted to periodic data, residuals have
a periodic form and are positively correlated over the
independent variable (α in this case). These residuals are
said to be ‘autocorrelated’ or ‘serially correlated’. The
Durbin–Watson tests for autocorrelation in the resi-
duals, and, if discovered, the autocorrelation is an indi-
cation that the data is being fitted by an inappropriate
function. Small values of the Durbin–Watson statistic
(b0.8) indicate autocorrelation, and hence the fitted
equation is inappropriate, and large values (N0.8)
indicate that the fit is appropriate. If trough data is
fitted with a simple sinusoidal curve, the Durbin–
Watson statistic tends to zero. This statistic therefore
provides a useful tool for discriminating between trough
cross-bedded and plane cross-bedded data.

Comparison of the sum of squares of residuals,
standard error, mean deviation, R2 and Ra

2 statistics in
Table 1 shows that the new model always fits the data as
well as, or better than, a sinusoid. Where the improve-
ment is small, the intersection curve derives from a
planar or near-planar structure, and the improvement is
due to the increased number of parameters available in
the new model (4 parameters; θ, ϕ, b, and d) compared
to the sinusoidal model (2 parameters; θ and ϕ). Where
the improvement is large, the intersection curve derives
from a trough cross-bedded structure, and the improve-
ment is due mainly to the new equation being a much
more appropriate one to fit the data. If the improvement
in each of these parameters is expressed as a percentage
and cross-plotted against the diameter ratio d, strong
negative correlations are found, indicating that the
improvement in fit is highest for troughs with small
diameters, rather than for planar structures.

This scenario is supported by the Durbin–Watson
statistics. The arithmetic mean Durbin–Watson statistic
of the whole dataset is 0.66 when the sinusoidal model is
fitted to the data, but improves to 1.05 for fitting with the
new model, indicating that the new model is a much
more appropriate function for both the trough cross-
bedded and plane cross-bedded data in the dataset.

Examination of Eq. (1) shows that the new model
approaches a simple sinusoid at high values of the
diameter ratio. It would be expected that the test data
would also show that the new model approaches the
sinusoidal model as the diameter ratio increases to the
point where a trough structure is indistinguishable from
a planar structure. If this is the case, one would expect
the sum of squares of the residuals of fits with each



Fig. 9. Dip, azimuth, d, and b ratios as a function of depth for the conventional (sinusoidal) model, and the new (trough cross-bedded) model.
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model to each intersection curve to become similar as
the diameter ratio increases. We have plotted the
difference between (i) the sum of squares of the
residuals for intersection curve fits with the new
model, and (ii) the sum of squares of the residuals for
intersection curve fits with the sinusoidal model, as a
function of the diameter ratio (Fig. 10). This figure
demonstrates that at small diameter ratios the sum of
squares of the residuals from sinusoidal fitting is up to
100 times greater than that from the new model, i.e., the
new model is a much better fit to the data. However, as
the diameter ratio increases, the difference in the sum of
the squares of residuals decreases, until at high diameter
ratios there is very little difference in the goodness of fit
Fig. 10. The difference between the sums of squares of residuals for fits
of the conventional (sinusoidal) model to each observed intersection
curve and that for fits of the new (trough cross-bedded) model as a
function of the diameter ratio obtained from the new model.
between the two models, evidenced by their very similar
sums of squares of residuals. This indicates that the new
model is fitting planar structures well, as well as under-
lining the necessity to use the new model on trough
cross-bedded data.

The statistics described above, have been combined
with the geometrical parameters of dip, azimuth,
diameter ratio, and offset ratio, to finally classify the
structures represented by each intersection curve as
trough cross-bedded or plane cross-bedded (shown in
Table 1). In this classification, the primary distinction
has been made using the diameter ratio d, where dN20
represents planar structures, db15 represents trough
cross-bedded structures, and 20NdN15 represents
intermediate structures.

7. Discussion: advantages and limitations

The trough cross-bedding analysis presented in this
paper has a number of primary advantages:

First, the dip, azimuth, width and borehole offset of
individual trough cross-bedded features can be derived
uniquely. This enables the spatial position of individual
foresets and set bounding surfaces to be mapped in the
sub-surface.

Second, the model can be applied to single features
such as turbidite channels, unlike the conventional
technique, which relies upon taking the mean directions
derived from the analysis of a large number of features
to avoid the effect of ambiguity in the borehole offset.
Data analyzed using the new technique therefore have a
much higher depth resolution than the conventional
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technique, being limited only by the occurrence of
individual features.

Third, the model can be applied blindly to individual
intersection curves from electrical or acoustic image log
data containing both plane cross-bedded and trough
cross-bedded intersection curves where the dip, azi-
muth, trough width and borehole offset are not known.
This contrasts with the simple sinusoidal fitting tech-
nique, which can result in large inaccuracies if fitted
blindly to individual intersection curves from electrical
or acoustic image log data. If the model is applied to a
plane cross-bedded feature the dip and azimuth are
reported accurately, and d is reported as a value larger
than 20. This value, which we have defined, represents a
trough width twenty times that of the borehole (see
below).

There are, however, also a number of limitations
associated with the technique:

The primary limitation concerns the current resolu-
tion of electrical or acoustic image logging tools, which
restricts the applicability of the model to troughs with a
diameter ratio of less than about 20 (i.e., 3 m for a 20 cm
borehole). At diameter ratios greater than this the
difference between the trough cross-bedded and plane
cross-bedded intersection curves becomes so small that
higher resolution image log data are needed for the
model to produce accurate values of diameter ratio and
offset ratio.

A second limitation is that the borehole diameter
must be large enough to resolve the trough cross-bedded
feature, but also small enough to maximize borehole
surface coverage by the electrical image logging tool in
order to maximise the accuracy of the intersection
curves. The borehole televiewer (BHTV) does not suffer
from this problem.

As always, for best results the borehole conditions
need to be good, with a cylindrical borehole cross-
section and a lack of caving and break-outs. Any
ellipticity in the borehole shape results in intersection
curves for plane cross-bedded features that resemble
those from trough cross-bedded features. It would be
possible to modify the mathematical form of equation 1
to account for ellipticity of the borehole, but this is
outside the scope of this paper.

Finally, the depth of investigation for the electrical
image logging tools varies depending upon the for-
mation, and can vary azimuthally at a given borehole
depth. Such a variation could potentially cause
intersection curves for plane cross-bedded features that
resemble those from trough cross-bedded features.

The model is based on a hemi-cylindrical trough.
This is clearly an assumption that may not be true in
practice as troughs can be hemi-elliptical in cross-
section or filled obliquely. A simple modification in the
form of a z-scaling is possible to convert Eq. (1) for use
with troughs of an elliptical cross-section. The model
has been constructed for a vertical borehole. A simple
angular transform would allow Eq. (1) to account for
any realistic deviation of the borehole from the vertical.

8. Discussion: implications

It has been the aim of this paper to introduce a new
approach to image log data analysis. Maybe a better
term would be a modified or extended approach. Cer-
tainly the application of a plane model to wells cutting
steeply dipping walls of trough-bedded structures has
the potential for producing azimuths that are up to ±90°
in error in principle. But are these errors commonly
occurring in practice? Maybe it is so for single measure-
ments, but conventional analysis uses stacked measure-
ments which reduces the effect of a single outlying
value, while also reducing the vertical resolution. The
questions that need to be addressed are:

1. Is the real problem as big as the potential problem
seems?

2. Does the new method have any real significance in
application?

3. Have we been making big interpretive mistakes as a
result of using the conventional approach?

4. What are (have been) the consequences of not
adopting the method in the real world?

An authoritative answer to these questions can only
come from studies of new and existing data where the
two methods are assessed and compared blindly. It is
best that this were done by the industry as they have
easy access to large amounts of data, and are best placed
to assess what constitutes a significant discrepancy in
results. I would also like to see a comparison carried out
on data that had some independent control on the three-
dimensional geometry. Such a study may be possible by
using the conventional and new methods to analyse
image data from a well set a little back from a quarry
face that contains trough-bedded features.

9. Conclusions

A mathematical analysis has been carried out on the
intersection curves that are possible when a hemi-
cylindrical trough with variable diameter, dip and
azimuth is intersected by a vertical borehole at some
offset from its axis. The analysis has been used to
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produce a new model for analyzing image log inter-
section curves in order to determine paleocurrent
directions. The model has been tested on 40 curves
from an FMI data suite.

This study has shown that:

• Fitting a simple sinusoidal curve to trough cross-
bedded image log data can result in differences in dip
as large as +35° and erroneous assessments of
azimuth as large as ±90°.

• The new trough model shows deviations from
sinusoidal behavior that increase as the dip and the
width of the trough decreases, and as the intersection
offset between the borehole axis and the trough axis
increases.

• The new technique may provide enhanced accuracy
in dip and azimuthal determinations for trough cross-
bedded structures, although this will need to be
independently assessed.

• The new model allows the width of the trough and
the offset of the borehole axis from the trough axis to
be determined for each intersection curve.

• The new model has an enhanced vertical resolution
arising because directional data can be obtained from
individual intersection curves.

• The combined information provided by the new
model for each curve enables each trough bedded
structure to be uniquely mapped in three dimensions
in the sub-surface.

The new method has several limitations, primarily
that (i) its useful applicability is controlled by the current
resolution of electrical or acoustic image logging tools
and the size of the borehole, (ii) the borehole should be of
good quality with a centralized tool, and there should be
no variable depth problems if electrical tool data is used.
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Appendix A. The analytical model

In the following mathematical treatment, the para-
meters that have been used are shown in Fig. 2. It is
assumed that the trough can be modeled to a first
approximation as an inclined hemi-cylinder, that the
borehole can be represented by a vertical cylinder, and
that the tool is centralized in the borehole. The
assumption of a hemi-cylindrical trough is only required
in the close vicinity of the borehole. We use a right-
handed cartesian co-ordinate system, the z co-ordinate is
vertical, and the xy plane is horizontal. The trough is
initially represented by an infinite cylinder of radius d
rotated in the xz plane to make an angle θ with the
horizontal (xy) plane (0≤θ≤π / 2). This object has the
equation

y2 þ ðxsinhþ zcoshÞ2 ¼ d2; dN1: ðA� 1Þ
As only the lower surface of this object is required to
represent the trough (i.e., xsinθ+ zsinθb0) Eq. (A-1)
becomes

xsinhþ zcosh ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−y2:

p
ðA� 2Þ

The trough is intersected by a cylinder, representing
the borehole, which is coaxial with the z axis. This
cylinder is defined to have a radius of unity, implying
that the parameter d now represents the ratio of the
trough radius to the borehole radius. The intersection
can be parameterized as

fðx; y; zÞjx ¼ cosa; y ¼ sinag; ðA� 3Þ
where α is the angle with the positive x axis in the xy
plane (0≤ϕ≤2π) around the borehole diameter with an
arbitrary phase lag. The intersection curve can then be
written by incorporating the Eq. (A-3) into Eq. (A-2) to
give

sinhcosaþ zcosh ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−sin2a:

p
ðA� 4Þ

Eq. (A-4) is then solved for z, noting that z now
represents the height of the function normalized to the
borehole radius (z=actual height of the intersection
curve/borehole radius), because of our previous nor-
malization of the diameter ratio, d.

z ¼ −
1

cosh
sinhcosaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2−1Þ þ cos2a

ph i
: ðA� 5Þ

Eq. (A-5) describes the situation where the borehole
axis always intersects the trough axis. This is not
commonly true for real applications, and therefore an
offset distance, i.e., the perpendicular distance between
the trough axis and the intersecting borehole axis must
be considered. We incorporate the offset distance as the
offset ratio b, which is the offset distance divided by the
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borehole radius. Since we only examine the cases where
the trough is always completely intersected by the
borehole, we can write the condition dNb+1.

Introducing the offset ratio b into Eq. (A-5) enables
the general equation for the intersection of a hemi-
cylindrical trough with a vertical cylindrical borehole to
be written as

z ¼ −
1

cosh
sinhcosaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−ðsina−bÞ2

q� �
; ðA� 6Þ

where z is the height of the function normalized to the
borehole radius (z=actual height of the intersection
curve/borehole radius), θ is the trough axis dip to the
horizontal (xy) plane, α is the angle to the positive x axis
in the xy plane, d is the diameter ratio (d=trough radius/
borehole radius), and b is the offset ratio (b=offset
distance/borehole radius).

Eq. (A-6) has been derived with the trough fixed in
the xz plane dipping towards 180°. However, when
Eq. (A-6) is used with real image log data we have no a
priori knowledge of the azimuthal direction of the
trough axis. Hence, we must include a phase lag term φ
to make Eq. (A-6) useful in practical application. The
completely generalized model can then be written as

z ¼ −
1

cosh
sinhcosða−uÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−ðsinða−uÞ−bÞ2

q� �
:

ðA� 7Þ
Examination of Eqs. (A-6) and (A-7) shows that there

is only one distinct intersection curve for each set of
values of the trough parameters (θ, d, b). Note that the
borehole radius does not occur explicitly in this equation
because z, d and b are normalized to the borehole radius.
Eq. (A-7) could be further generalized to assume a hemi-
cylinder with an elliptical cross-section, or to be used
with a deviated borehole with little modification.
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