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Abstract

Many types of mixing model are used widely within the earth sciences to determine the electrical properties of porous
media consisting of solid and fluid phases of known conductivities, volume fractions and distributions (i.e. phase
connectivities). Most models are valid for two or more conducting phases. However, of the simple models only Archie's
law includes a variable term, the Archie cementation exponent m, that describes the connectivity of the phases.
Unfortunately, Archie's law is only valid for one conducting phase distributed within a non-conducting phase, which
makes it inapplicable in instances where the rock matrix has a significant conductivity such as for clay-rich rocks and in
calculations involving partial melting. More complex models exist which account for multiple conducting phases and
control over phase conductivity. We have adapted the conventional Archie's law to produce a simple modified Archie's
law that can be used with two conducting phases of any conductivity and any volume fraction, while retaining the
ability to model variable connectivities within those phases that result from variations in their distribution. The
modified model has two exponents (m and p) that describe the connectivity of each of the two phases. The exponents are
related through an equation that depends also on the volume fractions of the two phases. The modified and the
conventional versions of Archie's law have been tested on a granular analogue porous medium with a conducting
matrix and a pore space saturated with a range of saline fluids with different salinities and conductivities. The new
model describes the experimentally determined electrical behaviour of the system extremely well, improving greatly on
the conventional Archie's law. ß 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The electrical conductivity of a porous medium
containing a single conducting £uid phase de-

pends upon the electrical conductivities (ci) and
relative volumes (xi) of the matrix and the £uid
(e.g. [1]). The bulk conductivity depends also
upon the geometrical distributions of the matrix
and the £uid, which control the connectivity of
paths for current £ow in the porous medium [1].

In porous media, the prediction of bulk con-
ductivity is a non-trivial problem as a result of
the complex distribution of solid and £uid phases
each of which have di¡erent conductivities, vol-
ume fractions and connectivities. A large number
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of mixing models have been published in the at-
tempt to solve this problem [1^24], many of which
are valid only for particular well de¢ned simple
geometric distributions of the solid and £uid
phases, and hence implicitly assume a ¢xed elec-
trical connectivity. For example, one simple mod-
el describes alternating layers of matrix and £uid
parallel to an applied external potential, where the
connectivity of both phases is unity, and where
the bulk conductivity is given by the arithmetic
mean of the conductivities of each phase weighted
by their volume fractions [1^3]. The geometrical
opposite is the scenario where there are alternat-
ing layers of matrix and £uid perpendicular to the
applied external potential, where the connectivity
of both phases is zero, and where the bulk elec-
trical conductivity is given by the harmonic mean
of the conductivities of each phase weighted by
their volume fractions [1^3]. These parallel and
perpendicular models are sometimes known as
the Wiener bounds [3,4]. Another simple model
is valid for a random distribution of each of the
phases within the porous medium. Here the con-
nectivity is not known and the bulk electrical con-
ductivity is given by the geometric mean of the
conductivities of each phase weighted by their vol-
ume fractions [5,6]. There are a number of models
that take account of more complex geometries of
the two phases. One example is the mixture (sim-
ple summation) of the parallel and perpendicular
bounds employed by Luo et al. [2].

There have been many attempts at analysing a
two phase conducting mixture with e¡ective me-
dium theory. One of the earliest e¡ective medium
models for the conductivity of spheres dispersed
in a continuous medium was proposed by Max-
well [7] and was extended and applied to complex
conductivities by Wagner [8]. The Maxwell model
has also been extended for use with other particle
shapes [9]. Subsequently there have been many
studies on the e¡ective conductivity of mixed me-
dia using the e¡ective medium approach. The best
known of these is the work of Hashin and Shtrik-
man [10], who produced new upper and lower
bounds on the e¡ective conductivity known as
HS+ and HS3 [10]. Another important model
derived from e¡ective medium theory is that of
Wa¡ [11]. This model assumes that the medium

is composed of composite spheres of varying size.
Each sphere has a spherical core of conducting
phase 1 with a conductivity c1, and is completely
covered by an outer shell of conducting phase 2
with conductivity c2 in such a way that the vol-
ume ratio of the phases is the same for each
sphere and independent of sphere size. Since the
outer shells (phase 2) of all the composite spheres
are in contact, there is high connectivity for phase
2. Conversely, phase 1 is not connected.

Another approach is to suppose that a given
medium composed of two conducting phases has
some distribution of phases that falls between the
extreme cases of the series and parallel models. It
is then assumed that some combination of the
series and parallel models represented by resis-
tor/capacitor equivalent circuits will describe the
e¡ective conductivity of the medium. This ap-
proach is the basis of the conventional brick-layer
model [12^15]. Although this model is an elegant
and £exible solution, it has been noted to be valid
only up to several percent of a conductive bound-
ary phase [16]. Partzsch [17,18] has modi¢ed the
brick-layer model to enable it to be used for con-
ductive boundary phases up to 100%.

All of the models introduced above are valid
for a particular geometry and represent a single
degree of connectivity of the conducting phases.
Many of these methods are correct to the ¢rst
term of an expansion of terms that is implicit in
the model. There have been studies that attempt
to generalise the problem by solving it to further
terms, but these are only valid for spherical par-
ticles dispersed randomly in a continuous me-
dium. Examples of the latter include the work
of Je¡rey [19], whose results are only valid for a
dilute suspension of conducting spheres in a con-
ducting medium, and Batchelor and O'Brien [20]
who extend the approach to the limit where the
spheres have a su¤ciently high volume fraction to
be in contact. Milton and Bergman [21,22] have
taken the work of Hashin and Shtrikman and
generalised it for use with complex dielectric con-
stants, while Korringa and LaTorraca [23] use the
Milton^Bergman approach to constrain the con-
ductivity of a porous medium as a function of
frequency. This last work is of particular interest
because it prepares the way for extracting useful
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geometric information from impedance spectros-
copy measurements carried out on £uid saturated
rocks in the laboratory.

Although it was derived empirically, Archie's
law is the only simple model which contains a
variable parameter describing the connectivity of
the conducting (usually £uid) phase [1,24]. How-
ever, Archie's law is only valid strictly for a con-
ducting phase saturating a non-conducting ma-
trix. In practice, at shallow depths and low
temperatures, the rock matrix conductivity can
be assumed to be negligible, which makes Archie's
law extremely useful in the calculation of water
and hydrocarbon saturations in oil reservoirs
composed of clean formations, where it is rou-
tinely applied. However, when the matrix conduc-
tivity has a signi¢cant conductivity, the conven-
tional Archie's law is invalid, as will be shown in
this paper.

Recently, there has been much interest in the
calculation of the bulk electrical conductivity of
partially molten rocks in order to explain high
electrical conductivities observed by magneto^tel-
luric measurements in various locations around
the globe [17,18,25^28]. The main aims of these
studies are to ascertain whether partial melting
has the potential for explaining the observed
high conductivities and to provide information
about the conductivity, fractional volume and
connectivity of the melt. Archie's law could be a
useful tool in such studies because of its ability to
vary the connectivity by varying its exponent.
However, at the depths, pressures and tempera-
tures where partial melting occurs, the conductiv-
ity of rock matrix is not negligible, leading to
errors if the conventional Archie's law is used.

In this paper, we present a modi¢ed form of
Archie's law that takes full account of the con-
ductivity and relative volumes of both the £uid
phase and the matrix phase, and that is valid
for all values of the Archie exponent (i.e. degrees
of connectivity).

2. Mixing models

Reviews of mixing models are available in the
literature (e.g. [1,18,25]), and this material is not

repeated here. However, the commoner mixing
models are summarised in Table 1 with relevant
references. A selection of the mixing models
shown in Table 1 are also shown in Fig. 1a for
two phases (c1 = 0.01 S/m, c2 = 1 S/m) as a func-
tion of the volume fraction of phase 2. Fig. 1a
shows that the modi¢ed brick-layer model is al-
most coincident with HS+ over the whole range
of volume fractions of phase 2.

Archie's formulation [24] for the mixing of a
conductive £uid in an insulating matrix is some-
what di¡erent from these previous relationships.
The most important di¡erence is that it was ini-
tially derived empirically for saline solutions sat-
urating a clean porous sandstone in contrast with

Fig. 1. (a) Various mixing models as a function of the vol-
ume fraction of phase 2 for c1 = 0.01 S/m and c2 = 1.0 S/m.
(b) The conventional and modi¢ed Archie's law for various
m values as a function of the volume fraction of phase 2 for
c1 = 0.01 S/m and c2 = 1.0 S/m.
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Table 1
Summary of some commoner mixing models for electrical conductivity

Name References Conducting
phases

Equation Notes

Min. Max.

Parallel model [1^3] 1 Many c eff �
XN

i�1

M ic i

Parallel layers of constant
arbitrary thickness with
conductivity ci arranged
axially to current £ow.
Arithmetic mean.

Perpendicular model [1^3] 1 Many
1

c eff
�
XN

i�1

M i

c i
Parallel layers of constant
arbitrary thickness with
conductivity ci arranged
normally to current £ow.
Harmonic mean.

Random model [5,6] 1 Many c eff

YN
i�1

c M i
i Arbitrary shaped and

oriented volumes of
conductivity ci distributed
randomly. Geometric mean.

Hashin^Shtrikman upper
bound

[1,10] 2 2 c eff� � c 2 13
3�13M 2��c 23c 1�
3c 23M 2�c 23c 1�

� �
Commonly denoted HS+.
Derived from e¡ective
medium considerations.

Hashin^Shtrikman lower
bound

[1,10] 2 2 c eff3 � c 1 1� 3M 2�c 23c 1�
3c 1 � �13M 2��c 23c 1�

� �
Commonly denoted HS3.
Derived from e¡ective
medium considerations.

Wa¡ model [11] 2 2 c eff � c 2 � �c 13c 2��13�2M 2=3��
1� �M 2=3��c 1=c 231� Based on concentric spheres

of varying sizes with volume
of core (fractional volume
of phase 1) to volume of
shell (fractional volume of
phase 2) ratio constant.
Functionally equivalent to
HS+.

Modi¢ed brick-layer
model

[18] 2 2 c eff � c 2�c 2�M 2=3
1 31�3c 1M

2=3
1 �

c 1�M 13M 2=3
1 �3c 2�M 2=3

1 3M 131�
Modi¢ed to allow validity
to be extended to cover the
range 0.009 M1 9 1.00
(0^100%). Almost coin-
cident with HS+.

Conventional Archie's law [1,24] 1 1 ceff = Cc2M2
m Derived empirically, but

provable analytically for
special cases.

Modi¢ed Archie's law This work 1 2 ceff =c1(13M2)p+c2M2
m where

p � log�13Mm
2 �

log�13M 2�

Derived from the
conventional Archie's law
by considering boundary
conditions implied by
geometrical constraints.

Notes: ceff is the e¡ective conductivity of the rock consisting of N di¡erent phases with individual conductivities ci, each present
in volume fractions Mi. For single and dual conducting phase models, the subscripts refer to the phase number. The values l, m
and C are constant for any given porous medium/£uid system.
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the previous formulations which were derived an-
alytically from geometrical or e¡ective medium
considerations. It should be noted, however, that
it is possible to derive Archie's law from ¢rst prin-
ciples using a di¡erential e¡ective medium ap-
proach in some special cases, such as for granular
porous media [29,30].

Archie's law implicitly assumes that there is
only one conducting phase, which is distributed
in some manner between a non-conductive ma-
trix. This restriction is ful¢lled (i) for the upper-
most few kilometers of the crust, where temper-
atures and pressures are su¤ciently low for major
rock forming minerals to have negligible matrix
conductivity, and (ii) for clean rock formations
with no or very low fractions of conductive clay
minerals. The oil and water industries commonly
and routinely apply the conventional Archie's law
for clean formations at shallow depths, and use
traditionally a range of di¡erent empirically de-
rived equations to account for the additional con-
ductivity contributed if clays are present in any
signi¢cant volume [31]. However, in the last few
years, there have been a number of breakthroughs
in the understanding and analytical description of
the nature of surface conduction thanks to the
work of Revil [32], which has led to improved
models of conduction where both pore £uid-medi-
ated and surface-mediated conduction contribute
to the bulk conductivity [32^35]. This approach
involves the analysis of the electrically conducting
double layer that mediates the clay surface con-
duction from ¢rst principles, and uses the results
together with the model of Bussian [36] to pro-
duce a mathematically complex but precise meth-
od for analysing the conductivity of shaly rocks
incorporating the contributions to the bulk con-
ductivity from the pore £uids and the clay surface
conduction.

The conventional Archie's law is most conve-
niently expressed as:

c eff � Cc 2Mm
2 �1�

where c2 is the conductivity of the single conduct-
ing phase and M2 is the volume fraction of the
conducting phase. Archie's law has been imple-
mented in Fig. 1a, and it is clear that this single

phase model di¡ers from the other models signi¢-
cantly, especially at small volume fractions of the
conducting phase where ceffC0 as M2C0, which
contrasts with the physically justi¢ed boundary
condition that ceffCc1 as M2C0.

Unlike the previous formulations, Archie's law
contains two variable terms, the Archie cementa-
tion exponent m and the Archie constant C, both
of which are medium dependent. For example,
Roberts and Tyburczy [25] use the simple Archie
relationship to describe the conductivity of a rock
containing a conductive partial melt fraction, and
¢nd from their experimental work that
C = 0.73 þ 0.02 and m = 0.98 þ 0.01. However, ex-
amination of Eq. 1 shows that the Archie con-
stant C is not physically justi¢ed, and that at
100% melt, C = 1.0 whatever the value of m. The
observation of values of Cg1 by Roberts and
Tyburczy [25] and many other workers may there-
fore be an indication that either the conventional
Archie's law is an oversimpli¢cation of the system
that they are studying, or that the `constant' C is
actually a function of M2, where C(M2)C1 as
M2C1. Perhaps the non-unity values of C are
not surprising in the case of Roberts and Ty-
burczy [25], since at the temperatures and pres-
sures where a partial melt occurs, it is invalid to
assume that the rock matrix has negligible con-
ductivity, and hence it is expected that the con-
ventional Archie's law is an oversimpli¢cation of
the system. Signi¢cantly, non-unity values of C
are also reported in oil industry applications
where the conventional Archie's law is used on
shaly rocks that contain conductive clays in the
matrix.

The most useful aspect of Archie's law is the
variable Archie cementation exponent m. It is rec-
ognised that this exponent is related to the elec-
trical connectivity of the conductive phase within
the porous medium. However, because Archie's
law was derived empirically, and because the con-
nectivity of a complex rock is di¤cult to quantify,
the mechanistic relationship between m and the
electrical connectivity remains poorly understood
in most cases. There are some instances where the
connectivity is very well understood; these are
related to the previously mentioned special cases
where Archie's law can be proven analytically
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[29,30]. Comparison of Archie's law with the par-
allel model indicates that full connectivity of the
conductive phase is achieved when m = 1, when
Archie's law becomes formally identical to the
parallel model, and mC0 as 100% conductive
phase is approached. For values of ms 1, the
e¡ective conductivity of the porous medium de-
creases as the connectivity of the conducting
phase reduces and the tortuosity of conduction
paths increases. Values 1.56m6 2.5 are common
for sedimentary rocks containing saline aqueous
£uids in upper crustal basins. Fig. 1a shows e¡ec-
tive conductivity curves for m = 1, 1.5 and 2.0 as
examples, where m = 1 is identical with the paral-
lel model with one conducting phase and one in-
sulating phase.

3. Modi¢cation to the Archie's law mixing model

We consider a porous medium consisting of
two phases (solid, liquid or gas) with conductiv-
ities c1 and c2, that are present in volume frac-
tions M1 and M2 (where M1+M2 = 1). The conven-
tional Archie's law can be written as:

c eff � c 2

F2
� c 2Mm

2 if c 1 � 0 �2�

and:

c eff � c 1

F1
� c 1M

p
1 if c 2 � 0 �3�

where F1 and F2 are the electrical formation fac-
tors when phase 1 and phase 2 are taken to be
insulating, respectively. Note that we are using
Eq. 1 and setting Cr1, and we have introduced
two exponents; m to represent the connectivity of
phase 2 and p to represent the connectivity of
phase 1. The most general form of Archie's law
for a two phase system is the sum of Eqs. 2 and 3
with an additional term [21^23] :

c eff � c 1M
p
1 � c 2Mm

2 �
Zr
0

3 �y�
1=c 1 � y=c 2

� �
dy �4�

The additional integral term is known as
Stieltjes integral [37], and contains the parameter

3(y), which is known as the resonance density,
and is always positive. The electrical formation
factors F1 =c3p, F2 =c3m and 3(y) are all depen-
dent upon the topology of the two component
phases. Little is known about the resonance den-
sity, and it is a common feature of a number of
studies that it is assumed to be negligible as a ¢rst
order simpli¢cation. In this paper, we also neglect
the Stieltjes integral, assuming that the depen-
dence of e¡ective conductivity upon the relative
distributions of the two phases can be accounted
for purely by the two electrical formation factors
(i.e. through the exponents m and p). Hence:

c eff � c 1M
p
1 � c 2Mm

2 �5�

Each of the phases has its own distribution in
the porous medium, resulting in each phase hav-
ing an electrical connectivity and an electrical tor-
tuosity. Each phase will therefore also have a rep-
resentative exponent (m and p), and although
these exponents may be the same they will gener-
ally di¡er. Large exponents (s 2) occur for low
connectivity phases and small exponents (6 2) oc-
cur for high connectivity phases. We also expect
the exponents to be a function of the fractional
volumes of each phase because low phase connec-
tivities are likely to be associated with small vol-
ume fractions and high phase connectivities are
likely to be associated with large volume frac-
tions.

Consider a porous rock described by Eq. 5,
where the conductivities and volume fractions of
each phase remain constant. If the three dimen-
sional distribution of the phases is modi¢ed such
that the electrical connectivity of phase 2 in-
creases, then the electrical connectivity of phase
1 would be expected to decrease (i.e. the electrical
connectivities of each phase are interrelated). This
relationship is imposed on the system by the lim-
ited volume in the porous medium that can be
occupied by three dimensional distributions of
the two phases. As the exponents m and p are
functions of the phase connectivities, we should
also expect them to be interrelated in real two
phase porous media. The relationship between m
and p can be solved for two phases by considering
the appropriate boundary conditions.
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Considering the boundary conditions (ceff =
c1 =c2)9(M1 and M2) applied to Eq. 5 gives:

1 � M p
1 � Mm

2 �6�

This type of boundary condition is known as
the isoconductivity point, and is not generally val-
id. However, it is known to be valid for granular
porous media such as rocks containing conductive
£uids [32^35]. The use of this boundary condition
restricts the derived relationships to use with
granular porous media.

Eq. 6 can be rearranged to obtain the exponent
p for phase 1 in terms of the exponent m for phase
2 and the volume fraction of phase 2:

p � log�13Mm
2 �

log�13M 2� �7�

Combining Eqs. 5 and 7 allows a mixing rela-
tionship for two conductive phases to be ex-
pressed in terms of only one exponent and volume
fraction. In this case (Eq. 8), we have written it in
terms of the exponent and volume fraction for
phase 2, but it can easily be rewritten in terms
of phase 1 parameters:

c eff � c 1�13M 2��log�13Mm
2 �=log�13M 2�� � c 2Mm

2 �8�

Fig. 1a includes an example of the modi¢ed
Archie's law for m = 1.5, and it is immediately
clear that the new modi¢cation provides a mixing
curve where ceffCc1 as M2C0, and ceffCc2 as
M2C1, in the same fashion as all the mixing mod-
els other than the conventional Archie's law.
However, the modi¢ed form of Archie's law re-
tains the m exponent as a measure of connectivity
of the second phase, and can be implemented
for di¡erent values of m. Fig. 1b shows the con-
ventional and modi¢ed Archie's laws imple-
mented for the range of m values that is most
commonly encountered. It should be noted that
for the case where m = 1, the new model is iden-
tical to the parallel model, and that the new
model approximates to the HS upper bound
and the modi¢ed brick-layer model at mW1.15.
There are no values of m where it may reasonably
be said that the model approximates to the ran-

dom model, HS lower bound or perpendicular
models.

It should be noted that Eqs. 5 and 8 are sym-
metrical, hence the allocation of which physical
phase is represented by each of the mathematical
phases described in these equations is arbitrary.
This also implies that Eq. 8 is valid for all values
of c1 and c2, providing that the assumption that
the Stieltjes integral can be neglected holds.
Hence, the modi¢ed equation is also valid for
porous media where the matrix is relatively con-
ductive compared to a saturating insulating £uid.

Fig. 2. The conventional (thick lines) and modi¢ed Archie's
law (thin lines) as a function of the volume fraction of
phase 2 for various values of R =c1/c2, and for (a) m = 0.5,
(b) m = 1.0 and (c) m = 2.0.
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The modi¢ed model and the conventional Ar-
chie's law are shown in Fig. 2 for a range of m
values and a range of conductivities of each of the
two phases present. The relative conductivities of
the two phases are represented by the parameter
R, where R =c1/c2, and where the conductivity of
phase 2 is ¢xed for all curves at c2 = 1.0 S/m. Fig.
2 shows curves for both low connectivities (mv 2)
and high connectivities (m9 1) of phase 2, as well
as conductivities of phase 1 that are larger and
smaller than the corresponding conductivities for
phase 2.

It should be noted that the new model can be
viewed both as an extension of Archie's law to
include a second conducting phase as well as a
modi¢cation of the parallel model taking account
of the connectivity of the conducting phases by
the incorporation of exponential weightings to
each of the volume fraction terms.

4. Testing the new model

4.1. Testing methodologies

The new model has been tested for a porous
medium analogous to a saturated rock but with
a moderately conductive matrix. A conducting
matrix was chosen to ensure that the new model
was tested in a scenario with two non-negligible
conducting phases. Testing on partially molten
rocks was not attempted due to their experimental
di¤culty and our requirement for obtaining ex-
tremely accurate determinations of conductivity
on a well controlled experimental system. Testing
the new model on rocks with a clay matrix was
also not attempted because these rocks have three
conducting phases (matrix, surface conduction
and £uid conduction), and treating the clay ma-
trix and surface conductivity as if it were one
phase may have upset the geometrical balance be-
tween p and m that is the basis for the new mixing
equation.

4.2. Testing procedure

We have used copper oxide (Cu2O) as the ma-
trix material to ensure that the test is valid and

robust for matrix materials with a conductivity
that is not negligible. This material, which is
found in nature as cuprite, is a semiconductor
and has a conductivity between 0.1 and 0.02 S/m.
We have created a suite of 10 samples with dif-
ferent matrix volume fractions and porosities. It
was possible to create samples with porosities
ranging from approximately 4% to 44% by using
grains of Cu2O of di¡erent size fractions and
roundness, and subjecting the sample to various
degrees of hydrostatic con¢ning pressure. Each
sample was formed by adding the grains to a
Viton0 sleeve plugged at the bottom end with a
stainless steel end-piece with a sandwich of ¢lter
paper and blacked platinum gauze to act as an
electrode. A further stainless steel end-piece, ¢lter
paper and electrode was used to close the system.
The sample arrangement was inserted into a hy-
drostatic pressure vessel and raised to di¡erent
con¢ning pressures depending upon the required
¢nal porosity. The samples were carefully re-
moved from the hydrostatic cell, and placed in a
Hassler cell, before being subjected to helium por-
isimetry. Each sample was carefully saturated
with distilled water using a £ow-through tech-
nique with a £uid back-pressure of 200 psi to
ensure that all gas was expelled from the porous
medium and replaced by the £uid. The ¢nished
samples had a diameter of approximately 38 mm
and lengths varying from 40 mm to 60 mm. The
friable nature of the samples required that they
remained enclosed in the sleeve and end-piece ar-
rangement during porisimetry and saturation and
for the remainder of the experiment. The enclosed
saturated samples were then inserted in a pressure
vessel and subjected to a con¢ning pressure of 500
psi.

Measurements were made of the complex elec-
trical impedance of the sample for 50 frequencies
from 50 Hz to 500 kHz using a QuadTech 7400
impedance analyser for the original distilled water
and six NaCl brine salinities, whose conductivities
ranged from approximately 2U1033 to 15 S/m in
approximately order of magnitude increments.
Brines were changed by a £ow-through technique,
with 100% saturation of the new brine being ac-
cepted when changes in the electrical response of
the system had ceased. The samples were then
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dried using dry nitrogen, before being resubjected
to a helium porisimetry to check whether the po-
rosity had remained the same during the measure-
ments. A slight decrease in porosity, amounting to
approximately a 2% reduction, was found in most
samples. This was attributed to slight compaction
resulting from the con¢ning pressure applied dur-
ing measurement. The porosity at the end of the
experiment was therefore used in all calculations,
and is given in Table 2.

The conductivities of the brines used in the ex-
periments were measured using the same instru-
ment as for measuring the samples with the same
frequencies and currents. Aliquots of the £uids
emerging from the sample towards the end of
each brine change-over were placed immediately
in a glass brine conductivity cell equipped with
two blacked platinum electrodes for the conduc-
tivity measurements. The cell was clamped close
to the Hassler cell containing the sample and not
handled during measurement to ensure that the
£uids retained the same temperature as the sam-
ple. The in-phase brine conductivities at 1 kHz are

given in Table 2 together with the brine temper-
ature.

4.3. Analysis and validation

All analysis was carried out for the in-phase
electrical conductivity at 1 kHz. This frequency
was chosen to minimise any small electrode polar-
isation e¡ects that were not eliminated by the use
of blacked platinum electrodes, and because it is a
common frequency used for electrical conductiv-
ity measurements in petrophysics. Initially, the
measured conductivity data for each sample
were plotted against £uid conductivity on a bi-
logarithmic scale. Eq. 5 was ¢tted to the data
for each of the samples using the Marquardt^Lev-
enberg non-linear regression algorithm imple-
mented in SigmaPlot0 5.0, as shown in Fig. 3a.
This procedure gives values for the matrix con-
ductivity c1, m and p, which are given in Table
2. There is an extremely good ¢t of Eq. 5 to the
measured data (coe¤cients of determination
R2 v 0.99), which validates the use of Eq. 5 as a

Table 2
Experimental parameters

Sample Volume fractions Modi¢ed Archie's law Archie's law

Mmatrix Mpores m p cmatrix m
(S/m)

A1 0.959 0.041 2.403 0.031 0.0298 1.82
A2 0.926 0.074 2.230 0.030 0.0321 2.00
A3 0.889 0.111 2.292 0.061 0.0297 2.14
A4 0.869 0.131 2.246 0.070 0.0297 2.14
A5 0.847 0.153 1.972 0.147 0.0299 1.92
A6 0.802 0.198 1.513 0.381 0.0294 1.50
A7 0.769 0.231 1.403 0.566 0.0313 1.39
A8 0.711 0.289 1.412 0.552 0.0320 1.40
A9 0.638 0.362 1.184 0.786 0.0320 1.18
A10 0.561 0.439 1.095 0.893 0.0313 1.09

Phase Salinity Temperature Conductivity
(M) (³C) (S/m)

Distilled 0 25.4 3U1038

NaCl brine 0.0001 25.3 0.00126
NaCl brine 0.001 25.0 0.01237
NaCl brine 0.01 25.3 0.11850
NaCl brine 0.1 24.7 1.06750
NaCl brine 1 25.1 8.57614
NaCl brine 2 24.6 14.9426
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mixing model for a two phase system such as this.
The extremely good ¢t that was achieved has also
been attributed to the ¢ne temperature control
implemented during £uid conductivity measure-
ments.

However, validation of Eq. 5 is not a test of Eq.
8. To validate Eq. 8 fully, we need to check that
the relationship between m and p given in Eq. 7 is
also true. The `measured' values of m and p for
each sample were obtained during the non-linear
regression procedure (Table 2), so it is an easy
task to check whether these values obey Eq. 7
for the given sample porosities. We have taken

the measured value of m and porosity for each
sample and used Eq. 7 to predict the correspond-
ing p values. We have plotted the predicted p
values as a function of the measured p values.
We have also carried out this procedure in reverse
by predicting the m values from the measured p
values and plotting them against the measured m
values. The plotted points will fall on a 1:1
straight line only if Eq. 7 is valid. Reference to
Fig. 3b shows this to be the case. We can there-
fore say that for the system studied here, Eqs. 5
and 7 are valid, therefore it follows that Eq. 8 has
also been validated. The parameter ranges for this
validation of the modi¢ed Archie's law are:

c1W3.08U1032 S/m (matrix conductivity for
the Cu2O derived from the non-linear ¢tting).
3U1038 9c2 9 14.94 S/m (the range of £uid
conductivities).
0.5619M1 9 0.959 (the range of matrix vol-
ume fractions).
0.0419M2 9 0.439 (the range of pore volume
fractions).

It should be noted, however, that the symmetry
inherent in the model and the limiting behaviours
of the model indicate that it should be valid for
the full range of these parameters, providing the
assumption that the Stieltjes integral can be ne-
glected holds.

The conventional Archie's equation has also
been ¢tted to the data, and the derived m value
is given in Table 2 for comparison. The dotted
line in Fig. 3a shows the ¢tted conventional Ar-
chie equation for sample 10 and indicates how
badly the conventional Archie's law ¢ts e¡ective
conductivity data where the matrix has a non-neg-
ligible conductivity.

5. Some geophysical implications

For most upper crustal oil and water industry
related problems, c1W0 S/m, 1.09c2 9 25.0 S/m,
09 M2 9 0.25 and 1.59m9 2.5. The parameter
R = 0 for these values of conductivity and the
modi¢ed model approaches the conventional Ar-
chie's law for all values of p, m, M1 and M2 (Fig. 2).

Fig. 3. (a) Sample conductivity as a function of £uid conduc-
tivity for 10 samples whose matrix was composed of Cu2O,
with various porosities: symbols represent measured values,
and solid lines represent the ¢t of Eq. 5. (b) Predicted values
of m and p plotted against m and p measured in the experi-
ment for each sample. Open symbols represent p values pre-
dicted from measured m values using Eq. 7, plotted against
measured p values. Solid symbols represent m values pre-
dicted from measured p values using Eq. 7, plotted against
measured m values. Validity of Eq. 7 is shown by the 1:1
straight line relationship.
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However, application of the conventional Archie's
law leads to large errors if the two phases have
similar conductivities. This will occur if the rock
matrix has a signi¢cant conductivity arising from
(i) high temperatures such as those encountered in
the lower crust or in rocks which are partially
molten, or (ii) the presence of unusually high con-
ductivity minerals such as clays, graphite or sul-
phides at low temperatures. Examples are given
here for high conductivities arising from partially
molten lower crustal rock and arising from the
presence of clays in a sandstone.

5.1. Partially molten rock

In the case of partially molten rock, we use an
example from the lower crust beneath the Pyre-
nees. At depths between 55 km and 80 km below
the Pyrenees, the temperature increases from
1035³C to 1350³C and the lithostatic pressure in-
creases from 15.91 kbar to 23.09 kbar [28]. At
these depths, it is suspected that the granulite fa-
cies rocks undergo partial melting [26,27]. Labo-
ratory experiments indicate that the conductivity
of the solid matrix, c1, is between 0.01 S/m and
0.015 S/m [38], while other laboratory experiments
indicate that the melt conductivity occupies the
range 0.19c2 9 5 S/m [25,39]. As an example,
we take c1 = 0.015 S/m, c2 = 0.3 S/m, which gives
R = 0.05 (i.e. the rock matrix conductivity is only
5% of the conductivity of the melt), and assume
that the connectivity of the melt is moderately
well connected (m = 2). For these parameters, a
10% melt fraction gives an e¡ective conductivity
of the system ceff = 0.003 S/m from the conven-
tional Archie's law (Figs. 2 and 4). This is clearly
invalid as it is less than both c1 and c2, falling in
the lower zone of disallowed conductivities shown
in Fig. 4a. By comparison, the new model gives
an e¡ective conductivity for the system as
ceff = 0.0178 S/m, which is much more realistic
since it lies between c1 and c2, and hence is an
allowed conductivity (Fig. 4a). If we assume the
melt to be perfectly connected (m = 1), the conven-
tional Archie's law gives an e¡ective conductivity
of the system ceff = 0.03 S/m, which does fall be-
tween the bounding values c1 and c2, but is sig-
ni¢cantly less than the value calculated with the

modi¢ed Archie's law (ceff = 0.0435 S/m), repre-
senting approximately a 25% underestimation of
the conductivity due to the failure of the con-
ventional Archie's law to take into consideration
the conductivity of the rock matrix. For lower
values of m, the two models converge, but the
conventional Archie's law always gives conductiv-
ities which are lower than the modi¢ed Archie's
law.

Even more signi¢cant errors occur if the con-
ventional Archie's law is used to calculate the
partial melt fraction from knowledge of the e¡ec-
tive conductivity of the rock and the conductiv-
ities of its matrix and melt phases. If we know the
e¡ective conductivity of the rock/melt system at
depth, say from magneto^telluric measurements,
to be ceff = 0.0178 S/m, the use of the modi¢ed

Fig. 4. (a) Predicted conductivity as a function of m for the
conventional and modi¢ed Archie's laws for c1 = 0.015 S/m,
c2 = 0.3 S/m and M2 = 0.1 (10%). (b) Predicted melt fraction
as a function of m for the conventional and modi¢ed Ar-
chie's laws for c1 = 0.015 S/m, c2 = 0.3 S/m and ceff = 0.0178
S/m.
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Archie's law with c1 = 0.015 S/m and c2 = 0.3 S/m
gives a 0.1 volume fraction of melt (10%), while
application of the conventional Archie's law gives
0.244 (24.4%), as shown in Fig. 4b. It is also clear
from this ¢gure that the degree of error is small at
low values of m and increases as the value of m
increases. However, even at m = 1, when the melt
is connected to the same degree as in the parallel
layer model, the conventional Archie's law calcu-
lates a predicted partial melt fraction M2 = 5.95%,
which is signi¢cantly higher than that provided by
the modi¢ed law (M2 = 1.00%). Hence, the use of
the conventional Archie's law for estimating the
partial melt fraction at depth from the conductiv-
ities of the matrix, melt and the bulk rock can
grossly overestimate the partial melt fraction
present, resulting from the conventional Archie's
law not taking the contribution of the matrix con-

ductivity to the e¡ective conductivity into ac-
count.

It should be remembered that the previous ex-
amples are for R = 0.05, where the matrix conduc-
tivity is only 5% of that of the more conductive
(melt) phase. Even larger errors are possible if the
matrix conductivity is higher and closer to the
conductivity of the other (melt) phase.

5.2. Clay-rich sandstones

Application of the modi¢ed form of Archie's
law to situations where the bulk rock conductivity
is enhanced by the presence of surface conduction
along clay surfaces is not simple. This is because
the additional surface conduction supplied by the
clays has a geometric distribution that is not the
same as that of the matrix. It is probably better to

Table 3
Comparison of the modi¢ed Archie's law with data from Waxman and Smits [31] for shaly sandstones

Sample From Waxman and Smits [31] From this paper

Porosity Qv BQv F* m c1 F* m p
(^) (meq/cm3) (S/m) (^) (^) (S/m) (^) (^) (^)

1 0.239 0.017 0.232 12.28 1.752 0.008 12.23 1.749 0.312
2 0.212 0.052 0.264 14.19 1.710 0.012 14.14 1.708 0.308
3 0.231 0.052 0.268 11.26 1.652 0.012 11.20 1.648 0.356
4 0.080 0.260 0.287 48.47 1.537 0.004 47.87 1.532 0.253
5 0.154 0.200 0.412 14.85 1.442 0.020 14.74 1.438 0.420
6 0.215 0.095 0.415 18.68 1.905 0.016 18.61 1.902 0.228
7 0.171 0.053 0.589 26.87 1.863 0.014 26.69 1.860 0.204
8 0.171 0.053 0.584 25.72 1.839 0.013 25.53 1.835 0.213
9 0.199 0.085 0.443 18.14 1.795 0.019 18.05 1.792 0.257

10 0.125 0.253 1.376 160.75 2.443 0.005 158.10 2.435 0.048
11 0.125 0.253 0.857 173.27 2.479 0.003 170.19 2.470 0.044
12 0.110 0.280 1.243 44.40 1.719 0.021 43.87 1.713 0.198
13 0.110 0.280 1.617 45.57 1.730 0.025 44.46 1.719 0.195
14 0.110 0.280 1.384 32.58 1.578 0.032 32.17 1.573 0.271
15 0.092 0.410 2.433 155.75 2.116 0.010 151.24 2.103 0.069
16 0.103 0.670 2.898 62.03 1.816 0.037 59.74 1.799 0.155
17 0.140 0.330 2.947 44.68 1.933 0.053 43.06 1.914 0.156
18 0.259 0.590 2.354 18.37 2.154 0.107 17.99 2.139 0.191
19 0.259 0.590 1.853 16.94 2.094 0.085 16.65 2.082 0.207
20 0.259 0.590 1.463 13.12 1.906 0.092 12.97 1.897 0.268
21 0.238 0.290 0.872 14.81 1.878 0.053 14.64 1.870 0.260
22 0.225 0.720 3.740 35.32 2.390 0.094 34.74 2.378 0.115
23 0.242 1.040 4.540 26.92 2.321 0.142 25.60 2.285 0.144
24 0.216 0.810 5.260 44.29 2.474 0.103 43.03 2.455 0.097
25 0.187 1.270 7.240 55.90 2.400 0.128 55.46 2.395 0.088
26 0.229 1.470 7.710 41.18 2.522 0.168 39.32 2.491 0.099
27 0.209 1.480 7.830 44.41 2.423 0.179 44.12 2.419 0.098
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assume, as Waxman and Smits [31] have done,
that the conduction pathways for surface conduc-
tion are the same as the conduction pathways
through the pore £uid.

Waxman and Smits [31] ¢tted an equation to
data from 27 samples of clay-rich sandstones (ta-
ble 7 in [31]). These data are in the form of e¡ec-
tive rock conductivity as a function of the con-
ductivity of the aqueous £uid occupying the pores
of the rock. The Waxman and Smits equation
implicitly assumes that the conduction pathways
taken for the clay surface conduction are the same
as that through the pore £uid, and can be written
as:

c eff � 1
F�
�c clay � c fluid� � 1

F�
�BQv � c fluid� �9�

Here Qv is the volume concentration of clay
exchange cations (equivalents/l), B represents the
mobility of surface cations, and cclay = BQv (S/m)
represents the contribution to the overall conduc-
tivity due to the surface conduction at the clay
mineral^£uid interface. Waxman and Smits [31]
calculated the shaly sand formation factor, F*,
from the inverse gradient of the linear ¢t, and
BQv from the ordinate intercept divided by F*.
However, the data are not linear and diverge at
low £uid conductivities. This is because
cclay = BQv is not constant, but is itself dependent
upon the £uid conductivity cfluid. To overcome
this problem, Waxman and Smits used only the
linear portion of the data (at the higher values of
£uid conductivity) in their ¢tting procedure.

We have ¢tted Eq. 8 to the same data. This
procedure allows us to obtain values of the for-
mation factor for shaly sands, F*, the classical
cementation exponent, m, the newly introduced
exponent, p, and the e¡ective conductivity of the
rock matrix, c1. These values are given in Table 3
together with values of F*, m, Qv and BQv given
in or derived directly from [31]. The ¢t was good
in all cases, with the coe¤cient of determination
R2 s 0.98. The ¢tted values of F* agree closely
with those obtained by Waxman and Smits [31]
(Fig. 5a). However, the values of BQv from the
Waxman and Smits model do not coincide with
our values of matrix conductivity c1. This is be-
cause the Waxman and Smits model assumes that

the additional conduction provided by the pres-
ence of clay minerals occurs along conduction
paths of equal tortuosity to conduction through
the pore £uid, whereas the modi¢ed Archie's law
assumes that the conduction occurs through the
entire matrix. Hence, one would expect that the
values of the matrix conductivity (sand and clay)
obtained from ¢tting the modi¢ed Archie's law to
the data to be consistently lower than the value of
BQv obtained by Waxman and Smits, which is the
case. Even though the geometric distribution of
the clays is assumed to be di¡erent by the two
approaches, we would also expect to see an ap-
proximate relationship between the matrix con-
ductivity from the ¢tting of the modi¢ed Archie

Fig. 5. (a) Shaly sand formation factor, F*, obtained from
¢tting the modi¢ed Archie's law to the data from [31] as a
function of the shaly sand formation factor, F*, obtained by
¢tting the Waxman and Smits [31] model to the same data.
(b) Matrix conductivity obtained from ¢tting the modi¢ed
Archie's law to the data from [31] as a function of values of
Qv from [31].
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law and the value of Qv for the samples. This has
been carried out and shows that a reasonable lin-
ear correlation between these two parameters ex-
ists (Fig. 5b). The scatter is due to the unknown
distribution of clay minerals amongst the sand
grains.

6. Conclusions

Archie's law was formulated empirically in 1942
to describe the conductivity of a porous medium
consisting of an insulating porous solid matrix
with a conductive £uid phase completely ¢lling
the pores, and includes an exponent term that
describes, in some currently unknown way, the
connectivity of the conducting phase.

We have modi¢ed Archie's law to enable it to
operate in circumstances where the matrix phase
and the £uid phase can have any conductivity.
The modi¢ed model retains the exponent term
describing the connectivity of the £uid phase,
and introduces another exponent describing the
connectivity of the matrix phase. We have derived
an expression that links the two exponents in a
two phase system, such that only one is necessary
for the operation of the modi¢ed law.

The new model has been tested on 10 samples
of a porous medium with various porosities. The
samples consist of a semiconducting matrix and a
connected pore space that can be saturated with
saline £uids with various conductivities. It was
found that the new model (Eqs. 5^8) provides
an extremely good ¢t to the experimental data,
and that the relationship between m and p (Eq.
7) is valid. The ranges over which the new model
has been tested are: phase 1 (matrix) conductivity,
c1W3.08U1032 S/m; phase 2 (£uid) conductivity,
3U10389c2914.94 S/m; matrix volume fractions,
0.5619M190.959; and pore volume fractions,
0.0419M290.439. However, there are no physical
or mathematical reasons why the model should
not be valid for wider ranges providing Stieltjes
integral can be assumed to be zero.

The modi¢ed Archie's law represents a new
mixing model that can be viewed as both a gen-
eralisation of Archie's law for two conducting
phases, and as a generalisation of the parallel

model to incorporate variable connectivity of
each of the phases. While it is expected that this
model will not provide signi¢cant improvements
over the conventional Archie's law in the analysis
of clean formations at low temperatures, it is a
large improvement if the matrix of a rock is sig-
ni¢cantly conductive, such as in partial melt mod-
elling, or in the analysis of clay-rich reservoir
rocks.
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