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Abstract

Synthetic fractures of from 0.2 to 12.8m in size were created on a computer by a new spectral method to reproduce the ratio of the

power spectral density of the initial aperture (the aperture when the surfaces are in contact at a single point) to that of the surface height

determined for a tensile fracture of 1m. First, the size effect on the standard deviation of the initial aperture was analyzed for fractures

with and without shearing. Next, by taking aperture data at constant intervals to establish a flow area, water flow was simulated for

fractures during both normal closure and closure after shearing, by solving Reynolds equation to determine the hydraulic aperture.

When the fracture is closed without shearing and has the same mean aperture, the effect of the fracture size on the hydraulic aperture

disappears if the fracture is larger than about 0.2m, since beyond this size the standard deviation of the initial aperture is almost

independent of the fracture size. When the fracture is closed after shearing, the hydraulic conductivity shows remarkable anisotropy,

which becomes more significant with both shear displacement and closure. However, the relation between the hydraulic aperture

normalized by the mean aperture and the mean aperture normalized by the standard deviation of the initial aperture is almost

independent of both the fracture size and shear displacement when the shear displacement is less than about 3.1% of the fracture size, at

which point the standard deviation of the initial aperture of the sheared fracture is almost independent of the fracture size.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Evaluation of the hydraulic properties of a rock mass is a
prerequisite for designing rock structures in various
engineering projects such as for underground disposal of
high-level radioactive wastes, underground storage of
energy and geothermal energy extraction. The hydraulic
properties of a rock mass are governed by those of the
fractures in the rock mass, since fractures such as joints
may be the main conduits for water flow [1]. Although the
permeability of a fracture is mainly determined by the
mean aperture of the fracture resulting from the rock
stress, as often modeled in simulations of water flow, the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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variation in the aperture, such as reflected by the standard
deviation (SD), also plays an important role, since as the
SD of the aperture increases, the effective void for water
flow is reduced. Fig. 1 schematically shows the effective
space for water flow for three aperture distributions with
the same mean aperture (em) but different SDs
(s01os02os03). While voids greater than the mean
aperture do not provide an effective conduit for water
flow unless they are connected to each other to form a
channel, apertures smaller than the mean aperture may
inhibit water flow. Thus, the mean aperture relative to the
variation in the aperture may be a primary factor in
determining the permeability of a normally closed fracture
[2–6].
Matsuki et al. [7] measured the aperture distribution of a

small-scale hydraulic fracture created in granite in the
laboratory and simulated water flow by using part of the
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Fig. 1. Schematic of effective space for water flow for three aperture

distributions with the same mean aperture (em) but different standard

deviations ðs01os02os03Þ.
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aperture distribution, which ranged from 3.2mm� 3.2mm
to 16mm� 16mm in size. They found that the hydraulic
aperture of a fracture under normal stress decreases with
an increase in the flow area when the fracture is closed to
have the same mean aperture, since the percentage of the
contact area increases with an increase in the flow area due
to the increase in the SD of the initial aperture with an
increase in the flow area. A hydraulic aperture is an
aperture consistent with a parallel-plates model that gives
the same volume flow rate for the fracture, and the initial
aperture is the aperture in which a fracture is closed to give
contact at a single point. This scale effect is consistent with
the experimental results obtained by Raven and Gale [8]
who showed that the permeability of a natural fracture
decreases with the sample size. Matsuki et al. [7] also
showed that the permeability of a fracture during normal
closure can be estimated by the following equation, which
is independent of both the fracture size and the closure:

eh

em
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1:13

1þ 0:191ð2ðem=s0ÞÞ
1:93

3

s
, (1)

where eh is the hydraulic aperture, em is the mean aperture
and s0 is the SD of the initial aperture. Eq. (1) gives an
average relation between the normalized hydraulic aperture
(eh/em) and the normalized mean aperture ðem=s0Þ, which
means that the actual relation between eh/em and em/s0 for
a particular aperture distribution may deviate more or less
from the relation given by Eq. (1). This equation as well as
other equations proposed in previous reports [2,3,6]
indicates that the hydraulic aperture of a normally closed
fracture is usually smaller than the mean aperture and that
the hydraulic aperture normalized by the mean aperture
decreases with closure of the fracture. Thus, the perme-
ability of a fracture with rough surfaces is not simply that
given by a parallel-plates model with the mean aperture of
the fracture unless the mean aperture is much greater than
the SD of the initial aperture and accordingly the effects of
surface roughness can be neglected. However, Eq. (1) may
be applicable only to a small-scale fracture under normal
stress.
It is well known that remarkable shear dilation occurs
when a fracture with rough surfaces is subjected to shear
displacement under a small normal stress since the surfaces
slide past one another. Accordingly, the permeability of a
sheared fracture is much greater than that of a fracture
under normal closure [9,10]. Yeo et al. [11] performed an
experiment to investigate anisotropic water flow through a
sheared fracture and showed that the fracture is more
conductive in the direction perpendicular to the shear
displacement than in that parallel to the shear displace-
ment. Matsuki et al. [12] analyzed the initial aperture
during shear deformation for a small-scale hydraulic
fracture created in granite in the laboratory and showed
that both the SD and the power spectral density (PSD) of
the initial aperture significantly increased with shear
displacement. Mitani et al. [13] showed in laboratory
experiments that the anisotropy in the hydraulic conduc-
tivity of a sheared fracture is caused by the formation of
ridges of contact perpendicular to the shear displacement.
Recently, Fardin [14] also investigated the anisotropy in
the hydraulic conductance of a sheared fracture. However,
the fractures used in these studies were less than a few tens
of centimeters in size. Thus, the size effect on the
permeability of a sheared fracture has not yet been well
clarified.
A rock mass usually contains large fractures greater

than 1m. However, as described above, most investiga-
tions in the laboratory have considered the permeability
of small-scale fractures, mostly smaller than 0.5m
[8,10,11,13,15–20]. It is known that fracture surfaces can
be approximated by self-affine fractals [21–25], which
means that the roughness of the fracture surfaces increases
with the size of the fracture according to the scaling law
determined by the fractal dimension of the fracture
surfaces. Therefore, the permeability of a fracture with
rough surfaces may be affected by the fracture size, since
the aperture distribution results from mismatching between
the two surfaces and accordingly the statistical properties
of the aperture, such as the SD, may depend on the fracture
size. Brown [26] showed that as the fracture size increases,
the variance of the composite topography (aperture)
increases and quickly approaches an asymptote if the
PSD of the composite topography is constant for
wavelengths greater than a certain wavelength, called the
mismatch length scale. By analyzing the effect of size on the
SD of the initial aperture of a tensile fracture of 1m,
Sakaguchi et al. [27] suggested that the SD of the initial
aperture of the tensile fracture increases with the fracture
size until the fracture size exceeds 0.2m, beyond which the
size effect almost disappears. To estimate the permeability
of a large fracture, we have to know the aperture
distribution that results from rock stress. However, it is
very difficult to measure an aperture distribution of a
fracture larger than 1m.
Fractal surfaces with a desired fractal dimension can be

created on a computer by using a spectral synthesis method
[28]. A fracture of any size can be created by this method
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within the limits of the computer used. However, to create
a realistic fracture, it is essential to consider that the two
surfaces of a fracture are more or less mated at long
wavelengths [29–31]. Brown [26] developed a code for
creating a mated fracture in which the relative phases of the
Fourier components of the two surfaces are completely
independent of each other for wavelengths smaller than the
mismatch length scale and are the same for wavelengths
greater than the mismatch length scale. Thus, the degree of
matedness of the two fracture surfaces created by this code
suddenly and dramatically changes at the mismatch length
scale. However, as pointed out by Glover et al. [31], the
degree of matedness between the two surfaces of an actual
fracture gradually increases with the wavelength [30,32,33].
Thus, Glover et al. [31] modified the Brown code so that
the degree of matedness of the two surfaces may gradually
increase with the wavelength. However, the parameters in
their code that characterize the degree of matedness as a
function of the wavelength must be determined by trial and
error, and accordingly their code cannot always produce a
fracture with a desired degree of matedness. Thus, it would
be useful to develop a method for creating a synthetic
fracture with a desired degree of matedness.

In this study, based on the distributions of the surface
height and the aperture measured by Sakaguchi et al. [27]
for a tensile fracture of 1m, synthetic fractal fractures
ranging from 0.2 to 12.8m were created on a computer by a
new spectral method so that the ratio of the PSD of the
initial aperture to that of the surface height, determined for
a tensile fracture of 1m, may be approximately repro-
duced. First, the size effect on the SD of the initial aperture
was analyzed for the fractures with and without shearing.
The size of fractures with shearing was reduced to half of
the original one due to shear offset, while that of fractures
without shearing was the original one. Next, by using
Fig. 2. Upper surface and initial aperture of a
aperture data at constant intervals to establish a flow area,
water flow was simulated for fractures during both normal
closure and closure after shearing, by solving Reynolds
equation with a finite difference method to determine the
hydraulic aperture.

2. Surface height and aperture of a tensile fracture of 1m

Sakaguchi et al. [27] produced a tensile fracture of
1m� 0.2m parallel to the rift plane in a block of granite by
indenting wedges aligned in a line along the long side (1m)
and measured the heights of the two surfaces along
matched paths with a laser profilometer to determine the
aperture distribution of the fracture. Since the height of the
surfaces that contained transparent minerals such as quartz
could not be accurately measured by the laser profilometer,
they coated the surfaces of the fracture with black paint as
thin and as uniformly as possible. The laser profilometer
(resolution ¼ 30 mm) was driven in a horizontal (X–Y)
plane by a two-dimensional (2D) positioning system with
two linear motor actuators (minimum step ¼ 1 mm). Fig. 2
shows one of the surfaces and the initial aperture of the
fracture. We took the X-axis along the short side (0.2m)
and the Y-axis along the long side (1m). In this study, the
aperture produced by surfaces that are in contact at a
single point is called the initial aperture to uniquely define
the aperture of a fracture when the fracture surfaces are not
deformed. The measurement was performed with a step of
0.1mm in both directions, but the figure is given with a step
of 6.7mm for convenience. Using the data, the PSDs of the
linear profiles along the Y-axis were calculated by FFT
(fast Fourier transform) for the two surface heights and the
initial aperture, and ensemble-averaged for the two
surfaces together and the initial aperture. Hereafter, we
call the PSD of the linear profiles of the surface height or
tensile fracture with a size of 1m� 0.2m.
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the initial aperture simply that of the surface height or the
initial aperture.

Fig. 3 shows the PSDs of the surface height and the
initial aperture on a log–log plot. The wavelength is the
inverse of the spatial frequency. The broken line shows
the PSD of a perfectly fractal (self-affine) surface with a
fractal dimension of 2.297 for reference. The fractal
dimension of a surface is obtained by adding 1 to that of
a linear profile if the surface is isotropic [34]. The PSD of
the surface height shows linearity for spatial frequencies of
from about 4� 10�3mm�1 to 0.6mm�1. By comparing the
PSD of the surface height of the fracture with that of a
hydraulic fracture for which the surface height was
measured by a profilometer with a stylus with a tip radius
of 25 mm, Sakaguchi et al. [27] concluded that the non-
linearity at high frequencies mainly arose from the surface
coating, which altered the components of high frequencies.
On the other hand, the non-linearity at low frequencies was
considered to be caused by the constraint of the direction
of fracture propagation along a line when the fracture was
created using aligned wedges [27]. Accordingly, the
apparent cut-off of the PSD of the surface height at the
lowest frequencies may disappear if the fracture propagates
without this constraint. Thus, the fractal dimension of the
surface height was determined by using data from within
the linear portion of the surface height PSD. When the
PSD of surface heights G(f) is given as a function of spatial
frequency f by

Gðf Þ ¼ Af �a, (2)

the fractal dimension of the surface D (2oDo3) is
determined by [34,35]

D ¼
7� a
2

, (3)
Fig. 3. Power spectral densities of the surface height and initial aperture

of a tensile fracture with a size of 1m.
where a is the power in Eq. (2), determined from the slope
of the log–log plot of G(f). Thus, the fractal dimension of
the fracture surfaces was determined to be 2.297, since a
was 2.406.
In contrast to the PSD of the surface height, that of the

initial aperture does not increase with an increase in the
wavelength as much as that of the fracture surfaces (Fig. 3).
This means that the degree of matedness (correlation) of
the two surfaces increases with an increase in the
wavelength [29–31]. No apertures are produced when the
two surfaces in contact are the same, while the PSD of the
initial aperture is twice that of when two surfaces with the
same roughness are independent of each other [23]. Thus,
the ratio of the PSDs of the initial aperture and the surface
height gives us a measure for evaluating the degree of
matedness between two fracture surfaces [29]. Fig. 4 shows
the ratio of the initial aperture PSD to the surface height
PSD as a function of the spatial frequency for the tensile
fracture created in granite. The ratio begins to decrease
with an increase in the wavelength at a wavelength of
0.568mm. Thus, we determined the so-called mismatch
length scale (lc) to be 0.568mm by assuming that the
surface coating does not have a significant effect on the
ratio since this value is not so different from the value
(0.85mm) determined by a profilometer with a stylus with a
tip radius of 25 mm for a small-scale hydraulic fracture
created in the same granite [30]. The thin line indicates a
curve obtained by fitting the data for wavelengths greater
than the mismatch length scale, and ignoring the data for
the two greatest wavelengths. The fitted curve was extended
to a wavelength of 20m, beyond the size of the tensile
fracture (1m), to be used as a reference for creating a large
synthetic fracture, as will be described later. Fig. 4 indicates
that the degree of matedness of the two fracture surfaces
Fig. 4. Ratio of the initial aperture PSD to the surface height PSD as a

function of spatial frequency for a tensile fracture in granite.
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Fig. 5. Estimation of the variance in a linear profile of surface height for a

discrete power spectral density.
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continuously increases with an increase in the wavelength
when the wavelength is greater than the mismatch length
scale. This explains why the two surfaces of a tensile
fracture resemble each other. We will create a synthetic
fractal fracture so that the ratio given by the fitted curve
may be reproduced.

3. Method for creating a synthetic fracture

3.1. Spectral method based on fractional Brownian motion

for creating an isotropic surface

Synthetic fractures with isotropic surfaces were created
by a spectral method based on fractional Brownian motion
(fBm) [28,34]. In this method, a fractal surface is created by
the inverse Fourier transform of the Fourier components
that are given according to the scaling law of the surface
height, which is determined by the fractal dimension of the
surface D. The discrete inverse Fourier transform to create
an isotropic fracture surface h(x, y) of size L�L with
N�N points is given by

hðx; yÞ ¼
XN�1
k¼0

XN�1
l¼0

akle
i2pððkmþlnÞ=NÞ, (4)

where akl is a complex Fourier component of the surface
for the spatial frequencies k/L and l/L in the X- and
Y-directions, respectively. Note that x and y are discretized
as

x ¼ mDx ðm ¼ 0;N � 1Þ,

y ¼ nDy ðn ¼ 0;N � 1Þ, ð5Þ

where Dx and Dy are the grid spacing in the X- and Y-
directions, respectively (Dx ¼ Dy ¼ L/(N�1)). For a real
function such as surface heights, the Fourier components
must satisfy the following conjugate conditions [28]:

aN�k;N�l ¼ akl ðk; l40Þ,

a0;N�l ¼ a0l ðl40Þ,

aN�k;0 ¼ ak0 ðk40Þ,

a00 ¼ a00, ð6Þ

where the overbar means the conjugate of the complex.
Since we assumed that the constant component a00 is zero,
the mean height of the surface is always zero. When the
fractal dimension D is determined from coefficient a in
Eq. (2), the Fourier component akl can be given as a

function of the spatial frequency f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ l2

� ��
L

q� �
in

an arbitrary direction by [28]

akl / ðk
2
þ l2Þ�ðð4�DÞ=2Þei2pR1 , (7)

where R1 is a series of random numbers uniformly
distributed from 0 to 1 to give the relative phase of the
Fourier component ð2pR1Þ. The surface height was
adjusted after taking the inverse Fourier transform of
Eq. (7) with an arbitrary proportional constant so that
statistical properties of the surface height may be
reproduced, as described below.
If G(f) is given as a continuous function of f, the variance

sh
2 of the surface height along a linear profile of length L is

obtained by [26]

s2h ¼
Z 1
1=L

Gðf Þ df , (8)

where 1/L is the minimum frequency. The variance of the
surface height along a linear profile (sh

2) is smaller than that
of the whole 2D-surface height since the mean height is
different for each linear profile. When G(f) is given by
Eq. (2) as a continuous function of f, the variance sh

2 can be
obtained by taking the integral of Eq. (8):

s2h ¼
A

a� 1
La�1. (9)

However, when G(f) is given at discrete frequencies as in
this study, the discrete form of Eq. (8) can be given by

s2h ¼
X1
i¼1

1

L
Gðf iÞ, (10)

where fi ¼ i/L. Thus, Eq. (9) does not include the full
contribution at the minimum frequency, as shown in Fig. 5.
An additional term of 1

2
Gð1=LÞ1=L, which is half of the

contribution at the minimum frequency ( ¼ 1/L) and is
indicated by the hatched area in Fig. 5, should be added to
Eq. (9), and this is indicated by the gray area in Fig. 5.
Accordingly, the variance sh

2 should be given by

s2h ¼
1

2

aþ 1

a� 1
ALa�1. (11)

From Eqs. (3) and (11), the scaling law for the SD of the
height of a fractal surface determined along a linear profile
sh can be given by

sh ¼ sh0
L

L0

� �3�D

, (12)
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where sh0 is the SD of the surface height along a linear
profile of a fracture surface of size L0.

In this study, the surface height was adjusted after taking
the inverse Fourier transform of Eq. (7) so that the average
SD determined for all linear profiles of the surface height
(sh) may coincide with the value given by Eq. (12), since the
PSD of the linear profile of the surface height must be
reproduced to reproduce the measured ratio of the initial
aperture PSD to the surface height PSD (Fig. 4). In
Eq. (12), we used a reference fracture size of 0.2m and the
measured value of sh0. If the surface height is adjusted so
that the variance of the 2D surface height is the same as
that of the measured value, the coefficient A in Eq. (2) of
the synthetic fracture does not always coincide with the
measured value. Thus, one of the fracture surfaces, say the
upper surface, can be created with a designated roughness
for the linear profiles of the surface height (sh) and the
fractal dimension (D).
3.2. Method for creating the other surface

The other (lower) surface of a fracture must be created
by considering a gradual increase in the matedness between
the two surfaces for wavelengths greater than the mismatch
length scale ðlcÞ, as described previously. This can be
accomplished by introducing Fourier components for the
lower surface with the same amplitude as that of the upper
surface but with a different relative phase from that of the
upper surface. Thus, akl of the lower surface is given by

akl / ðk
2
þ l2Þ�ð4�DÞ=2eið2pR1þ2pgðf ÞR2Þ, (13)

where R2 is a series of random numbers that is independent
of R1 in Eq. (7) for the upper surface, and gðf Þ is a function
of the spatial frequency f, which is equal to or less than 1.
Thus, the difference in phases between the two fracture
surfaces is given by 2pgðf ÞR2 for which

gðf Þ ¼
1 ðfXf cÞ;

gðf Þ ðfof cÞ;

(
(14)

where fc is the inverse of the mismatch length scale ( ¼ 1/
lc). We assumed that the heights of the two surfaces are
given from the same reference plane for convenience.
Accordingly one of the two surfaces is a mirror image of
the real one.

Let us consider the effect of the phase difference on the
ratio of the initial aperture PSD to the surface height PSD.
The Fourier component of the initial aperture is obtained
by taking the difference between those of the upper and
lower surfaces since the surface heights are given by the
distance from the same reference plane. Thus, the Fourier
component of the aperture ekl is given by

ekl / ðk
2
þ l2Þ�ð4�DÞ=2ei2pR1 ð1� ei2pgðf ÞR2Þ. (15)

Since the PSD is a squared amplitude of the Fourier
component, the ratio of the PSDs between the initial
aperture and the surface height r(f) is given by

rðf Þ ¼ 2f1� cosð2pgðf ÞR2Þg. (16)

The ratio is zero when there are no differences in the phases
ðgðf Þ ¼ 0Þ, which means that there are no apertures
between identical surfaces in contact. Since the expectation
of the ratio E(r) is obtained by the following integral with
respect to the random number R2,

EðrÞ ¼

Z 1

0

rðf Þ dR2, (17)

E(r) is obtained as

EðrÞ ¼

2 ðfXf cÞ;

2 1�
sin 2pgðf Þ
2pgðf Þ

� �
ðfof cÞ:

8><
>: (18)

Thus, the expectation of the ratio is two for spatial
frequencies greater than fc where the two surfaces are
completely independent of each other, and less than two
for spatial frequencies less than fc where the two surfaces
are more or less correlated with each other. Accordingly, if
the function gðf Þ is given by solving the following equation
according to the measured (and extended) value R(f)
(Fig. 4) for spatial frequencies less than fc,

2 1�
sin 2pgðf Þ
2pgðf Þ

� �
¼ Rðf Þ, (19)

the ratio of the PSDs of the linear profiles between the
initial aperture and the surface height may statistically
satisfy the given ratio R(f). The function gðf Þ can be
determined by an iterative method such as the New-
ton–Raphson method.
Synthetic fractures created by the method described

above for a certain size have the same values for the
roughness and fractal dimension of the surfaces, the degree
of matedness between the surfaces, the average PSDs of the
surface height and the initial aperture, and the SD of the
initial aperture. Thus, the synthetic fracture is statistically
unique, while the layout of the aperture of each fracture
can be changed by using different series of the random
numbers for R1 and R2. In this study, we did not use the
same series of the random numbers for all fractures to
investigate the effect of the aperture layout on the
permeability.

3.3. Effect of grid spacing on the variance of the surface

height and the aperture

In creating a synthetic fracture, we will use a certain
value of grid spacing. Therefore, a significant error in the
variance of the surface height or that of the initial aperture
may be produced if we use large grid spacing, even if the
PSDs of the initial aperture and the surface height are
reproduced. When the number of grid points is N�N for a
square fracture of size L�L, the maximum frequency
contained in the synthetic fracture is (N�1)/L, since the
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Fig. 6. Effect of cut-off frequency on the ratio of variance in a linear

profile of the initial aperture.
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grid spacing is L/(N�1). An error in the variance of the
surface height due to the cut-off of frequencies greater than
(N�1)/L is obtained by integrating G(f) (Eq. (2)) from
(N�1)/L to infinity and is given by

Ds2h ¼
A

a� 1

N � 1

L

� �1�a

. (20)

Accordingly, an error relative to the variance of the surface
height sh

2 is obtained from Eqs. (11) and (20).

Ds2h
s2h
¼

2

aþ 1

1

ðN � 1Þa�1
. (21)

The above equation indicates that the relative error
in the variance of the surface height is independent
of the fracture size and that N of 128 is sufficient to give
a relative error of less than 0.1% when a is 2.406.
This is because the amplitude of the fractal surfaces
rapidly decreases with an increase in the spatial frequency
(Fig. 3).

The effect of grid spacing on the variance of the initial
aperture can be estimated in a similar manner as described
above. However, the rate of the increase in the PSD of the
initial aperture with respect to the increase in the
wavelength decreases with the wavelength (Fig. 3), which
suggests that the cut-off of high frequencies may have a
more significant effect on the variance of the initial
aperture. Since the PSD of the initial aperture is given by
G(f)R(f), the variance of the initial aperture se0

2 along a
linear profile for a fracture of size L is obtained by
integrating G(f)R(f) from 1/L to infinity, while the
variance of the initial aperture se

2 with the cut-off frequency
(N�1)/L is given by integrating G(f)R(f) from 1/L
to (N�1)/L. Thus, the ratio between them in the discrete
form of the integral is

s2e=s
2
e0 ¼

1

L

XN�1
i¼1

Gðf iÞRðf iÞ

,
1

L

X1
i¼1

Gðf iÞRðf iÞ

( )
, (22)

where fi ¼ i/L. Fig. 6 shows the ratio se
2/se0

2 as a function
of cut-off frequency for the maximum (12.8m) and
minimum (0.2m) fracture sizes adopted in this study.
When the cut-off frequency is greater than 5mm�1, the
variance of the initial aperture is more than 99.5%
of the theoretical value for a fracture size of 12.8m
and more than 99.2% for a fracture size of 0.2m. Thus,
for all fracture sizes used in this study, the grid spacing
was determined to be less than 0.2mm to reproduce
the variance of the initial aperture along a linear profile
with an error of less than 0.8%, which corresponds to an
error in the SD of the initial aperture of less than 0.4%.
Thus, large synthetic fractures were created with a huge
number of grid points. However, as will be described later,
we took aperture data at intervals to establish a flow area
for simulating water flow, due to the limited capability of
existing computers.
4. Created synthetic fractures

4.1. Surfaces and aperture of a fracture without shear

deformation

Seven square fractures with sizes of 0.2, 0.4, 0.8, 1.6, 3.2,
6.4 and 12.8m were created with a grid spacing of about
0.2mm by the method described above. Table 1 shows the
parameters used in this study for creating the fractures.
These parameters were determined based on measured data
for a square area of 0.2m� 0.2m of a tensile fracture in
granite [27]. The grid points for both the X- and Y-
directions were 210 ( ¼ 1024), 211, 212, 213, 214, 215 and 216

( ¼ 65 536) for fracture sizes of 0.2, 0.4, 0.8, 1.6, 3.2, 6.4
and 12.8m, respectively. Thus, the grid spacing ranged
from 0.1953 to 0.1955mm, and in all cases was less than
0.2mm. The SD of the linear profiles of the two fracture
surfaces was determined according to the scaling law given
by Eq. (12) (D ¼ 2.297, sh0 ¼ 1.966mm and L0 ¼ 0.2m).
Thus, the roughness of the fracture surfaces significantly
increases with size. Fig. 7 shows the upper surfaces of these
synthetic fractures. The lower surface of each fracture
looks almost identical to the upper surface and accordingly
we do not show them. The number of grid points was
greatly reduced for convenience and the scale of the surface
height increases with the fracture size. Note that since we
cannot show the figures with a size proportional to the
fracture size, the surface height distribution only gives the
appearance relative to each fracture size. Since these
surfaces are self-affine fractals with the same fractal
dimension, the surface height relative to the fracture size
looks similar for all fractures when an appropriate scale of
the surface height is adopted for each fracture size. The
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Table 1

Parameters used to create synthetic fractures

Fracture size (m) 0.2 0.4 0.8 1.6 3.2 6.4 12.8

Standard deviation of linear profile of surface height (mm) 1.966 3.148 5.114 8.307 13.495 21.923 35.663

Number of grid points in X- and Y-axes 1024 2048 4096 8192 16 384 32 768 65 536

Grid spacing Dx ¼ Dy (mm) 0.1953–0.1955

Fractal dimension 2.297

Mismatch length scale (mm) 0.568

Fig. 7. Upper surfaces of synthetic fractures of from 0.2 to 12.8m in size.
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initial aperture distribution is shown in Fig. 8. The scales of
the aperture in these figures are the same for all fracture
sizes since the mean initial aperture only slightly increases
with the fracture size. The initial aperture distributions
relative to the fracture size look similar for all fracture sizes
even when the same scale of the aperture is used for all
fractures. Thus, the initial aperture produced by the two
self-affine fractal surfaces is no longer fractal.
Fig. 9 shows the average PSD of the heights of the two

surfaces and that of the initial aperture for all synthetic
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Fig. 8. Initial aperture distribution of the synthetic fractures from 0.2 to 12.8m in size.
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fractures in comparison with those for the tensile fracture
in granite (thin lines) (Fig. 3). The range of the spatial
frequency is shown for each fracture size. The measured
PSDs of the surface height and the initial aperture of the
tensile fracture were approximately reproduced by the
synthetic fractures. The ratio of the PSDs of the initial
aperture and the surface height is shown in Fig. 10, with a
curve of R(f) for reference. The ratio for the synthetic
fractures is only slightly greater than R(f) on the log–log
plot. Thus, the method for creating a synthetic fracture
proposed in this study has been proved to be useful for
creating a realistic fracture with a desired degree of
matedness.

The SD of the 2D surface height and the SD of the (2D)
initial aperture of the synthetic fractures are summarized in
Table 2 and are also shown in Fig. 11 as a function of the
fracture size on a log–log plot. These values for fracture
sizes of less than 0.2m (0.1, 0.05, 0.025 and 0.0125m), the
mean SD of the linear profiles of the surface height and the
mean values and ranges of the SDs of both the 2D surface
height and the (2D) initial aperture measured for an area of
0.2m� 0.2m of the reference tensile fracture are also
shown for comparison. The SDs of both the 2D surface
height and the initial aperture approximately reproduced
the measured values. The logarithm of the SD of the 2D
surface height is linear with the logarithm of the fracture
size and has the same slope as that of the SD of the linear
profiles, although the SD of the 2D surface height is about
1.21 times that of the linear profiles. Thus, Eq. (12) also
gives the scaling law for the SD of the 2D surface height,
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Fig. 9. Average PSDs of the surface height and the initial aperture for all

synthetic fractures in comparison with measured values.

Fig. 10. Ratio of the initial aperture PSD to the surface height PSD for all

synthetic fractures.

Table 2

Standard deviations of both the 2D surface height and 2D initial aperture of

Fracture size (m) 0.2 0.4

Standard deviation of 2D surface height (mm) 2.371 3.791

Standard deviation of 2D initial aperture (mm) 0.173 0.177
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since it is normalized by the value of a reference fracture
size.
In contrast to the SD of the surface height, the SD of the

initial aperture is almost constant for fracture sizes greater
than 0.2m. By analyzing the size effect on the SD of the
initial aperture of a tensile fracture created in granite,
Sakaguchi et al. [27] suggested that the SD of the initial
aperture of the tensile fracture increases with fracture size
until the fracture size exceeds 0.2m, beyond which the size
effect disappears, as described previously. Thus, our
synthetic fractures reproduced the same trend in the
fracture size effect. Since the PSD of the initial aperture
does not increase significantly at large wavelengths (Fig. 3),
the contribution to the increase in the variance of (the
linear profile of) the initial aperture in the integral of the
PSD becomes small at large wavelengths, since the spatial
frequency is very small at large wavelengths. Accordingly,
the size-independence of the SD of the initial aperture may
extend to a fracture size greater than 12.8m, since the PSD
of the initial aperture is not likely to significantly increase
beyond the fracture size, although the size effect on the SD
of the initial aperture may cease to exist if the fracture
surfaces cease to be fractal at a greater size. This size effect
synthetic fractures

0.8 1.6 3.2 6.4 12.8

6.073 10.020 16.278 26.445 42.958

0.177 0.179 0.179 0.177 0.176

Fig. 11. Standard deviations (SDs) of 1D and 2D surface heights and SD

of the initial aperture of synthetic fractures in comparison with measured

values of the mean and ranges of SDs of both 2D surface height and the

initial aperture.
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on the SD of the initial aperture is important in estimating
the size effect on the permeability of a large fracture when
the fracture is not subjected to shear displacement because
the SD of the initial aperture as well as the mean aperture
may play important roles on the hydraulic conductivity of
the fracture, as described previously.
4.2. Aperture of a fracture subject to shear deformation

Shear displacements of 12.5, 25 and 50mm were applied
in the X-direction to the upper surface of a fracture which
was then allowed to contact the lower surface by applying
closure from an initial state in which the two surfaces were
in contact at a single point. Thus, we avoided breaking
asperities during shear deformation. This means that the
fracture was sheared under a very small normal stress and
the normal stress was then increased. In reality, the
surfaces of a fracture would be more or less damaged
when the fracture is sheared under normal stress, depend-
ing on several factors such as the normal and shear stresses,
elastic constants and the tensile and compressive strengths
in addition to the geometry of the fracture surfaces.
Accordingly, the aperture distribution would be affected by
the damage of the surfaces. However, we ignored this effect
for simplicity since there are no established methods for
estimating this effect and since the damage may not
significantly affect the volume of the void space if the
debris produced by the damage remains there.

The aperture was determined for the area common to the
two surfaces. However, since shear-offset reduced the
aperture data according to shear displacement, aperture
data for sheared fractures were taken from only a square
area with a side length of half of the original fracture size (a
quarter of the original fracture area) to keep the ratios
among the sheared fractures the same as those among the
original fractures. Thus, the sizes of sheared fractures were
reduced to half of the original values (0.1, 0.2, 0.4, 0.8, 1.6,
3.2 and 6.4m). Hereafter, we will use these values as the
size (L) of the sheared fractures. Fig. 12 shows examples of
the initial aperture distribution when the fractures are
sheared by 12.5 and 50mm. Note that the scale of the
aperture for a shear displacement of d ¼ 50mm is twice
that with d ¼ 12:5mm and that the grid lines were greatly
reduced. As the shear displacement increases or as the
fracture size decreases, the magnitudes of components with
low frequencies (large wavelengths) in the aperture increase
relative to those with high frequencies. Accordingly, the
aperture distribution relative to the fracture size more
closely resembles the surface of a fracture (Fig. 7) as the
fracture size decreases or as the shear displacement
increases. However, for large fractures, the aperture
distributions relative to the fracture size remain similar to
those of fractures without shear deformation (Fig. 8),
although the mean aperture is much greater. Thus, the
waviness (undulation with large wavelengths) of the initial
aperture distribution relative to the size of the sheared
fracture is governed by the magnitude of the shear
displacement relative to the fracture size.
Fig. 13 shows the effects of both the fracture size (L) and

the shear displacement ðdÞ on the SD of the initial aperture.
The SD of the initial aperture for fractures without shear
deformation is also shown for comparison. The broken line
indicates the relation between the fracture size and the SD
of the initial aperture when the shear displacement is about
3.1% of the fracture size (except for d ¼ 0mm). The SD of
the initial aperture significantly increases with shear
displacement. On the other hand, for each shear displace-
ment, although the SD of the initial aperture is more or less
scattered, it gradually increases with fracture size until the
fracture size exceeds the broken line, beyond which the SD
of the initial aperture is approximately constant. The rate
of the increase with respect to fracture size increases with
shear displacement. Fig. 14 shows the effects of both
fracture size and shear displacement on the mean initial
aperture (shear dilation). The broken line indicates the
same as that in Fig. 13. Similar to the SD of the initial
aperture, the mean initial aperture significantly increases
with shear displacement, and increases with fracture size
until it exceeds the broken line, beyond which there is
only a slight increase in the mean aperture, although the
mean initial aperture is more or less scattered. The rate of
the increase with respect to fracture size remarkably
increases with shear displacement. Thus, the fracture
size effect on both the shear dilation and the SD of
the initial aperture almost disappears when the shear
displacement is less than about 3.1% of the fracture
size ðd=Lo0:031Þ.
Since shear displacement decreases the degree of

matedness between the two fracture surfaces, the SD of
the initial aperture increases with shear displace-
ment. Thus, shearing is a process in which there is a
decrease in the degree of matedness between the two
surfaces of a fracture [12]. Accordingly, the amplitudes
of components of an aperture with large wavelengths,
which were small for the original aperture without shearing
because of the well-mated surfaces, increase with shear
displacement. The effect of shear displacement on the
PSD of the initial aperture of a sheared fracture will be
discussed later.

5. Method for estimating the permeability of a fracture

5.1. Reynolds equation and hydraulic aperture

Three-dimensional (3D) flow of an incompressible and
viscous fluid such as water is governed by the Navier–Stokes
equations. However, it is beyond the capability of existing
supercomputers to solve the equations for water flow
through an aperture between two rough surfaces since huge
amounts of memory are necessary to appropriately
consider the effect of the surface roughness. Therefore,
the problem has often been approximated using a 2D field
by introducing the mean velocities across the aperture, and
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Fig. 12. Examples of the initial aperture distribution when fractures are sheared by 12.5 and 50mm for fracture sizes of 0.1, 0.4, 1.6 and 6.4m.
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ignoring the tortuosity of the flow across the aperture. By
integrating the equation of continuity across the aperture
(Z-direction), we obtain the following equation in the X–Y

domain:

qðeuÞ

qx
þ

qðevÞ

qy
¼ 0, (23)

where e is an aperture and u and v are the mean velocities in
the X- and Y-directions, respectively. Furthermore, we
assume that the flow at a local point can be approximated
by that through parallel plates with an aperture e at that
point. Thus, the following equations were assumed to hold
locally:

u ¼ �
e2

12m
qp

qx
,

v ¼ �
e2

12m
qp

qy
, ð24Þ

where m is the viscosity of the fluid and p is the pressure. By
substituting Eq. (24) into Eq. (23), the following equation,
called Reynolds equation, is obtained for laminar flow
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Fig. 13. Effects of both fracture size (L) and shear displacement ðdÞ on the

SD of the initial aperture.

Fig. 14. Effects of both fracture size and shear displacement on the mean

initial aperture (shear dilation).

Fig. 15. Boundary conditions in the simulation of water flow.
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through a fracture with rough surfaces [3,4,7,12,31–33]:

q
qx

e3

12m
qp

qx

� �
þ

q
qy

e3

12m
qp

qy

� �
¼ 0. (25)
Since we assumed that m is constant throughout the field,
this parameter can be removed from Eq. (25). Thus, by
solving Reynolds equation under given boundary condi-
tions with a finite difference method, the 2D velocity field
was determined by substituting the solution of the pressure
into finite difference expressions of Eq. (24). Although the
Reynolds equation would tend to overestimate the velocity
when the contact area is well developed [36], we used the
equation since it is a practical tool for estimating the
conductivity of a large fracture.
Linear equations derived from the finite difference form

of the Reynolds equation were constructed by removing
points in contact where the aperture is zero and accord-
ingly the pressure cannot be defined, and the pressure
distribution was solved by the Gauss–Seidel method [7].
The boundary conditions were given so that macroscopic
water flow may occur in one direction, as shown in Fig. 15,
where macroscopic flow is given in the X-direction as an
example. To compare the velocity fields for all fracture
sizes, a pressure difference at the boundaries perpendicular
to the direction of the macroscopic flow is given so that the
macroscopic pressure gradient might be the same for all
fracture sizes. Thus, the pressure difference is given
proportional to the fracture size. For boundaries parallel
to the direction of the macroscopic flow, the condition of
no flow across the boundaries is given, as shown in Fig. 15.
If the velocity field is determined, the volume flow rate Q

is obtained by the following equation for macroscopic flow
in the X-direction:

Q ¼

Z Ly

0

eu dy; (26)
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Fig. 16. Comparison of the probability density function of the initial

aperture for fractures without shearing for the original data and the data

using 256� 256 points.
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where Ly is the length of the boundary perpendicular to the
macroscopic flow ( ¼ L) (Fig. 15). The hydraulic aperture
is often used as a measure for evaluating the permeability
of a fracture. It is the aperture of a parallel-plates model
that gives the same volume flow rate as that of a fracture
with rough surfaces. Thus, the hydraulic aperture eh is
given by [3]

eh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12mQ

LyðDp=LxÞ

3

s
, (27)

where Lx is the length of the boundary parallel to the
macroscopic flow ( ¼ L) and Dp/Lx is the macroscopic
pressure gradient. When the hydraulic aperture eh is equal
to the mean aperture of the fracture em, the permeability of
the fracture is equivalent to that of a parallel-plates model
with the same mean aperture as the fracture. Thus, the
hydraulic aperture normalized by the mean aperture eh/em
is a useful measure for evaluating the permeability of a
fracture in comparison with the permeability of a parallel-
plates model with the same mean aperture. Therefore, we
used the normalized hydraulic aperture eh/em as a measure
of the hydraulic conductivity of the fracture. Once the
mean aperture em is determined by considering rock stress
and the mechanical properties of rock, the hydraulic
aperture eh is obtained by multiplying the normalized
hydraulic aperture eh/em by the mean aperture em. Note
that the normalized hydraulic aperture does not give the
hydraulic conductivity itself.

5.2. Simulation of water flow

Water flow was simulated for both normal closure and
closure after shearing, as described previously. During
closure of the fracture, the aperture of the overlapped area
was simply set to zero. In reality, the surfaces would
deform at the asperities in contact, decreasing the aperture
near the contacts more than is assumed in this study.
Accordingly, the hydraulic conductivity of the fracture
would be overestimated. However, Brown [4] showed that
this effect is relatively small when the aperture is calculated,
following Pyrak-Nolte et al. [37], by distributing the
volume of overlapping material uniformly over the open
part of the fracture. Furthermore, in reality, closure of a
fracture would occur with mechanical interactions among
the asperities in contact, which may cause the surfaces to
tilt relative to each other and accordingly bias the aperture
distribution. However, since tilting of the surfaces occurs
depending on each layout of the aperture in addition to
Table 3

Fracture size and grid spacing in the simulation of water flow

Normal closure Fracture size (m) 0.2 0.4

Grid spacing (mm) 0.784 1.569

Closure after shearing Fracture size (m) 0.1 0.2

Grid spacing (mm) 0.392 0.784
mechanical properties of rock and the stiffness of the rock
body around the fracture, it may be difficult to conclude
something general. Therefore, we ignored this effect for
simplicity, assuming that the reference planes for the two
surfaces of a fracture are closed uniformly.
The macroscopic water flow was given in the X-direction

for normal closure. For closure after shearing, the shear
displacement was given in the X-direction, and water flow
was analyzed for macroscopic flow in two directions:
parallel (X) and perpendicular (Y) to the shear direction.
The simulation was carried out with only 256� 256 grid
points for all fractures both with and without shearing
since existing supercomputers are not capable of solving
Eq. (25) if all of the original data of the aperture are used.
The aperture data were taken from the original data at
constant intervals according to the fracture size so that the
statistical properties of the aperture might not change
appreciably. Accordingly, the grid spacing increased with
the fracture size. The grid spacing and fracture size are
summarized in Table 3. The grid spacing ranged from 0.784
to 50.196mm for normal closure for fracture sizes of from
0.2 to 12.8m and from 0.392 to 25.098mm for sheared
fractures for fracture sizes of from 0.1 to 6.4m.
Fig. 16 shows a comparison of the probability density

function (PDF) of the initial aperture of fractures without
shearing using the original data and the data of 256� 256
points. Thick lines indicate the PDF of the original data
and thin lines indicate that of the 256� 256 data. The PDF
0.8 1.6 3.2 6.4 12.8

3.137 6.275 12.549 25.098 50.196

0.4 0.8 1.6 3.2 6.4

1.569 3.137 6.275 12.549 25.098
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Fig. 17. Fracture size effect on the normalized hydraulic aperture eh/em
when the fracture is normally closed to have a mean aperture em of 0.65

and 0.7mm.
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of the initial aperture approximately coincides with a
normal distribution with the same mean value and the
same SD as those of the fracture for all fracture sizes.
Although the PDF determined from the 256� 256 data is
slightly scattered around that of the original data, they are
essentially the same. Thus, the statistical properties were
maintained after the grid spacing was enlarged, and this
was also true for the sheared fractures. If synthetic
fractures with the same PSDs of the surface height and
aperture as those measured in the experiments are created
with a small number of grid points, the statistical proper-
ties of the aperture are quite different from those described
above since the aperture does not contain high-frequency
components, as described in Section 3.3. Thus, it is
necessary to create a synthetic fracture with small grid
spacing even if the flow area is reconstructed with large grid
spacing for simulating water flow.

However, a conical filter (4 points in the radial direction)
had to be used to remove the components of the highest
frequencies contained in sharp troughs since the solutions
for the linear equations on pressure did not converge after
several points were in contact due to the sharp troughs (see
Matsuki et al. [7] for details). The SD of the initial aperture
decreases with filtering, while the mean aperture maintains
its original value. Therefore, to keep the SD of the initial
aperture at the same value as with the original (256� 256)
data, the filtered aperture was enlarged around the mean
value by multiplying by the ratio of the SDs of the non-
filtered and filtered apertures. Thus, the components of the
highest frequencies were ignored in the simulation of water
flow. Therefore, we estimated the effect of filtering on the
estimation of the permeability of all fractures that are
normally closed to be in contact at a single point. The
results showed that the permeability of the fractures
slightly decreased with filtering, but the error was less than
2%. Accordingly, it can be said that filtering has only a
small effect on the estimation of permeability. This is
because the amplitude of the components with high
frequencies is small relative to that of the components
with low frequencies even for fractures without shear
deformation (Fig. 9). The effect of filtering for sheared
fractures is much smaller than that for normally closed
fractures since the PSD of the non-filtered initial aperture
at high frequencies is much smaller than that at low
frequencies, as will be shown later in Figs. 30 and 31.

Thus, we simulated water flow by using aperture data
with larger grid spacing but with the same statistical
properties as those of the original fractures. This means
that the percentage of the contact area produced in the flow
area by a certain closure is essentially the same as that in
the original fractures. Furthermore, we will estimate the
hydraulic conductivity by using the hydraulic aperture,
which is derived from the total volume flow rate (Eq. (27))
and therefore gives the mean hydraulic conductivity of the
fracture even if the flow is heterogeneous. Thus, we believe
that the trend of the mean hydraulic conductivity may be
reasonably estimated even using a large grid spacing for the
flow area, although we obviously cannot obtain informa-
tion on local flow in an area smaller than the grid spacing.
Further discussion on the effects of grid spacing will be
made later in comparison with the PSD of the initial
aperture.
6. Results and discussion

6.2. Permeability of a fracture during normal closure

Fig. 17 shows the fracture size effect on the normalized
hydraulic aperture eh/em when the fracture is normally
closed to have a mean aperture em of 0.65 and 0.7mm. The
results for fractures smaller than 0.2m are also shown for
comparison. The broken lines indicate the mean values of
eh/em determined for fracture sizes of from 0.2 to 12.8m.
Although the eh/em values are scattered, the normalized
hydraulic aperture is approximately independent of the
fracture size when the fracture size is equal to or greater
than 0.2m, up until which point the normalized hydraulic
aperture decreases with fracture size. Note that the
normalized hydraulic aperture decreases with closure (with
a decrease in em). As described previously, the SD of the
initial aperture increases with fracture size until the fracture
size exceeds 0.2m, but is almost constant beyond that point
(Fig. 11). Accordingly, the size effect on the permeability of
a fracture that is normally closed to have the same mean
aperture almost disappears when the fracture is greater
than 0.2m, since the SD of the aperture is almost constant
beyond this fracture size.
The decrease in the hydraulic aperture with fracture size

is consistent with the experimental results obtained by
Raven and Gale [8], as described previously. However, the
large scatter in the normalized hydraulic aperture of large
fractures with almost the same SD of the initial aperture
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Fig. 18. Velocity and pressure fields for fracture sizes L of 0.2, 0.8, 3.2 and 12.8m when they are closed to have a mean aperture em of 0.65mm.
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indicates that both the statistical properties of the aperture
and also the layout of the aperture significantly affect the
permeability of fractures. This suggests that it may be
difficult to experimentally determine the size effect on the
permeability of a fracture since an individual sample has a
unique aperture layout. Thus, Gale [38] obtained experi-
mental results inconsistent with those reported by Raven
and Gale [8].

Fig. 18 shows the velocity and pressure fields for fracture
sizes L of 0.2, 0.8, 3.2 and 12.8m when they are closed to
have a mean aperture em of 0.65mm. The pressure is shown
using a gray scale, where pressure decreases with bright-
ness. The small white area indicates the area in contact,
where the pressure cannot be defined. The data used for the
velocity field represent only about 2.3% of those obtained
at all grid points. Note that the same value for the
macroscopic pressure gradient was used for all fractures so
that a similar velocity could be obtained for fractures of
various sizes. The flow is more or less tortuous for all
fracture sizes, but no appreciable difference is observed
among them. This is because the aperture distribution
relative to the fracture size is similar for all fracture sizes
(Figs. 8 and 16).
Matsuki et al. [7] proposed Eq. (1) as a size-independent

formula for estimating the normalized hydraulic aperture
eh/em of a hydraulic fracture with a size of less than 16mm
as a function of the mean aperture normalized by the SD of
the initial aperture em/s0, as described previously. The
relation between eh/em and em/s0, obtained in this study, is
summarized in Fig. 19 in comparison with Eq. (1).
Although the relations obtained in this study for large
fractures were scattered around the curve of Eq. (1), the
mean relation can be given by Eq. (1). Accordingly, we can
use Eq. (1) to estimate the permeability of a large fracture if
the mean aperture and the SD of the initial aperture are
determined. Thus, the normalized hydraulic aperture of a
fracture during normal closure is determined by the mean
aperture relative to the SD of the initial aperture, and
appreciably decreases with closure. When the mean
aperture is 8, 4, 2 and 1 times the SD of the initial aperture,
the hydraulic aperture is 99.1%, 96.6%, 88.8% and 70.2%
of the mean aperture, respectively, which corresponds to
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97.1%, 90.2%, 70.1% and 34.6% of the volume flow rate,
respectively. Thus, the hydraulic aperture is greater than
99% of the mean aperture when the mean aperture is
greater than 7.7 times the SD of the initial aperture.

6.2. Permeability of a fracture during closure after shearing

Fig. 20 shows the effect of the fracture size on the
normalized hydraulic aperture eh/em when the fracture is
sheared by d ¼ 12:5, 25 and 50mm and is closed to have a
mean aperture em of 4.0mm. Solid symbols indicate the
normalized hydraulic aperture for macroscopic flow
Fig. 20. Effect of fracture size on the normalized hydraulic aperture eh/em
when the fracture is sheared by d ¼ 12.5, 25 and 50mm and is closed to

have a mean aperture em of 4.0mm.

Fig. 19. Relation between eh/em and eh/s0 obtained for synthetic fractures

without shearing in comparison with Eq. (1).
perpendicular to the shear displacement and open symbols
indicate that parallel to the shear displacement. For d ¼ 25
and 50mm, pressure could not be calculated for the largest
fractures of 3.2 and 6.4m when the fractures were closed to
have a mean aperture of 4.0mm. First, the permeability of
a fracture subjected to shear displacement shows remark-
able anisotropy, as previously reported in laboratory
experiments on small fractures [10,12]. The normalized
hydraulic aperture eh/em in the macroscopic flow parallel to
the shear displacement is less than 1, and is much smaller
than that in the macroscopic flow perpendicular to the
shear displacement, which is mostly greater than 1.
Furthermore, this anisotropy in the permeability increases
with an increase in shear displacement when the fractures
are closed to have the same mean aperture. In particular,
the normalized hydraulic aperture in the macroscopic flow
parallel to the shear displacement significantly decreases
with shear displacement. Since we could not obtain the
hydraulic aperture for large fractures and also since the
results showed a large scatter due to the effects of the
layout of the aperture for each fracture, the fracture size
effects cannot be clearly seen in Fig. 20.
The relations between eh/em and em/s0 obtained by all

flow analyses are shown in Fig. 21 for each shear
displacement. The average relation given by Eq. (1) for
the normalized hydraulic aperture of the fracture during
normal closure is also shown for comparison. The value of
eh/em in the macroscopic flow parallel to the shear
displacement (open symbols) mostly decreases with closure
(with a decrease in em/s0) while that in the macroscopic
flow perpendicular to the shear displacement (solid
symbols) mostly increases with closure. Thus, the aniso-
tropy in the hydraulic conductivity of the sheared fracture
increases with closure. The eh/em versus em/s0 plot obtained
for the fracture during normal closure is located between
those for the two directions of macroscopic flow in sheared
fractures. Thus, for a given normalized mean aperture, the
normalized hydraulic aperture in the macroscopic flow
perpendicular to the shear displacement is greater than that
of a fracture without shearing while that in the macro-
scopic flow parallel to the shear displacement is mostly
smaller than that of a fracture without shearing.
Fig. 22 shows these diagrams for fracture sizes L of 0.1,

0.2, 0.8 and 1.6m. The anisotropy in the hydraulic
conductivity of a sheared fracture increases as the shear
displacement increases for small fractures (L ¼ 0.1 and
0.2m). However, the effect of shear displacement on the
relation between eh/em and em/s0 decreases with fracture
size and almost disappears when the fracture size equals
1.6m, at which point the magnitude of a shear displace-
ment of 50mm relative to the fracture size is about 3.1%.
Fig. 23 shows the relation between eh/em and em/s0 for (a)
d40:031 L and (b) do0.031 L. When d40.031 L (9 of 21
cases), the relations are scattered due to the dependence on
the shear displacement relative to the fracture size (d/
L ¼ 0.06–0.5). However, when do0.031 L (12 cases), the
scatter is greatly reduced and similar relations are obtained
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Fig. 21. Relation between eh/em and em/s0 for each shear displacement.
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regardless of both the fracture size and the shear
displacement. Thus, for a given fracture size, the relation
between the normalized hydraulic aperture and the
normalized mean aperture is approximately independent
of the shear displacement until the shear displacement
exceeds about 3.1% of the fracture size. For a given shear
displacement, the relation depends on the fracture size until
the fracture size exceeds about 32 times the shear
displacement, beyond which the SD of the initial aperture
is almost independent of the fracture size (Fig. 13). Thus,
the fracture size effect on the relation between the
normalized hydraulic aperture and the normalized mean
aperture almost disappears when the SD of the initial
aperture is independent of the fracture size. This indicates
that the SD of the initial aperture also governs water flow
in sheared fractures.

Fig. 24 shows the velocity and pressure fields for the two
directions of macroscopic flow and the aperture distribu-
tion when fractures of 0.1, 0.2, 0.4 and 1.6m in size are
sheared by 12.5mm and closed to have a mean aperture of
4.0mm. The scale beneath the middle figures indicates the
magnitude of the shear displacement for reference. The
contour maps of the aperture distribution are given at
every 1mm, and brighter parts indicate areas with a greater
aperture. Although the number of grid points in the
velocity field was greatly reduced (about 4.9% of all points)
for clarity, the contour maps of the aperture were
determined using the values at all grid points (256� 256).
Those for a shear displacement of 25 and 50mm are shown
in Figs. 25 and 26, respectively. Clearly, channeling flow
develops in the macroscopic flow perpendicular to the
shear displacement, although it is also observed in the
macroscopic flow parallel to the shear displacement.
However, in the latter case, the flow is inhibited more as
the shear displacement increases. The flow is more localized
as the shear displacement increases or as the fracture size
decreases. Furthermore, the number of channels tends to
increase with the fracture size and decrease with the shear
displacement for fractures that are equal to or smaller than
1.6m. Thus, for these fractures, the flow pattern is
governed by the magnitude of the shear displacement
relative to the fracture size. Flow channeling is important
for the practical problems related to contaminant transport
in geologic systems [39].
Fig. 27 shows the velocity and pressure fields in the

direction of the macroscopic flow perpendicular to the
shear displacement when large fractures of 3.2 and 6.4m
are sheared by 12.5mm and closed to have a mean aperture
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Fig. 22. Relation between eh/em and em/s0 for fracture sizes L of 0.1, 0.2, 0.8 and 1.6m.
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em of 4.0mm. One-sixteenth of the flow area is enlarged
and is shown beneath each figure. For the whole flow area,
the number of grid points in the velocity field was increased
to about 9.2% of all grid points, which is almost the upper
limit for being able to clearly see the velocity field, while the
velocity vectors at all grid points are shown for the one-
sixteenth part of the flow area to see local flow more
precisely. Although channeling flow develops, the tendency
described above for small fractures is not clearly observed
in these large fractures. Thus, the number of predominant
channeling flows no longer appears to increase with
fracture size.

It is obvious that large apertures are connected to each
other to form a channel, which results in the development
of channeling flow. As described previously, shear dis-
placement reduces the degree of matedness between the
two fracture surfaces and, as a result, the magnitudes of the
components of an aperture with low frequencies (large
wavelengths) increase relative to those with high frequen-
cies, particularly for small fractures (Fig. 12). Thus, the
probability of the connectivity of large apertures greatly
increases with shear displacement and, accordingly, chan-
nels may be easily created in sheared fractures. In contrast,
the connectivity is poor for the aperture of a fracture
without shearing, since, as can be seen in Fig. 8, large
apertures exist almost at random and are interrupted by
small apertures between them.
The number of grid points that are in contact signifi-

cantly increases with shear displacement when fractures are
closed to have the same mean aperture, since the SD of the
initial aperture significantly increases with shear displace-
ment (Fig. 13). The percentage of points in contact is
0.2–0.7%, 3–6% and 11–18% of all grid points for d ¼
12:5, 25 and 50mm, respectively, when the fractures are
closed to have a mean aperture of 4.0mm. Fig. 28 shows
areas where the aperture is smaller than 1.0mm in black for
all shear displacements, when fractures of 0.1, 0.4, 1.6 and
6.4m are closed to have a mean aperture of 4.0mm. We
call an area that forms an isolated island a ridge. The ridges
contain points in contact and water flows through channels
that may form between ridges. Fig. 28 clearly shows that
ridges and channels form approximately perpendicular to
the shear displacement. Thus, the ridges inhibit the
macroscopic flow parallel to the shear displacement [13]
and at the same time channeling flow develops in the
macroscopic flow perpendicular to the shear displacement.
Since these effects of the channels and ridges in the aper-
ture become more remarkable with closure of the fracture,
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Fig. 23. Relation between eh/em and em/s0 for (a) d40.031 L and (b)

do0.031 L.
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the anisotropy in the permeability of the sheared fracture
increases with closure. When a large fracture of, for
example, 6.4m is sheared by 25 and 50mm, only narrow
channels relative to the fracture size are produced, which
makes it difficult to determine the hydraulic aperture.

Fig. 28 also shows that the number of ridges increases
with the fracture size. Accordingly, ridges and channels
form in a more dispersed manner relative to the fracture size
as the fracture size increases. This suggests that the number
of channeling flows may increase with the fracture size even
in a flow area of 256� 256 grid points and that the effects of
the heterogeneous flow may be averaged to give the mean
conductivity of large fractures. On the other hand, while the
number of ridges increases when shear displacement
increases from 12.5 to 25mm, it decreases when shear
displacement increases from 25 to 50mm, since a greater
number of small ridges are connected to each other to form
a large ridge. Thus, the flow is greatly localized for
d ¼ 50mm, since a large percentage of contact points are
connected to each other to form large ridges. The
localization of water flow in a sheared fracture suggests
that the permeability of a sheared fracture should not be
estimated by that in a narrow area, since the permeability at
one point can be quite different from that at another point.
In fact, Hanano [40] reported an experience in a geothermal
field where a well that intersected a fracture showed
sufficient steam production while another well that inter-
sected the same fracture at a distance of less than 10m from
the first well produced almost no steam.
Fig. 29 shows the distribution of apertures greater than

the mean aperture (channels) in white when fractures of
0.1, 0.2, 0.8 and 1.6m were sheared by 50mm and closed to
have a mean aperture of 4.0mm. The normalized hydraulic
apertures of these fractures in the macroscopic flow
perpendicular to the shear displacement are greater than
1.1. Clearly, a few predominant channels with a depth
greater than the mean aperture are created perpendicular
to the shear displacement for these fractures. The volume
flow rate is proportional to the cubed aperture when the
flow is assumed to be that in a parallel-plates model (Eq.
(27)) [1]. This means that a single channel with a small
width but a large aperture can provide a conduit for water
flow through which a greater volume of water flows than
that provided by the parallel-plates model with the mean
aperture.

6.3. Aperture PSD of a sheared fracture

Let us first consider the effect of shear displacement on
the Fourier components of the aperture when the shear
displacement d (40) is given in the X-direction. For
convenience, we consider a completely mated fracture with
identical surfaces. The height of the upper surface h1(x, y)
given by Eq. (4) can be rewritten by the following discrete
inverse Fourier transform:

h1ðx; yÞ ¼
XN�1
k¼0

XN�1
l¼0

akle
i2pðkðx=LÞþlðy=LÞÞ, (28)

where akl is a complex Fourier component for the spatial
frequencies k/L and l/L in the X- and Y-directions,
respectively, L�L is the fracture size and N�N is the
number of grid points. The height of the lower surface h2(x,
y) is obtained by shifting Eq. (28) by d in the X-direction
since the lower surface was assumed to originally be the
same as the upper surface.

h2ðx; yÞ ¼
XN�1
k¼0

XN�1
l¼0

akle
i2pðkððx�dÞ=LÞþlðy=LÞÞ. (29)

Accordingly, the aperture e(x, y) created by these surfaces is
obtained by taking the difference between Eqs. (28) and (29).

eðx; yÞ ¼
XN�1
k¼0

XN�1
l¼0

ekle
i2pðkðx=LÞþlðy=LÞÞ, (30)
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Fig. 24. Velocity and pressure fields for two directions of macroscopic flow and the aperture distribution when fractures of 0.1, 0.2, 0.8 and 1.6m in size

are sheared by 12.5mm and is closed to have the mean aperture of 4.0mm.
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where the Fourier component of the aperture ekl is given by

ekl ¼ 2 sin pk
d
L

� �
akle

ipð1=2�kðd=LÞÞ. (31)

The initial aperture is obtained by adjusting a constant
component of Eq. (30) so that the two surfaces may be in
contact at a single point.
The linear profiles of the height of the upper surface in
the X- and Y-directions, h(x) and h(y), respectively, are
obtained from Eq. (28) for a given value of y and x,
respectively.

hðxÞ ¼
XN�1
k¼0

ch
ke

i2pkðx=LÞ; hðyÞ ¼
XN�1
l¼0

ch
l e

i2plðy=LÞ, (32)
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Fig. 25. Velocity and pressure fields for two directions of macroscopic flow and the aperture distribution when fractures of 0.1, 0.2, 0.8 and 1.6m are

sheared by 25mm and closed to have a mean aperture of 4.0mm.
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where

ch
k ¼

XN�1
l¼0

akle
i2plðy=LÞ; ch

l ¼
XN�1
k¼0

akle
i2pkðx=LÞ. (33)

Similarly, the linear profiles of the aperture in the
X- and Y-directions, e(x) and e(y), respectively, is
obtained from Eq. (30) for a given value of y and x,
respectively.

eðxÞ ¼
XN�1
k¼0

ce
ke

i2pkðx=LÞ; eðyÞ ¼
XN�1
l¼0

ce
l e

i2plðy=LÞ, (34)
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Fig. 26. Velocity and pressure fields for two directions of macroscopic flow and the aperture distribution when fractures of 0.1, 0.2, 0.8 and 1.6m are

sheared by 50mm and closed to have a mean aperture of 4.0mm.
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where

ce
k ¼ 2 sin pk

d
L

� �
eipð1=2�kðd=LÞÞ

XN�1
l¼0

akle
i2plðy=LÞ,

ce
l ¼ 2

XN�1
sin pk

d
L

� �
eipð1=2�kðd=LÞÞakle

i2pkðx=LÞ. ð35Þ

k¼0
From Eqs. (33) and (35), for the direction parallel
to the shear displacement (the X-direction), the
Fourier component of the aperture ce

k can be related to
that of the height of the upper surface ck

h for an arbitrary
value of y as

ce
k ¼ 2 sin pk

d
L

� �
eipð1=2�kðd=LÞÞch

k. (36)
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Fig. 27. Velocity and pressure fields for macroscopic flow perpendicular to the shear displacement when fractures of 3.2 and 6.4m are sheared by 12.5mm

and closed to have a mean aperture of 4.0mm.
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Thus, the amplitude of the aperture in the direction parallel
to the shear displacement is given for the spatial frequency
k/L by

jce
kj ¼ 2jch

kj sin
pkd
L

� �����
���� ðk ¼ 1;N � 1Þ. (37)

Accordingly, the PSD of the aperture in the direction
parallel to the shear displacement Gex(f) is given by

Gexðf Þ ¼ 2Gðf Þf1� cosð2pdf Þg, (38)

where G(f) is the PSD of the surface height and f ¼ k/L.
The above equation coincides with that obtained by Wang
et al. [41] using the autocorrelation function. Eq. (37)
means that the amplitude of the Fourier component of the
aperture in the shear direction varies periodically relative to
that of the surface height according to the shear displace-
ment d unless d is zero, for which no apertures are
produced. Thus, the PSD of the aperture relative to that of
the surface height of a sheared fracture is locally maximum
and has a value of 4 when

k

L
¼

1

d
nþ

1

2

� �
ðn ¼ 0; 1; . . .Þ, (39)

and is locally minimum and has a value of zero when

k

L
¼

1

d
ðnþ 1Þ ðn ¼ 0; 1; . . .Þ. (40)

However, a real fracture has surfaces more or less
different from each other and therefore the Fourier
component of the aperture is never zero. Thus, oscillation
of the amplitude of the Fourier components of the
aperture occurs with a spatial frequency of 1=d, with the
first local maximum at 1=ð2dÞ, when the aperture of a
linear profile is considered. Note that we did not
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Fig. 28. Effects of both fracture size and shear displacement on the formation of ridges in the aperture when fractures of 0.1, 0.4, 1.6 and 6.4m are sheared

by d and closed to have a mean aperture of 4.0mm.
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consider the difference in the relative phases among linear
profiles.

For the direction perpendicular to the shear displace-
ment (the Y-direction), the Fourier component of the
aperture is not directly related to those of the surface height
for an arbitrary value of x. Therefore, to know the relation
between the PSDs of the surface height and the aperture in
the Y-direction, it is necessary to take an average of the
PSD for all values of x by

Gðf Þ ¼
1

L

Z L

0

jch
l j
2
dx; Geyðf Þ ¼

1

L

Z L

0

jce
l j
2 dx, (41)

where the former is the average PSD of the height of the
upper surface, the latter is that of the aperture and f ¼ l/L.
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Fig. 29. Distribution of apertures greater than the mean aperture (channel) when fractures of 0.1, 0.2, 0.8 and 1.6m are sheared by 50mm and closed to

have a mean aperture of 4.0mm.
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As a result, the following equations were obtained by using
the amplitude of the Fourier component akl of the height of
the upper surface:

Gðf Þ ¼
XN�1
k¼0

jakl j
2; Geyðf Þ ¼

XN�1
k¼0

4 sin2 pk
d
L

� �
jakl j

2. (42)

The former is given by Eq. (2) (power law) and the latter is
an asymptote at twice the former although we do not know
an explicit form for the latter.

Fig. 30 shows the ensemble-averaged PSDs of the linear
profiles of the initial aperture for all synthetic fractures
when the fracture is sheared by 12.5, 25 and 50mm.
Fig. 30(a) shows the PSD in the shear direction and
Fig. 30(b) shows that perpendicular to the shear direction.
The PSD of the surface height together with that multiplied
by two are also shown for comparison. The PSD of the
initial aperture was determined for the non-filtered data of
256� 256 grid points to clearly show the effect of shear
displacement. Note that the deviation of the initial aperture
PSD from a line of twice the surface height PSD at high
frequencies is due to an error in FFT. For all shear
displacements, the PSD of the initial aperture in the shear
direction is twice that of the surface height at a spatial
frequency of 1=ð4dÞ and has a first local maximum relative
to the PSD of the surface height at a spatial frequency of
1=ð2dÞ, as indicated by open circles, beyond which the PSD
of the initial aperture rapidly decreases with the spatial
frequency, with the same slope as that of the PSD of the
surface height, but oscillating with a frequency of 1=d, as
theoretically considered above. In contrast, the PSD in the
direction perpendicular to the shear direction coincides
with that of the surface height at a spatial frequency of
about 1=ð4dÞ and shows an asymptote at twice the PSD of
the surface height with an increase in spatial frequency, as
theoretically considered above.
The effect of shear displacement on the PSD of the initial

aperture both parallel and perpendicular to the shear
displacement is summarized in Fig. 31. The PSD of the
initial aperture in the direction parallel to the shear
displacement (solid line) is determined by Eq. (38) since it
approximately gives the actual one, excluding local
minima, and that in the direction perpendicular to the
shear displacement (broken line) is determined by calculat-
ing Eq. (42). The solid circles indicate the PSDs at a
wavelength of 10d and the open circles for the direction



ARTICLE IN PRESS

Fig. 30. Ensemble-averaged PSD of linear profiles of the initial aperture in

the directions (a) parallel and (b) perpendicular to the shear displacement

for all fracture sizes when the fracture is sheared by 12.5, 25 and 50mm.

Fig. 31. Effect of shear displacement on the PSD of the initial aperture.
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parallel to the shear displacement indicate those at a
wavelength of 2d. The PSDs of the initial apertures of all
fractures without shearing, the maximum wavelength in the
flow area (256� 256 points) of sheared fractures and the
maximum grid spacing in the simulation of water flow
(25.098mm for a fracture of 6.4m) are also shown for
reference. The PSDs of the aperture when sheared fractures
are closed to have a mean aperture of 4.0mm are smaller
than those of the initial aperture, but this difference is not
significant. Therefore, we can discuss the aperture of
sheared fractures with a mean aperture of 4.0mm using
this figure.
The PSD of the initial aperture significantly increases

with shear displacement for both directions. Accordingly,
the magnitude of the aperture in the channels increases and
that in the ridges decreases with shear displacement. As a
result, the hydraulic aperture of a sheared fracture in the
macroscopic flow perpendicular to the shear displacement
increases with shear displacement while that in the
macroscopic flow parallel to the shear displacement
decreases with shear displacement when the fractures are
closed to have the same mean aperture (Fig. 20).
The important feature in the PSD of the initial aperture

of a sheared fracture is that the PSD of the aperture has a
much greater value for wavelengths greater than 2d than
for wavelengths less than 2d for both directions. This
means that a large aperture is produced only with
wavelengths greater than 2d. Thus, large channels in the
aperture may be produced only with wavelengths greater
than 2d for any fracture size. The value of 2d when
d ¼ 12:5mm is almost identical to the maximum grid
spacing used in the simulation of water flow, 25.098mm for
a sheared fracture of 6.4m, below which the PSD of the
aperture rapidly decreases with spatial frequency. Accord-
ingly, it can be said that the grid spacing used in this study
had only a small effect on the estimation of the
conductivity of the sheared fractures since the amplitudes
of the components with wavelengths of smaller than 25mm
are small. Furthermore, for all shear displacements, the
PSD of the initial aperture in the direction parallel to the
shear displacement is greater than that perpendicular to
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the shear displacement for wavelengths greater than 2d and
less than about 10d (2dolo10d) and is smaller than that
for wavelengths greater than about 10d (l410d). Thus, the
initial aperture distribution of the sheared fracture is never
isotropic. Obviously, if the PSD of the aperture is the same
for an arbitrary direction, the aperture distribution is
isotropic like that of normally closed fractures, for which
channeling flow does not occur preferably in any direction.
In contrast, when a difference in the PSD of the aperture
exists between the two directions, this produces anisotropy
in the aperture distribution and may produce channels and
ridges perpendicular to the direction with greater PSD.
Accordingly, channels and ridges with 2dolo10d may be
created perpendicular to the shear displacement while those
with l410d may also be created parallel to the shear
direction, depending on the maximum wavelength that
equals the size of the fracture. Actually, the number of
channeling flows in the macroscopic flow parallel to the
shear displacement is smaller than that perpendicular to
the shear displacement (Figs. 24 and 25), although
channeling flow is not clearly observed for the macroscopic
flow parallel to the shear displacement since flow is
inhibited by the ridges.

However, the above discussion only applies to the
amplitude spectrum of the linear profiles of the aperture
and therefore the effect of the phase difference among the
linear profiles was not taken into consideration. The
Fourier component of the aperture contains a relative
phase that is distributed at random for any wavelength.
Accordingly, even if we pay attention only to a component
with a certain wavelength, the position of the local
maximum in the aperture in each linear profile differs by
a distance less than the wavelength. Therefore, the channels
of the aperture form depending on the phase differences
among linear profiles for each wavelength. Thus, the
channels created by the shear displacement are more or less
tortuous and sometimes connected to each other or branch
off, as shown in Figs. 24–27.

If the fracture size (L) is not much greater than 2d, as is
the case for small fractures less than 0.4m, the wavelengths
of the aperture for the creation of channels are limited to a
narrow region. Accordingly, for small fractures a small
number of channels may form perpendicular to the shear
direction and the number of channels may increase with the
fracture size and decrease with shear displacement (Figs.
24–26 and Fig. 28). In contrast, when the fracture size is
much greater than 2d, as in the case of large fractures
greater than 1.6m, all of the components with wavelengths
of 2dolo10d are superposed to form channels regardless
of the fracture size. Thus, the tendency for the number of
channels to increase with the fracture size was not clearly
observed for large fractures. Furthermore, for small
fractures, a large portion of the PSD of the initial aperture
is occupied by wavelengths less than 2d and this portion
increases with shear displacement. Accordingly, the aper-
ture distribution of small fractures more closely resembles
the surface of a fracture with an increase in shear
displacement (Fig. 12). In contrast, as the fracture size
increases, a portion of the PSD of the initial aperture is
occupied more by wavelengths greater than 2d. Accord-
ingly, the aperture distribution of large fractures resembles
that of normally closed fractures (Fig. 12).
Figs. 30 and 31 show that the PSD of the initial aperture

increases only slightly with an increase in wavelength for
wavelengths greater than 2d for all shear displacements.
Therefore, similar to the discussion given by Brown [26] for
the fracture size effect on the SD of the aperture of a
normally closed fracture, the SD of the initial aperture of a
sheared fracture increases with fracture size to quickly
asymptote a certain value, depending on the shear
displacement. Thus, the fracture size effect on the SD (of
linear profiles) of the initial aperture of sheared fractures
disappears at a certain fracture size that increases with
shear displacement, as already described in association
with Fig. 13.

7. Conclusions

To estimate the size effect on the aperture and
permeability of a large fracture, synthetic fractures of
from 0.2 to 12.8m were created on a computer by a new
spectral method. The fracture size effect on the standard
deviation of the initial aperture was first analyzed for
fractures both with and without shearing. Next, by taking
aperture data at intervals to establish a flow area, water
flow was simulated for fractures during both normal
closure and closure after shearing, by solving Reynolds
equation to determine the hydraulic aperture normalized
by the mean aperture as a measure of the permeability of
the fracture. The main conclusions in this study can be
summarized as follows:
(1)
 The spectral method proposed in this study for creating
a synthetic fracture approximately reproduced the ratio
of the PSD of the initial aperture to that of the surface
height, determined for a tensile fracture of 1m.
(2)
 When the fracture is closed without shearing to have
the same mean aperture, the fracture size effect on the
hydraulic aperture disappears when the fracture size
exceeds about 0.2m, since beyond this size the standard
deviation of the initial aperture is almost independent
of the fracture size. An empirical formula was proposed
to estimate the hydraulic aperture of a fracture of any
size by giving the mean aperture and the standard
deviation of the initial aperture.
(3)
 When the fracture is closed after shearing, the hydraulic
conductivity shows remarkable anisotropy. The hy-
draulic aperture in the macroscopic flow perpendicular
to the shear displacement is much greater than that in
the macroscopic flow parallel to the shear displace-
ment. The former is mostly greater than the mean
aperture and the hydraulic aperture normalized by the
mean aperture increases with closure, while the latter is
mostly less than the mean aperture and the normalized
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hydraulic aperture decreases with closure. This aniso-
tropy increases with the shear displacement when the
fracture is closed to have the same mean aperture.
(4)
 The relation between the hydraulic aperture normalized
by the mean aperture and the mean aperture normal-
ized by the standard deviation of the initial aperture is
approximately independent of both the fracture size
and shear displacement when the shear displacement is
less than about 3.1% of the fracture size, where the
standard deviation of the initial aperture of the sheared
fracture is almost independent of the fracture size.
(5)
 The channels and ridges that form perpendicular to the
shear displacement cause the anisotropy in the hy-
draulic conductivity of a sheared fracture. The PSD of
the aperture of a sheared fracture significantly increases
with shear displacement. As a result, the magnitudes of
channels in the aperture increase with shear displace-
ment and accordingly the anisotropy in the perme-
ability of a sheared fracture with the same mean
aperture becomes more remarkable as shear displace-
ment increases. Furthermore, the power spectral
density of the aperture of a sheared fracture has a
much greater value for wavelengths greater than two
times the shear displacement than that for wavelengths
less than twice the shear displacement, and that in the
shear direction is greater than that in the direction
perpendicular to the shear displacement for wave-
lengths of from 2- to 10-fold the shear displacement.
Accordingly, channeling flow develops perpendicular to
the shear direction and the number of channels
increases with fracture size and decreases with shear
displacement for small fractures.
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