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Abstract

An understanding of fluid flow through natural fractures in rocks is important in many areas, such as in the hydrocarbon and

water industries, and in the safe design of disposal sites for domestic, industrial and nuclear waste. It is often impractical to obtain

this information by field or laboratory scale measurements, so numerical modelling of fluid flow must be carried out using

synthetic fractures with rough fracture surfaces that are representative of the natural rock fractures. Clearly there are two practical

requirements; (i) the development of a method for analysing natural rock fractures to obtain their characteristic parameters, and (ii)

the development of techniques for creating high quality synthetic fractures using these parameters. We have implemented these

practical requirements in two new software packages. The first, ParaFrac allows the analysis and parameterisation of fracture

surfaces and apertures. The second, SynFrac, enables the numerical synthesis of fracture surfaces and apertures with basic

prescribed parameters. Synthetic fractures are created using, (i) a new model, which takes full account of the complex matching

properties of fracture surfaces using two new parameters, a minimum matching fraction and a transition length and (ii) an improved

method of partially correlated random number generation. This model more closely captures the often complex matching properties

of real rock fractures than previous more simplified models.

D 2005 Elsevier B.V. All rights reserved.

Keywords: fluid flow; rough fractures; synthetic fractures; apertures
1. Introduction

An understanding of fluid flow through natural frac-

tures in rocks is important in many areas, such as in the

hydrocarbon and water industries [1], and in the safe

design of disposal sites for domestic, industrial and

nuclear waste [2]. It is often impractical to obtain this
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information by field or laboratory scale measurements,

so numerical modelling of fluid flow must be carried

out. Such models must include the effect of the rough

fracture surfaces (i.e., fracture aperture variation), on

the fluid flow if they are to be considered to be effective

(e.g., [3–15]).

Numerical synthetic fractures used in the modelling

of rough fractures need to fulfil two main criteria. First,

they should be representative of the natural rock frac-

tures (i.e., they must be tuned to have the same basic

parameters as the natural fractures, including surface

and aperture fractal dimensions, surface asperity height
etters 241 (2006) 454–465
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distributions, aperture distributions, anisotropies, and

matching characteristics). Second, for accurate numer-

ical modelling, a suite of fractures should be used, each

of which have the same basic parameters, but differ in

their actual physical topographies [11–13].

However, natural fractures in rocks are complicated

by two phenomena. The first, anisotropy, is difficult to

measure quantitatively without robust methodologies,

which have not, to our knowledge, been reported pre-

viously in the geophysical literature. The second is the

degree of correlation between two rough rock fracture

surfaces that occurs at long wavelengths. This correla-

tion is zero at short wavelengths, where the two sur-

faces are independent of each other, and increases

gradually with increasing wavelength until a maximum

degree of correlation is attained [3,16–21]. Brown and

Scholz [18] and Power and Tullis [22] found that

surfaces are well correlated above the scale of a few

millimeters. In between, the degree of correlation must

vary, but currently it is unknown for any given rock

what function describes this gradational behaviour.

This correlation is often called bmatchingQ (Fig. 1a).
However, since the correlation is between the power of

Fourier components of the surface at any particular

wavelength, the term is a little misleading, because it

does not necessarily lead to perfectly matched fracture

surfaces. Brown [4] recognised the difficulty, and used

two different definitions of a so-called mismatch wave-

length to define the wavelength, above which the frac-

ture surfaces were bmatchedQ (Fourier components had

equal power and equivalent phase), and below which

the fracture surfaces behaved completely independent-

ly. This scenario is described schematically in Fig. 1.

Clearly, such a sudden cut-off is not realistic, as will be

demonstrated later with data from real rock fractures.

Glover et al. [8,9] recognised this and instituted a

method that enabled a gradual linear change in the
Fig. 1. Definitions of matching parameters. The definition of the mismatch pa

used in this work (c), where, ML=mismatch wavelength, MFMAX=max

TL=transition length. Correlation is between the power of Fourier compo

controlled by random numbers, which depend upon the two original random
degree of correlation from no matching at (and

below) a wavelength half of a defined characteristic

mismatch wavelength (ML), to some fraction of com-

plete matching occurring at the largest wavelength

possible for the model (Fig. 1b). This method was an

improvement upon the Brown [4] methodology, but still

not flexible enough to take account of the variation in

real rock fractures. Also, the method used by Glover et

al. [8,9] to obtain partially correlated random deviates,

which are central to this type of modelling, was not

mathematically robust, leading to a non-uniform distri-

bution of random deviates, and hence underestimated

fracture apertures. The approach in this paper is to

modify (and completely recode) the methods used by

Glover et al. [8,9] to take account of both of these

weaknesses and to make the model more generally

applicable (Fig. 1c) [13].

2. Parameterisation of real rock fractures

Rough fracture surfaces and their resulting apertures

are complex entities. Analysis has been carried out on a

suite of five laboratory-induced Mode I fractures in

rocks. These are (xy-size 100�100 mm) a (i) red

granite (Norway) (ii) syenite (Sweden), (iii) gabbro

(South Africa), (iv) medium-grained, durable sandstone

(NE Scotland) and (v) granodiorite (Finland) (Fig. 2).

These have very low matrix porosities and permeabil-

ities, so the fracture may provide the only opportunity

for fluid storage and flow. None of the samples is

significantly anisotropic. However, the syenite (Fig.

2b) consists of coarse, parallel labradorite and mica

laths, which define a more anisotropic fabric than the

others. It splits more easily, producing a smoother

surface with a lower fractal dimension. In general, the

finer grained samples (sandstones and granodiorite)

tend to produce rougher surfaces (Fig. 2). Resin replicas
rameters defined by Brown [4] (a), by Glover et al. [8,9] (b), and those

imum matching fraction, MFMIN=minimum matching fraction and

nents of the surface at any particular wavelength. The phase part is

number seeds and the matching parameters.



Fig. 2. Mode I rock fractures and respective surface topographies for (a) granite, (b) syenite, (c), gabbro, (d) sandstone, and (e) granodiorite.

Matrix petrophysical data are given, where KL=equivalent liquid permeability, He=helium technique porosity and Hg=mercury technique

porosity.
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of each surface were reproduced to within 1 Am and

they were profiled using an optical method described in

detail in Isakov et al. [12] and Ogilvie et al. [23].

In-house software, ParaFrac was used to perform

statistical, spectral, correlative and fractal analyses of

the profiled fracture surfaces and apertures, to deter-

mine their basic geometric, fractal, and matching para-

meters. The numerical analysis of rough fracture

surfaces allows us to obtain a set of geometrical para-

meters that fully describe them. These parameters are

useful in that they provide a method for numerically

characterising fractures, allowing differences between

fractures to be analysed quantitatively [13].
2.1. Fourier analyses

To a first approximation, all surfaces have a power

spectral density function G(k), of the form [28],

G kð Þ ¼ Ck�a ð1Þ

where,

k =2p/k Wavenumber

k Wavelength or distance along the profile

C Proportionality constant (varies among surfaces)

a Power, falls in the range of 2ba b3
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Fast Fourier Transforms (FFTs) were used to calcu-

late and display the power spectral density (PSD) of the

surfaces and their resulting aperture as a function of

wavelength on log–log scales (where the wavenumber

k, the wavelength k and the frequency m of the Fourier

components are related by k=1/k and m=2p/k). Linear
regression to the full PSD for the surfaces, and to the

linear short wavelength portion of the aperture allow

the fractal dimensions (measure of the scaling behav-

iour of the surface, containing information regarding

the relative positions of asperities of different sizes) of

the surfaces and the aperture to be calculated (e.g.,

[4,22,24]). Profiles of natural rock fractures have spec-

tra with slopes between �2 and �3 corresponding to

surface fractal dimensions of 2.5 to 2.0 respectively [4].

Our power density spectrum analysis was performed at

a resolution of ~0.2 mm and 512 grid points for ~10 cm

samples. The data were not resampled during the anal-

yses, therefore we did not investigate how resampling

affects the results. It is likely that this resolution is

sufficient for bsmoothQ samples like the granite, and

that no more information can be derived from the

sample by increase of the resolution. On the other

hand, fine grains of sandstone may be too small to be

resolved at the resolution of 0.2 mm, so these data may

have lower accuracy.

The anisotropy of fractal dimension of the surface

(AsD) allows the surface to have different fractal dimen-

sions in different directions across the surface. This

anisotropy and the resulting apertures were obtained

by converting each fracture profile (of multiple, parallel

cross-sections) into a spectrum separately, and then all

the spectra were plotted on the same graph, giving a

scattering pattern. The average spectrum was then cal-

culated and the best-fit regression found.

2.2. Matching analyses

Fourier analysis was used to determine the matching

properties of the fractures. This calculates the ratio of

the PSDs from the aperture with the sum of the PSDs of

the two surfaces composing the fracture and plots it as a

function of wavelength on a log–log scale. We call this

parameter the PSD Ratio (PSDR), where,

PSDR ¼ PSD apertureð Þ= PSD upper surfaceð Þð
þ PSD lower surfaceð ÞÞ

ð2Þ

At small wavelengths (i.e., high frequencies and

large wavenumbers) the PSDR tends to unity if the

surfaces are completely independent [8,9]. This is be-

cause the fracture surfaces are not correlated point by
point, and hence the powers of the Fourier components

of the aperture are equal to the sum of those for each of

the fracture surfaces. If the PSDR is less than unity, it

shows that there is some matching occurring at the

highest wavenumbers (smallest wavelengths) available

in the data set. It can be seen, therefore that the PSDR

at the highest wavenumber (smallest wavelength) of

the data set (PSDR)kmax= (1�MFMIN), and hence

MFMIN can be obtained (Fig. 1). There is a gradual

increase in matching of the two surfaces as the wave-

length increases (i.e., the frequency and wavenumber

decreases). As this occurs, the PSDR drops to values

below unity, but never below zero. This is because there

is increasing correlation between the two fracture sur-

faces that results in loss of power of the Fourier com-

ponents of the aperture. Consequently, the PSDR at the

highest wavelength of the data set (PSDR)kmin=

(1�MFMAX), and hence MFMAX can be obtained

(Fig. 1). We define the mismatching wavelength (ML)

for the system as the wavelength kML (represented by

the wavenumber kML, where kML=1/kML), which lies

equidistant between the wavelength at which minimum

matching occurs and that at which maximum matching

occurs in the data set (Fig. 1). Fig. 3 shows the same

profile through 3D synthetic fractures with the same

geometrical parameters but different mismatch wave-

lengths (ML). In Fig. 3a, the mismatch wavelength

(ML) is greater than the maximum size of the fracture.

In other words, the two surfaces are independent for all

wavelengths represented in the fracture. This results in

a large fracture aperture. Fig. 3b–d represent a gradual

decrease in the mismatch wavelength (ML) such that it

lies between the maximum size of the fracture and the

Nyqvist wavelength [25] of the fracture (i.e., 1/512

(resolution of 512�512) the smallest spatial frequency

that can be defined on a 1024�1024 grid)). As the

mismatch wavelength decreases, more and more of the

larger wavelengths that describe each surface are

matched. The asperities associated with these wave-

lengths (which are relatively large due to the fractal

scaling of the fracture surfaces) do not interact in order

to hold the aperture wide open, but are matched such

that the aperture bfits togetherQ better. Hence the aper-

ture decreases dramatically. Fig. 3e is the extreme case,

where the mismatch wavelength (ML) is such that all

wavelengths represented by the fracture are matched.

As the two surfaces are now physically the same, the

aperture has collapsed to zero.

The final parameter introduced into the new model is

the transition length (TL). This is defined as the differ-

ence in wavelength between that at which maximum

matching occurs and that at which minimum matching



Fig. 3. Approaches to the controls on matching. (a) Largest fracture aperture resulting from the mismatch wavelength (ML) greater than maximum

size of fracture, (b)–(d) apertures resulting from a gradual decrease in ML and (e) zero aperture where mismatch length is such that all wavelengths

represented by the fracture are matched.
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occurs, and corresponds to the width (expressed in

wavelength) of the transition zone [13] (Fig. 1).

3. Creation of synthetic fractures

Clearly, there are limitations in terms of the amount

of profiles, which can be produced. Therefore, combi-

nations of numerical fractures with the same basic

geometry but with different physical topographies

were generated using SynFrac software [11,13]. The

following parameters from the rock fractures (using

ParaFrac) were required to create synthetic fractures,

(i) physical size, (ii) mismatch length (ML), (iii) tran-

sition length (TL), (iv) standard deviation of surface

heights, (v) anisotropy factor, (vi) fractal dimension

(Df), (vii) maximum matching fraction (MFMAX)

and (viii) minimum matching fraction (MFMIN).

Fractures were produced using the Brown [4] meth-

od, Glover et al. [8,9] method, and our improved meth-

od of controlling the degree of fracture surface

correlation with wavelength (e.g., [13]). Fracture sur-

face generation is based upon the spectral synthesis

method [4,17,26] on a grid up to 1024�1024 pixels

and at any physical scale. The method differs slightly

depending upon which type of matching approach is

used. The following description is based upon the

implementation of the new approach, and comments

are added where the Brown [4] and Glover et al. [8,9]

approaches differ from this.

The spectral synthesis method involves defining a

symmetric matrix containing Fourier components.
These Fourier components are calculated to obey the

various parameters for the fracture. Each component

has two parts; (i) the amplitude and (ii) the phase. The

amplitude scales with a power law that contains the

fractal dimension information, and any information

about the relative anisotropy of surface heights. The

phase part is controlled by random numbers, which

depend in their turn upon the two original random

number seeds and the matching parameters. Two ran-

dom number seeds control the actual topographies of

the two fracture surfaces, and therefore control the

resulting aperture. We can create a suite of synthetic

fractures, say 20, using 20 sets of two random numbers

and one set of geometrical parameters derived from a

natural fracture. The resulting 20 synthetic fractures

will each share the same geometrical parameters as

the original natural fracture, but they will be different

physically.

The first step is to generate two matrices where each

point in each matrix corresponds to that in the final

matrix of Fourier components. These two matrices

contain random numbers that are partially correlated

to some degree. The degree of partial correlation

depends upon the matching parameters. This step was

not necessary for Brown [4], as he had only to choose

which of the two random numbers to use. In fact, he

generated one surface with one set of random numbers.

He then generated a second fracture surface using (i) a

different set of random numbers for the Fourier com-

ponents corresponding to wavelengths that were less

than the mismatch wavelength (ML), (i.e., where the
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surfaces were independent), and (ii) the same random

numbers that were used to generate the first fracture for

the Fourier components corresponding to wavelengths

that were greater than the mismatch wavelength (ML),

(i.e., where the surfaces were perfectly matched).

The implementation of the Glover et al. [8,9] method

required the use of two independent sets of random

numbers for the wavelengths that are less than the half

the mismatch wavelength (ML), but to generate and use

partially correlated random numbers for wavelengths

above this value. To do this they linearly mixed the two

random number sets using a linear weighting, which

varied from zero at half of the mismatch wavelength

(ML) to some fraction less than unity representing the

maximum matching fraction (MFMAX) at the largest

wavelength contributing to the fracture. The Glover et

al. [8,9] and our new method require pairs of random

values (A, B) to be generated with a prescribed corre-

lation coefficient, R. Glover et al. [8,9] proposed that,

B ¼ RAþ 1� Rð ÞC; ð3Þ

where, A and C are two independent random values.

While this procedure does produce a partially corre-

lated set of numbers (A, B), the target random value B

is not uniformly distributed over the interval zero to

unity. Hence, there is a fundamental fault in mixing

random numbers this way. In fact, any simple algebraic

mixing of sets of random numbers breaks the uniform

distribution that was originally present in the two orig-

inal random number data sets. We have overcome this

problem by implementing a position swapping algo-

rithm that enables a given mixing of two uniformly

distributed random number data sets to be attained

while retaining a uniform distribution in the final

mixed and partially correlated random number data

set. The algorithm is now described,

1. Two long (N105 numbers) sequences of independent

random values, A, C, are generated.

2. The sequence of target random values, B is com-

posed of the values in the sequence, C by re-arrang-

ing their order as follows,

a. Sequence C is copied to B.

b. Two numbers, Bn and Bm are randomly chosen in

the sequence B. Their places are swapped if the

correlation coefficient between A and B becomes

close to the target value R after the swap.

c. Step b is repeated as many times as is required in

order to get the correlation between A and B equal

to R with sufficient accuracy.

d. Pairs (Ai, Bi) are used then as pairs of partially

correlated random values.
An advantage is that the random sequence B has

uniform distribution at probability. Also, this is a simple

and elegant solution, but one that requires significant

CPU time. Consequently, we use the improved method

for creating partially correlated random number data

sets to both the new matching approach and our im-

proved implementation of the Glover et al. [8,9] ap-

proach. Also, the algorithm is not very economical as

long sequences of random values are required and it

may be inappropriate when just a few pairs of random

values are necessary to generate the fracture. The im-

plementation of the algorithm in SynFrac generates

approximately 100 times more random values than it

actually uses.

There is no evidence that an auto correlation is not

introduced in the sequence B when swapping the values

in the sequence. We can, however, state that,

a. When the correlation is low (R ~0), the sequence B

is close to the sequence C, which is not auto

correlated.

b. When the correlation is high (R ~1), the sequence

B approaches the sequence A, which is not auto

correlated.

The random number data sets are used to define the

phase of the Fourier components. The fractal dimension

and anisotropy are used to define the amplitude of the

Fourier components. When all the Fourier components

are known and arranged in a 2D complex and symmet-

ric matrix, they are submitted to a 2D Fast Fourier

Transform (FFT), the real part of which is the fracture

surface with a mean value of zero. It only remains then

to scale the surface to the required physical size, to

scale the asperities to the size defined by the standard

deviation of surface heights, and to shift the mean level

of the fracture surface to whatever is required.

4. Results

There were two fracture surface positioning tasks.

The first was an approximate positioning using Opti-

Prof as reported in Isakov et al. [12]. The second was an

automatic fine positioning performed in ParaFrac. It is

not a problem if several possible relative positions of

the surfaces that are close to each other have similar

best-fits as there will always be a best one. The best

matching position could be found without any problem

and corresponds to a minimal mean aperture of the

fracture.

The statistical properties of the 5 samples (Fig. 2)

gathered by ParaFrac are given in Table 1. The para-



Table 1

Rock fractures tested with the new method

Parameter a b c d e

Surface parameters

Standard deviation (upper), Urs (mm) 1.97 1.89 1.82 2.82 3.17

Standard deviation (lower), Lrs (mm) 2.07 2.03 2.07 3.24 3.25

Variance (upper), Urs
2 (mm2) 3.88 3.57 3.31 7.95 10.0

Variance (lower), Lrs
2 (mm2) 4.28 4.12 4.28 10.5 10.6

Fractal dimension (upper), UDf (–) 2.25 2.17 2.25 2.32 2.18

Fractal dimension (lower), LDf (–) 2.16 2.18 2.22 2.23 2.22

Anisotropy in fractal dimension (upper), UAsD (–) 0.88 1.04 1.42 1.07 1.16

Anisotropy in fractal dimension (lower), LAsD (–) 0.86 0.97 1.41 1.08 1.20

Physical size, L (mm) 95.9 96.8 100 100 97.0

Measurement points per fracture size (–) 512 480 500 499 501

Resolution (Am) 190 200 200 200 190

Fracture parameters

Mismatch wavelength (ML) 4.5 2.5 2.3 8.0 3.0

Transition length (TL) (mm) 40 90 72 31 70

Maximum matching fraction (MFMAX) 0.98 0.99 0.99 0.99 0.99

Minimum matching fraction (MFMIN)a �0.02 �0.06 0 �0.09 0

Standard deviation, ra 0.65 0.42 0.64 0.71 0.47

Fractal dimension, Df 2.64 2.69 2.78 2.67 2.61

Anisotropy in fractal dimension of the aperture, Aar 1.02 1.07 0.76 1.01 0.98

Arbitrary parameters

Arithmetic mean aperture bzaNa (mm) 1.71 0.82 1.40 1.55 1.29

Harmonic mean aperture bzaNh (mm) 0 0 0 0 0

Geometric mean aperture bzaNg (mm) 0 0 0 0 0

Dual mean of fracture aperture in x-direction (mm) 1.33 0.66 1.11 1.08 0.96

Dual mean of fracture aperture in y-direction (mm) 1.34 0.70 1.22 1.11 1.09

Harmonic and geometric means of the fracture are 0 because at least one touching point exists, where the aperture is 0. a =granite, b =syenite,

c =gabbro, d =sandstone, e =granodiorite.
a The theory presumes the minimum value for the minimum matching fraction (MFMIN) to be zero. Negative values were found in the process of

measurements and characterization may mean the theory does not reflect fracture features perfectly. Authors have no reasonable explanations to

these negative values.
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meters, grouped as (i) surface, (ii) fracture and (iii)

arbitrary are discussed in detail in Ogilvie et al. [13].

The fracture apertures have log-normal distributions

(Fig. 4). This is common for rough fracture apertures

(e.g., [22]). As can be seen from the data, the fracture

apertures increase with fractal dimension as the rough-

ness of the fracture surfaces increases [13]. Non-fractal

features were not observed. A dual mean aperture

(combination of geometric and arithmetic means) has

also been used which removes the difficulty of zero

calculated aperture for rock apertures that touch at a

single point, and enables prediction of hydraulic aper-

ture from the Local Cubic Law. This is reported in a

sister paper.

In SynFrac, the matching properties of the fractures

were calculated using the Brown [4] method, Glover et

al. [8,9] method and our improved method of control-

ling the degree of fracture surface correlation with

wavelength [11,13]. These synthetic fracture apertures

were then exported to ParaFrac for checking, analysis
and production of power spectral density ratio plots.

These plots in Fig. 5 show the differences between the

matching properties of the real rock fractures and those

predicted by these models. The matching properties of

real rock fractures are closest to the Glover et al. [8,9]

and the new model [13] and quite unlike those pre-

dicted by the Brown [4] model. In fact, the Brown [4]

model gives the smallest values of fracture aperture and

can significantly underestimate it (Table 1). The rate of

change of matching around the matching wavelength is

described by the transition length (mm). In general, this

value is higher for those surfaces with lower fractal

dimension e.g., the syenite (fracture) has a transition

length of 90 compared to a value of 31 for the sand-

stone fracture.

5. Discussion

Spectral analyses show that rough surfaces are frac-

tal or self-affine in nature (e.g., [4,8,9,13,22,27,28]).



Fig. 4. Basic statistics for real (rough) fracture apertures; all apertures have log-normal shapes, (a) granite, (b) syenite, (c) gabbro, (d) sandstone and

(e) granodiorite.
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This means that surface irregularities are present at all

scales, with longer wavelength irregularities having

larger amplitude and contributing more to overall

roughness than short wavelength features [4]. Various

power laws reviewed in this paper describe the change

of roughness with scale. The Brown [4] model indicates

that there is not an abrupt transition between these

scales when defining a mismatch length (ML) scale

between matched behaviour at large scales and inde-

pendent behaviour at small scales. However, it is un-

likely that such a simple model can describe the

complex matching properties of real rock fractures.

To investigate this, synthetic fractures created using

various matching models have been useful. Although

these fractures have geometrical parameters that are

tuned to those of the natural fracture, their physical

topography may be, and in general is, distinct. Each

synthesis process is fully deterministic, so re-use of the

same pair of random number seeds (with the same

geometrical parameters) produces exactly the same

two fracture surfaces and the resulting aperture. Syn-

thetic fractures are quick and easy to create, and once

the initial parameters are known any number of differ-

ent fractures with the same properties may be created.
For example, Glover et al. [7,9] used a synthetic mod-

elling technique to show that flow modelling at cm-

scale can be applied directly to flow at 100 m scale in a

geothermal field in Japan and that the effect of fracture

roughness can be accounted for by a single parameter.

Flow modelling on a suite of such fractures allows the

mean flow behaviour to be judged, which is represen-

tative of that type of fracture. Also, the scatter in the

flow modelling results represents the range of expected

values for all fractures with the given geometrical

parameters [13].

Although fracture surfaces display a Fourier spec-

trum with power law behaviour over the full range of

length scales extending to the sample size, local aper-

tures have a spectrum that is power-law up to a critical

length scale, the mismatch wavelength [ML], which

flattens out at large scales [17]. Meheust and Schmitt-

buhl [15] expect this scale to have a strong impact upon

flow, controlling channelling effects and the related

hydraulic behaviour at the fracture scale. The Brown

[4] and Glover et al. [8,9] definitions of mismatch

wavelength [ML] attempt to measure the minimum

wavelength at which the matching begins. Brown [4]

used two pragmatic definitions for how this parameter



Fig. 5. Power spectral density ratio (PSDR) plots for derivation of fracture parameters (a) granite, (b) syenite, (c) gabbro, (d) sandstone and (e)

granodiorite. Natural fracture (——), New model (- - - -), Glover et al. model ( ), Brown model ( ).
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can be derived from real rock data. Both are based on a

plot of the ratio of the PSD of the aperture to the PSD of

one of the fracture surfaces (or their mean PSD) as a

function of wavenumber. This curve, the PSDRBrown,

varies from about 2.0 at high wavenumbers, where no

matching occurs, to values less than unity but greater

than zero at low wavenumbers, where matching is de-

veloped. One of the Brown definitions of the mismatch

wavelength was that wavelength where the PSDRBrown

curve visibly deviates from its value (about 2.0) at high

wavenumbers. This is clearly a qualitative and ambigu-

ous definition (Fig. 1). The other Brown [4] definition of

the mismatch wavelength was that wavelength where

PSDRBrown=1.0, which is a much more robust defini-

tion. The first of these values can be approximated from

the PDSR curve used in this work because it corre-

sponds to the wavelength where the PSDR curve visibly

deviates from its unity value at high wavenumbers, and

if the value of the PSDR is less than unity at the highest

wavenumber in the data set, it may be said to lie at a

larger wavenumber than occurs in the data set. The
second of the Brown [4] definitions of mismatch wave-

length can be obtained from the PDSR curve used in this

work because it corresponds to the wavelength where

the PSDR=0.5 providing the Fourier components of

both surfaces are approximately equal at any given

wavenumber. Glover et al. [8,9] used the two Brown

[4] definitions of mismatch wavelength together with a

third definition based upon the fitting of a linear regres-

sion to the PSDRBrown plot data for the wavenumbers

where matching is gradually developing. This Glover et

al. [8,9] definition of mismatch wavelength is the wave-

length that corresponds to a wavenumber where the

linear regression line fitted through the tail of the

PSDRBrown curve intersects the line PSDRBrown=2.0.

Consequently, it should lie between the two definitions

of Brown, as shown schematically in Fig. 1b.

The Brown [4] model underestimates fracture aper-

ture and the Glover et al. [8,9] model slightly over

predicts it as they use restricted parameters to control

the fracture aperture. This can be seen when plotting

power spectral density ratios (PSDRs) from the aperture
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and the sum of the PSDs of the two surfaces composing

the fracture, as a function of wavelength for the samples

(Fig. 5). Also, we know from analysis of real rocks that

the change is not instantaneous, but gradual. The model

of Glover et al. [8,9] went some way to account for this.

They used independent surfaces up to a wavelength of

half the mismatch wavelength (ML), (i.e., zero correla-

tion between the two surfaces in Fig. 1), then increased

the degree of matching (correlation) linearly to some

maximum degree of matching defined at the largest

wavelength possible for the fracture, i.e., the maximum

matching fraction (MFMAX).

To account for the more complex matching behav-

iour of real rock fractures, we use four parameters, the

mismatch wavelength (ML), and maximum matching

fraction of Glover et al. [8,9] and two additional para-

meters, a minimum matching fraction (MFMIN), and a

transition length (TL). The mismatch wavelength (ML)

represents twice the wavelength lower than which there

is no correlation between the two fracture surfaces, and

twice the wavelength higher than which the degree of

correlation begins to increase linearly until some max-

imum value of matching, expressed as a fraction of

complete matching, that is defined at the largest wave-

length of the model or the measurement. This is called

the maximum matching fraction (MFMAX). The tran-

sition length (TL) describes how fast in wavelength

space the matching develops. Variation of this param-

eter gives smooth transition between Brown [4] and

Glover et al. [8,9] methods. Ogilvie et al. [13] show that

the mean aperture of the synthetic fracture increases as

the transition length increases up to 80 mm. As the

transition length becomes comparable to the size of

whole fracture (100 mm), further increasing of the

transition length does not affect the fracture properties.

A large transitional length (TL) causes considerable

scattering of mean aperture values, because the corre-

lation between long-wave harmonics with highest am-

plitude becomes random. The fractured syenite has the

greatest transition length (TL) [13].

Consequently, the new definition of mismatch wave-

length (ML) will always produce a ML greater than the

Brown [4] or Glover et al. [8,9] values. It must be noted

that the Glover et al. [8,9] model works well for these

rocks, however, that cannot be guaranteed for all rocks,

and will fail for some scales for even the same rocks

due to the assumptions implicit in the model needed to

reduce the number of controlling matching parameters.

However, this model has a reduced parameter set due to

assumptions that it makes (e.g., that matching is fully

developed at long wavelengths and not developed at all

at the shortest wavelengths in the sample). The advan-
tage of our model is that the parameters used cover all

variations of matching parameters. It also includes a

refinement for generating partially correlated random

numbers required for the simulation of statistically

similar aperture distributions. This is important as the

random numbers control the actual topographies of the

two fracture surfaces, and therefore control the resulting

aperture.

The new model cannot account for natural fractures

with non-fractal geometries e.g., the distribution and

size of step features on rock joints. Also, it does not

handle interbedded or multiple lithologies, although it

is clear that the change in lithology may affect all of the

parameters that are used to characterise the fracture

geometries and to make synthetic fractures. Also, dis-

placements of a few microns can have a major effect on

the nature of fracture aperture space [29]. This is out of

the scope of the current work and in later publications

we describe how the techniques used here are relatively

easily modified to examine the effect of modelled shear

displacement on fracture geometry and fluid flow (e.g.,

[30]).

The point at which bthe fracture surfaces just touchQ
depends on both the scale (at least for scales less than

the transition scale) and the load (due to asperity de-

formation) [18,31]. The fracture surfaces are assumed

to just touch at one point. In nature, fracture surfaces

approach until the contact area, generated by asperity

crushing, is sufficient to withstand the normal pressure

across the fracture. It would be useful to account for

normal pressure across the fracture. This is however,

difficult as one needs to know (i) the relevant normal

pressure and (ii) the local small-scale strength of indi-

vidual rock asperities and in its absence we have taken

the pragmatic approach of one touching point. Previous

approaches progressively overlapped the two rock sur-

faces and assumed that the area of the overlap was

directly proportional to the normal pressure required

to make the overlap happen (e.g., [9,32]). One assumes

a mean rock strength per unit volume, which was the

same for all types, geometries and minerals in each

asperity whereas in reality weaker minerals at the apices

of asperities will be weaker per unit volume than stron-

ger minerals inside wider asperities. These deforma-

tions have been modelled in a more rigorous manner

by Pyrak-Nolte and Morris [33].

6. Conclusions

Fractal models of rough surfaces have been shown to

be reasonable representations of natural rock surfaces

(e.g., [34]). Our new fractal model can completely
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describe the variation of matching properties in natural

rock fractures. It generalizes the method of Glover et al.

[8,9] that describes that transition from completely

uncorrelated to correlated fracture surfaces with in-

creasing scale. To do this we have defined a mismatch

wavelength (ML), the size of a transition zone (the

transition length, TL) centred on the mismatch wave-

length, a minimum matching fraction (MFMIN), a

maximum matching fraction (MFMAX), and the

shape of the function describing the transition. We

introduce the use of Fourier analyses as a means of

analysing the matching behaviour of fracture surfaces

(in addition to determination of fractal dimension). The

new definition of mismatch (ML) wavelength is a

measure of the wavelength halfway between the largest

wavelength at which minimum matching occurs and the

smallest wavelength at which maximum matching

occurs. The new model also includes a refinement for

generating partially correlated random numbers (incor-

porating a position swapping algorithm).

It is important to demonstrate that the statistical

description of the aperture distribution is sufficient to

ensure that the simulated aperture fields have similar

flow and transport properties. This is addressed in a

sister paper.

Acknowledgements

This work is funded by the Natural Environmental

Research Council of the UK, as part of the Micro-to-

Macro Thematic Programme. We would like to thank

Judith Christie and Colin Taylor for their technical

assistance during this study.

References

[1] S.R. Ogilvie, P.W.J. Glover, The microstructure of deformation

bands in relation to their petrophysical properties, Earth Planet.

Sci. Lett. 193 (2001) 133–147.

[2] I. Neretnieks, T. Eriksen, P. Tahtinen, Tracer movement in a

single fissure in granitic rock: some experimental results and

their interpretation, Water Resour. Res. 18 (1982) 849–858.

[3] S.R. Brown, Fluid flow through rock joints: the effect of surface

roughness, J. Geophys. Res. 92 (B2) (1987) 1337–1347.

[4] S.R. Brown, Simple mathematical model of a rough fracture,

J. Geophys. Res. 91 (1995) 5941–5952.

[5] S.R. Brown, A. Caprihan, R. Hardy, Experimental observation

of fluid flow channels in a single fracture, J. Geophys. Res. 103

(1998) 5125–5132.

[6] P.W.J. Glover, K. Matsuki, R. Hikima, K. Hayashi, Fluid flow in

fractally rough synthetic fractures, Geophys. Res. Lett. 24 (14)

(1997) 1803–1806.

[7] P.W.J. Glover, K. Hayashi, Modelling of fluid flow in rough

fractures: application to the Hachimantai geothermal HDR test

site, Phys. Chem. Earth 22 (1–2) (1997) 5–11.
[8] P.W.J. Glover, K. Matsuki, R. Hikima, K. Hayashi, Syn-

thetic rough fractures in rocks, J. Geophys. Res. 103 (1998)

9609–9620.

[9] P.W.J. Glover, K. Matsuki, R. Hikima, K. Hayashi, Fluid Flow

in synthetic rough fractures and application to the Hachiman-

tai geothermal HDR test site, J. Geophys. Res. 103 (1998)

9621–9635.

[10] C.E. Renshaw, S.R. Dadakis, Measuring fracture apertures: a

comparison of methods, Geophys. Res. Lett. 27 (2000) 289–292.

[11] E. Isakov, P.W.J. Glover, S.R. Ogilvie, Use of synthetic frac-

tures in the analysis of natural fracture apertures, Proceedings

of the 8th European Congress for Stereology and Image Anal-

ysis, Image Analysis and Stereology, vol. 20 (2), 2001 (Sept.),

pp. 366–371 SUPPL. 1.

[12] E. Isakov, S.R. Ogilvie, C.W. Taylor, P.W.J. Glover, Fluid flow

through rough fractures in rocks: I. High resolution aperture

determinations, Earth Planet. Sci. Lett. 191 (2001) 267–282.

[13] S.R. Ogilvie, E. Isakov, C.W. Taylor, P.W.J. Glover, Character-

isation of rough-walled fractures in crystalline rocks, Spec.

Publ.-Geol. Soc. Lond. 214 (2003) 125–141.

[14] D.J. Brush, N.R. Thomson, Fluid flow in synthetic rough-walled

fractures: navier-stokes, stokes, and the local cubic law simula-

tions, Water Resour. Res. 39 (2003) 5-1–5-15.

[15] Y. Meheust, J. Schmittbuhl, Scale effects related to flow in rough

fractures, Pure Appl. Geophys. 160 (2003) 1023–1050.

[16] S.R. Brown, C.H. Scholz, Broad bandwidth study of the topog-

raphy of natural rock surfaces, J. Geophys. Res. 90 (1985)

12575–12582.

[17] S.R. Brown, R.L. Kranz, B.P. Bonner, Correlation between the

surfaces of natural rock joints, Geophys. Res. Lett. 13 (1986)

1430–1433.

[18] S.R. Brown, C.H. Scholz, Closure of rock joints, J. Geophys.

Res. 91 (1986) 4939–4948.

[19] M.W. Jessel, S.J.D. Cox, P. Schwarze, W.L. Power, The anisot-

ropy of roughness measured using a digital photogrammetric

technique, in: M.S. Ameen (Ed.), Fractography: Fracture Topog-

raphy as a Tool in Fracture Mechanics and Stress Analysis,

Geol. Soc. Spec. Publ., vol. 92, 1995, pp. 27–37.

[20] F. Plouraboue, P. Kurowski, J.-P. Hulin, S. Roux, J. Schmitt-

buhl, Aperture of rough cracks, Phys. Rev., E 51 (1995)

1675–1685.

[21] A.A. Keller, P.V. Roberts, M.J. Blunt, Effect of fracture aperture

on the dispersion of contaminants, Water Resour. Res. 35 (1)

(1999) 55–63.

[22] W.L. Power, T.E. Tullis, The contact between opposing fault

surfaces at Dixie Valley, Nevada, and implications for fault

mechanics, J. Geophys. Res. 97 (1992) 15425–15435.

[23] S.R. Ogilvie, E. Isakov, P.W.J. Glover, C.W. Taylor, A new

high resolution optical method for obtaining the topography of

fracture surfaces in rocks, Image Anal. Stereol. 21 (1) (2002)

61–66.

[24] W.L. Power, T.E. Tullis, S.R. Brown, G.N. Boitnott, C.H.

Scholz, Roughness of natural fault surfaces, Geophys. Res.

Lett. 14 (1987) 29–32.

[25] A.R.H. Swan, M. Sandilands, Introduction to Geological Data

Analysis, Blackwell Science, 1995. 446 pp.

[26] D. Saupe, Algorithms for random fractals, in: H-O. Peitgen, D.

Saupe (Eds.), The Science of Fractal Images, Springer-Verlag,

New York, 1988, pp. 71–136.

[27] S. Brown, H. Stockman, S. Reeves, Applicability of Reynolds

equation for modeling fluid flow between rough surfaces, Geo-

phys. Res. Lett. 22 (1995) 2537–2540.



S.R. Ogilvie et al. / Earth and Planetary Science Letters 241 (2006) 454–465 465
[28] S.R. Brown, Measuring the dimension of self-affine fractals:

example of rough surfaces, in: C. Barton, P.R. La Pointe (Eds.),

Fractals in the Earth Sciences, Plenum Press, New York, 1995.

[29] N.E. Odling, Natural fracture profiles, fractal dimension and

joint roughness coefficient, Rock Mech. Rock Eng. 27 (3)

(1994) 135–153.

[30] I.W. Yeo, R.W. Zimmerman, M.H. deFreitas, Effect of shear

displacement on the aperture and permeability of a rock fracture,

Int. J. Rock Mech. 35 (1998) 1051–1070.

[31] R.W. Zimmerman, D.W. Chen, N.G.W. Cook, The effect of

contact area on the permeability of fractures, J. Hydrol. 139

(1992) 79–96.
[32] P.W.J. Glover, K. Matsuki, R. Hikima, K. Hayashi, Character-

izing rock fractures using synthetic fractal analogues, Geotherm.

Sci. Technol. 6 (1999) 83–112.

[33] L.J. Pyrak-Nolte, J.P. Morris, Single fractures under normal

stress: the relation between fracture specific stiffness and fluid

flow, Int. J. Rock Mech. Min. Sci. 37 (2000) 245–262.

[34] S.R. Brown, C.H. Scholz, Closure of random elastic surfaces in

contact, J. Geophys. Res. (1985) 5531–5545.


	Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures
	Introduction
	Parameterisation of real rock fractures
	Fourier analyses
	Matching analyses

	Creation of synthetic fractures
	Results
	Discussion
	Conclusions
	Acknowledgements
	References


