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Theory of ionic-surface electrical conduction in porous media
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We present a model describing ionic electrical conduction in porous media, with particular emphasis given
to surface conduction. The porous medium is assumed to consist of an insulating matrix and an interconnected
pore volume that is saturated with an electrolyte. When in contact with an electrolyte, mineral surfaces get an
excess of charge that is balanced by mobile ions in an electrical diffuse layer above the surface. Electrical
conduction in this diffuse layer can contribute substantially to the effective electrical conductivity of the porous
medium. Our surface conduction model is based on a description of surface chemical reactions and electrical
diffuse layer processes. For this purpose, we consider an amphoteric mineral surface described by a five-site-
type model. We derive the fractional occupancies of positive, negative, and neutral sites on the surface, and the
fractional ionic diffuse layer densities, as a function of the salinity and the pH. Finally, the specific surface
conductance used to describe the surface electrical conduction is related to the previously mentioned proper-
ties, via the electrical surface potential, and is found to be dependent on the electrolyte concentration and pH.
[S0163-18207)01103-X

[. INTRODUCTION given in Sec. lll, in the general context of the EDL theory.
The origin of this phenomenon is found in a mineral surface

The electrical conductivity of porous media plays an im-charge, which is investigated in Sec. IV. In this section, we
portant role in many scientific fields including chemistry, consider the specific example of a quartz mineral surface
physics, and geophys|6§’The effects of surface conductiv- using a five-site-type model. Section V contains a discussion
ity, microstructure and diffusion processes on porous medi&f the results of our model.
were studied thoroughly by Johnson, Plona, and Kojima
(called the JPK model hereinafieand related workS:' In £/ £ TRICAL CONDUCTIVITY IN POROUS MEDIA
the JPK model, the porous medium is composed of an inter-
connected pore volume saturated by a binary electrolyte, and In all that follows, microscopic equations are averaged to
an insulating rigid phase called the matrix. The matrix isobtain the effective macroscopic equations of interest. We
composed by one mineral species and the nonconnected passume that the averaging volunw,is larger than the pore
rosity. The surface of the matrix is typically charged and themicrostructural heterogeneities, and is isotropic. We define
counterions required by macroscopic electrical neutralityV, as the interconnected pore spawg, the matrix space,
form a thin diffuse layer over it. Surface conduction within and S the interface between the matrix and the intercon-
this electrical diffuse layefnoted as EDL hereinaftecan  nected pore space. We also defmas the normal t& di-
contribute substantially to the effective electrical conductiv-rected from the matrix to the fluid, ar#las the interface area
ity of the porous medium. The problem of electrical conduc-of S. In order to relate local and macroscopic fields, we take
tion in a porous medium is much more complicated than an averaging volume such as that described in Ref. 4: i.e., a
simple electrostatic problem, and must take into accdant disk of lengthL and cross-sectional areé® (with V=LA),
the behavior of several kinds of ionic carrigistions and andz is the axis in the direction normal to the end faces. We
aniong, (b) that each of these have conduction as well asassume also that there is no macroscopic gradient in the ionic
convection current$and(c) that the diffuse layer region and concentrations.
the mineral surface properties are sensitive to fluid chemis-
try, and temperature. In the JPK model, surface conduction is
accounted for by the specific surface conductance parameter,

3.5, but the dependence of this parameter upon the salinity of The matrix is assumed to be electrically insulating, and
the pore fluid is not addressed. electrical current is therefore restricted to the interconnected
The effective conductivity of a porous medium saturatedpore space saturated by the electrolyg, Throughout this

with a multi-ionic electrolyte is studied in Sec. Il, and is paper we take the condition called the “point of zero
found to be a function of the four microstructural parametersharge” as the thermodynamical condition at which the mac-
defined by JPK, and specific ionic-surface conductancesscopic effects of mineral charged surface groups cancel
which describe surface electrical conduction. The link be-each other out. The point of zero chalgeted as PZC here-
tween these specific surface conductances and the mineriabfter will be important in all that follows because it is used
surface electrical potentialcalled the Stern potentialis  both for reference and standard state. As we will see explic-

A. Effective conductivity
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itly in Secs. lll and IV, the mineral surface electrical poten- Sp.
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tial is considered to be zero at the PZC, which implies no \ g,
EDL and no surface electrical conduction. Note that another >Si—0'®'<%>

. . . Q! S.P. : Stern Plane
way to handle properties associated with the presence of the ® ® Free
EDL is to bring the mineral surface potentiédr the so- A Electrolyte  E.D.L. : Electrical Diffuse layer

>Si—

|

called Stern potentiato zero through specific adsorption of  / OG; E%E_D
|
[N

: g X . L
surface-active counterions. We consider that the averagingo

volume is submitted to an external electric fidit:— (AW/ >\Si—0' ) %
L)z, wherez is the unit vector parallel t& in the z direction. 7R

In this “imposed field approximation,’E is essentially de-
termined by charges outside of the averaging voluiine
particular, the separation of charge between the mineral sur-
face and the EDL does not influence the macroscopic elec-
trical field).* Typically, these charges reside on external
boundaries and, in terms of the potentiljs governed by
Laplace’s equation. At the PZC, the electrical conduction
b%undary-value problem is expressed on the averaging disk
a

Na*
Mineral surface

Local conductivity G(X)

Je=—0a(r) Vi, (1) FIG. 1. Schematic representation of the electrical double layer
situated at the mineral surface. The parametgiis the effective
V.je=0, 2 electrical conductivity of a representative elementary volume
(R.E.V), whereass; and o, are, respectively, the free electrolyte
jeen=0 on S (3 and matrix conductivities. The counterions of the electrical diffuse
layer are maintained at some distance from the mineral surface by
¥, on z=0 the water adsorbed on the surface forming the “Stern layer,” and a
V(z)= W, +AW on z=L, 4 hydration shell around each cation. The Stern layer and the diffuse

layer comprise the so-called “double layer.”
with the local electrical conductivity given by(r)=0 in
Vi, ando(r)=oy in V, (o} is the electrical Ohmic conduc- properties. The norm of the local electric figtg|® acts as a
tivity of the electrolyte solution In these equationsjy, is  weighting function, giving less weight to poorly conducting
the local electrical potential distribution i, , andj, is the  pores than to highly conducting pores. For examjig)?
local electrical current density. Equatiaid) is the local vanishes in dead-ends, as a consequence of the continuity
Ohm’s law, Eq.(2) is a conservation equation for electrical equation, thus deads-ends are not taken into accour. by
current, Eq.(3) is an internal boundary condition & and  Consequently, the effective conductivity is not an average of
Eqg. (4) is an external boundary condition. The solution of the local conductivityio, #{o(r)).
this problem in terms of the effective conductivity of the  When thermodynamical conditions are different from the
porous mediumg, is given by PZC condition, the mineral surfac gets an excess of
charge through ionization reactions. This excess of charge is

Je=—¢o A_W 5 (5) balanced by mobile ions in an EDIFig. 1). Electrical con-
€ cL duction in this EDL can contribute substantially to the effec-
tive electrical conductivity of the porous medium. The total
1 rate of energy dissipated by Joule effect in the porous me-
Oc=F 91 ®  dium by ionic species can be written as
whereJ, is the macroscopic electrical current density, &d W, = oc,iV|V‘I’|2, ®)

is the pore-space electrical formation factor which is a di-
mensionless parameter characterizing the interconnect%i
pore space topology. It is defined in terms of the local po
tential distribution by the well-known energy repre-
sentation formula (e.g., Ref. 3, 1F=(e,-e,), where

=—(L/|AV|)V¢,, and where the angular brackets de-
note a volume average operator defined/inby

hereo ; is the contribution to the effective conductivity of
‘the porous medium due to ionic specie$Ve introduce the
fraction of electrical current due to ionic speciesrespec-
tively, in the free electrolyte and in the diffuse layer,t4$'
andt>"". These parameters are called the Hittorf transport
numbers for the free electrolyte and the diffuse layer, and are
1 rigorously defined in the next subsection. By equatitigto
(Y=o f ()dV,, (7) the sum of the local dissipations due to electrical conduction
Vi, in the free electrolyte and in the thin EDL by speciesve

whereV, is the interconnected pore space volume. The ﬁelaDbtaun
&, is the normalized electrical field i, due to the external
electrical fieldE (|(g,)|=1). The inverse of the formation _ (f 24f.hf J' 2,Sht )
factor appears to be a measure of the effective interconnected® V|Ay|? VoI ordVpt | Vol 25dS),
porosity. The formation factor is scale invariant material (9

2
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wheres g is the specific surface conductan@e S), andis  everywhere, because of pore-scale heterogeneity, the distri-
the local potential distribution i, due to the external elec- bution of current in the porous medium is different for bulk
tric field E (¢— ¢, in absence of surface conduction, andand surface conduction leading to the same eff@¢trough-
E=—(V)). A complete description of the total electrical out this paper we consider that surface conduction takes
potential distribution inV, (i.e., EDL potential distribution place in the EDL, and because the diffuse layer thickness
plus ¢ distribution is given at the end of Sec. Ill. It should grows as the inverse square root of the electrolyte salinity, it
be noted that Eq(9) is independent of any relationship be- appears to be a problem to define the conditions in which the
tween the specific surface conductance and the electrolyt#g distribution occurs. This is because the following analysis
concentration. The macroscopic free current density assocof Secs. Il and IV is valid only for thin EDL. Consequently,
ated with the ionic species can be written by),=o.;E.  we have
However, Eq.(9) cannot be used directly because the local
potential distributiony is not known. lﬂ(f) l/fb(f) (14
lonic high and low salinity limitgnoted I.H.S. and I.L.S.
limits) are defined, respectively, for each ionic conductivity

contribution by P(r) ——— g(r), (15
L.S.
2 ’XD<A
LH.S.: tiMg>— 30y (10) , : ,
Tt s where xp, is the total thickness of the EDlactually in the

present problem, the size of the perturbed conductivity layer
2 in the vicinity of the mineral surfage This length will be
LL.S.: tf"o <X tS"sq. (1) related to the ionic strength of the free electrolyte in Sec. Il
We point out that the two condition$a) L.S. domain[Eq.
The microstructural parameters and\ are defined in Ap- (131, (b) xp<<A, allow us to determine a salinity domain
pendix A. They are characteristic pore-size dimensions assavherey— ¢s. As we said before, Eq9) is useless because
ciated with pore and surface transport, respecti%e‘We ¢ is salinity dependent, and this dependence is not known.
show in Appendix A that for an arbitrary porous medium, theHowever, it is possible to derive linear equations for each of
inequality A=A is always satisfied. The length scalecan the I.H.S. and I.L.S. limits, which are physically justified
be interpreted as an effective pore radius for transpowt,n equations deduced by a perturbation metted., Schwartz
(A is not rigorously a geometrical parameter, however, itet al),®
approximates the narrow throats that control the trangport

For the effective conductivity, high and low salinity limits 1 2
are defined by Y9 Y OciTE (t-f’thf+ N tis’hfzs), LH.S,, (16)
HS: o2 12 1/ shix , N s
D.. O¢ A S ( ) O-C,i:? ti' ES+§ti’ o, I.L.S. (17)

2 where the parametéris the fourth microstructural parameter
LS. Uf<x 3s. (13 introduced by JPK to characterize transport properties in po-
rous media(Appendix A). One of the differences between

It should be noted that the transition domain between thé¢he present model for electrical conductivity and the JPK
high and low salinity domains is different for each ionic model is that we will incorporate an electro-osmotic contri-
species contribution. Consequently H.S. and L.S. domainbution (and thus an electrical convection curpeint the spe-
for the rock conductivity are not similar to high and low cific surface conductance. Despite this fact, we show in Sec.
salinity domains for the different ionic contributions. An- Ill that the problem is similar to the electrical problem con-
other point is that the flux of electrical current concentratessidered by JPK if the classic ionic mobilitigg; , in the for-
in regions of highest conductivity. Thus, at low salinity, the mulation for3,g, are replaced by effective mobiliti& de-
flux of electrical current concentrates more in the EDL neaffined by B,=g;+2¢:kgT/ n;€Z, where ¢; is the fluid
the mineral surface, and, as the salinity increases, it spreadelectric permittivity (in F m 1), #; is the fluid dynamic
increasingly into the pore space. Because the distribution ofiscosity (7;~10"2 Pa s for water at 25 °CT is the tem-
local conductivity changes with the concentrati@s a result  perature, kg is the Boltzmann's constant1.381x10 23
of the different dependence of the specific surface conducd K1), e is the electron charge, ar#f the valence of ion
tance and the electrolyte conductivity on the ionic concentratall quantities including and the ionic valences are taken to
tions), the local potential distributions is also salinity de- be positive. Consequently, the perturbation method applied
pendent. The electrical potential distributigi is the local by JPK can be used here, which is equivalent to the global
electrical potential distribution iV, (due toAW) when the averaging procedure followed in Ref. 4.
surface conduction is dominant. The difference between the Considering the complete range of salinities between L.S.
s and ¢, distributions arises from two effects. First, the and H.S. domains, the rock ionic conductivity contribution,
roughness of the pore surface imposes that the current linder cations or anions, is some functio@, of the ionic con-
for bulk and surface conductions are not parallel, hence caugributions in the free electrolyte, "o, and in the diffuse
ing different behaviors between high and low salinity limits. layer,t>""S <. Following JPK, I.H.S. and I.L.S. salinity lim-
However, even if the current flux lines are locally parallelits can be connected with a smooth function, e.g., a' Pade
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approximant. For théth ionic contribution to the rock con- tee a convex-upward curvature for the effective conductivity
ductivity, such an analysis leads to versus the electrolyte conductivity curve in real conditions.

Shiy
I
O

Shfg .if.hf 1 (fhf = i
o i=G[tP"Sgiti Mo ]=t "0y G B. Hittorf transport numbers

The free electrolyte conductivity is

where
ix _ btcX+dX? or=>, ezpic!, (22)
XI=—1ax '
whereC is the concentration of ionic speciesn the free
_ 2/(AF)—1/f c= 1-MA (19) electrolyte. Transference and Hittorf humbers of species
N2f—-1/F f—\F/2’ (respectivelytf andt!") in the free electrolyte are defined
by®
b=1/F, d=alf.
The functionG, a ratio of two polynomials, has been chosen ti=(+1)pfeCl/ay, (23)

because it connects simply and smoothly high and low salin-

ity domains where analytical forms are given by E(&5) hi ; fhi

and(17). In numerical simulations, the Paélenctional gives tHM=(x1)zt{, and X (t")=1. (24)
a good approximation for the intermediate conductivities. '
The total rock conductivityg, , is assumed to be the sum of
all rock ionic conductivity contributiongand consequently
we neglect interactions between ionic species during the
migrations,

The parameters!"f represent the ratio between the electri-
cal current due to specidsdivided by the total electrical
'Eurrent in the free electrolyte. According to their definition,
the Hittorf numbers are positive for all iongwith
o=<t!M<1).

0022 Oci (20 The specific surface conductancEg, represents the

i anomalous conduction in the EDLN the present approach,

where the sum is over all the ionic species present in the por&€ do not consider electrical conduction in the Stern layer or
fluid. The total free current density is given By=oE. It directly through the surface sites, and consequently surface
should be emphasized thét) o is not a purely Ohmic conduction only takes place in the EQEig. 1). The specific
conductivity because it includes a convective term due to agurface conductance can be described from the sum of the
electro-osmosis phenomen(the true Ohmic conductivity is  individual specific surface conductances in the EDL by
obtain by equating the specific surface conductance with the
electromigration surface conductance which is defined in the -3 s
following sections, (2) all the previous equations are given 2= i ezZxy.
under the “thin-EDL” of Fixman? i.e., that the thickness of
the diffuse layer must be much smaller than the dimensionghe jonic contributions  are dimensionally different from
of the pores and the local radius of curvatirhis last s Surface transference and Hittorf numbers of speties

(25

assumption is needed to derive E(B5) and(17), and will  (respectivelyt andt>"f) can be now defined by analogy
be important for all that follows. with t/ andt /",
We show in Appendix A, that the following inequalities
are always satisfied: tS=(+1)e3 Y34 (26)
I - I ’

N2 A (21

—=—=—,

bR 5= (+1)Z;t3, andEi =1, (27)

(and consequently=A). Equations(16), (17), and(21) im-
ply a downward curvature in a plot of each ionic Contr'bm'onwheretis'hf represents the difference of electrical charges

ri% e;Or(—:IIi(ne(;Ornsu:cEgItyro?/?(?ierStth?ilf(t:r:?I?/cfr?ichour:?;ccél\g:)yn d'SCfraction transported by speciesluring electrical conduction
tance contribLE)tionsf: S?hfz ar?a constantsi.e., independ (including an electro-osmotic contributiphetween the EDL
; s €., pendent

of the salinity. Since the effective electrical conductividy, and the free electrolytéthe matrix is always chosen as the

Shf< ;
is the sum of all the individual contributions, it also has areference frame We have G<t] 1. In the next section,

- ) we establish a relation between the surface Hittorf numbers
convex-upward curvature, providing the specific surface con-

. : and the Stern plane potentiady, which can be considered
ductance is held constant, "e"&"(c/‘;‘ff)ifo’ and as the mineral surface potenti@r the inner potential of the

(dP0¢/dot)s <O. This is called the convexity theorem for EDL). The JPK model does not explicitly include the form of
an arbitrary porous mediAs we will see in Secs. Ill and g or 3 7. It can therefore be used with any model of the
IV, the specific surface conductance is concentration deperiffuse layer. Consequently, equations developed in this sec-
dent. Consequently, the variation of the specific surface cortion and the following one can be incorporated into those
ductance with the electrolyte concentration does not guararalready cited in Sec. I A.
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C. Specific surface conductance e,=—Ve. The boundary conditions or$ are given by
£5(0)n-Vo=Q2 andnxVe=0. Pridé' shows that the min-
eral surface charge does not produce any electrical field in
V., and does not produce a macroscopic electrostatic field.
Actually, the electrical fielce, is screened by some ions of
S=38+3%. (28)  the electrolyte which form an ionic cloud around the mineral
grains: the EDL. The model is now restricted, for useful
The electromigration surface conductance represents trgmplifications of the general equations, to the case in which
excess Ohmic conductivity in the EDL. The electro-osmoticthe EDL thickness is small compared to the radius of curva-
surface conductance is due to a convective electrical curreiire of the surface and the size of poigse thin and flat
in the EDL induced by the macroscopic electrical gradient EDL hypothesis Under these conditions, all parameters de-
(the electrical force acting on the excess of charged ions ipend only on the local distance from the surfageand the
the EDL is transmitted by friction to the fluid iW,). The  problem reduces to a one-dimensional problem. Conse-
two surface conductances terms introduced previously can bguently, Poisson’s equation in the EDL can be written as
described using the sum of their ionic contributions,
¢=eXi(zZ;X7), and 22=eZ;(Z;X)), and consequently
with Egs.(25) and (28), 3°=3°+3°. In the next section, Ix
all these quantities will be related to the Stern potential.

The total specific surface conductanés, can be di-
vided into an electromigration conductan&g, and an
electro-osmotic conductan&2®,*

F
es(x) ax <P(X)} =—p(x), (31)

and the excess charge density) is given by

lll. THEORY OF THE ELECTRICAL

DOUBLE LAYER p(X)EEi piS:Ei (£1)eZC(x), (32)

This section is concerned with mineral surface and EDL
properties and their relations to the Stern potential. We a3 here C
sume in subsectiond, B, andC that the porous medium is
not submitted to an external electric field. The total electrical‘;;l
potential distribution(EDL potential distribution plusy) is
analyzed in subsection D.

S(x) are the ionic concentrations in the EDL. We
ssume that dielectric saturation and viscoelectrical phenom-
na can be neglected in the EDIConsequentlys 5(x)~ &
whereg; is the dielectric constant of watés ¢~ 80e, where
£,=8.84x10 2 F m). Electrochemical potentials can be de-
3 fined by u;=u 7 +kgT In a;+ (+1)eZy, where ¢ is an
A. Internal surface densities electrical potentialg; is the ionic activities of specieisin
The fractional occupancy of surface sites is defined bythe EDL (superscript ‘S”), or in the free electrolytésuper-
Q9=n/%;n?, wheren? is the number of sites of species ~script “f"), and wherew (" is a constant which depends
on the surface, andl;(Q%)=1. We can introduce the total upon an arbitrarily chosen “standard state” of the compo-
surface concentration of ionic sité‘s‘s’ (in m~?) by nent. In equilibrium conditions, the electrochemical poten-
tials for each ionic species can be equated between the
r=3 =3 nors. 29 diffuse layer(at positiony) and the free electrolyt&;*°
I I
S,(°) S — L f
where T'? represents the surface concentration of surface’ TkeT i) +(=1)Ziee(x) =pi" "+ keT Inai.

species andS is the surface area of the interface between (33

th% mineraol and the free electrolyte. The relationship betweefrhe reference statectivity coefficients equal unijyfor both
QP andT'? is obviously 2 P=TP/T'3. The surface charge pore fluid solution and surface species is chosen as infinite
densityQ3 (in C m™?) can be calculated from the ionic den- dilution relative to the aqueous phase and zero surface
sity of the surface by charge(i.e., in the PZC condition The standard stat@c-
tivities equal to unity is chosen as one molal pore fluid
> (il)ZiOQiO), (30)  solution at zero surface charge. The PZC condition ensures
i that there is no ionic interactions affecting either pore fluid

Q=2 (+1)eZ’rP=el'}

solution or surface species in the reference and standard
states. Consequently,>©= 4 and assuming an iso-
thermal, isobaric, ideali.e., ionic activities and ionic con-
centrations can be equaje@nd reversible system in equi-
In this subsection we would like to determine a relation-librium gives
ship between the equivalent surface charge density of the
EDL, the ionic concentrations in the free electrolyte solution, C3(x)=Clexd (+1)Zio(x)], (34
and the Stern potential. Here, we are concerned with EDL
phenomena in isothermal, isobaric porous media in the abaherey(x)=—eq(x)/kgT is the dimensionless reduced lo-
sence of an external electric field. The electrical field in thecal potential in the EDL at the positiog. Equation(34)
EDL, e,, obeys the Poisson’s equatid¥; (e se,)=p, where  implies a Maxwell-Boltzmann distribution for the ionic con-
g is the dielectric permittivity, ang is the net free charge centrations in the EDI(see Ref. 8, p. 114 There is a statis-
density in the EDL. The electrostatic fiedg is irrotational, a  tic equilibrium between the electricéttractive or repulsive
condition that is automatically met by requiring that force (+1)eZVe and the thermal agitatiorkgTVC?

wherez? equals zero for neutral surface site.

B. Diffuse layer densities
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for each ionic species in the EDL. Incorporating E8¢) in The electroneutrality requirement between the surface
Eq. (31 gives the Poisson-Boltzmann equation which can beharge density and the diffuse layer density is given, in ab-
written as sence of charge in the Stern layer, by
2= 2 of
e _o ()40 Qe+ Qs=0. (44)

WY er SH-(=1ZEl (39
This important equation relates surface and diffuse layer

with appropriate boundaries conditions given¢{0)=¢4,  phenomena, whereas the link between diffuse layer and bulk

and (@¢/dx),, =0, wheregy is the Stern plane potential, electrolyte parameters is given by the Maxwell-Boltzmann

and xp, is the total thickness of the EDL. The electrical po- distribution for the ionic concentrations.

tential distribution in the EDL has, approximately, an expo-

nential distribution given by C. Specific surface conductance
=g X — x/xq), (36) The electromlgratlon surfape (_:onductgr?ﬁé, represents
the excess Ohmic conductivity in the vicinity of the pore-
where x4 is the Debye screening length defined by matrix interface and is defined by
B kaBT 1/2 o
Xd=| 2¢7 f) ’ 37) = fo (o(x)—ondy, (45)
|f5% > zicf, (38)  Wherey measures the distance along a normal directed into
i

the pore space from the pore-matrix boundar{y) is the
spatially varying conductivity in the concentration disturbed
zone which approaches for y= xp , whereyp, is the thick-
ness of this disturbed layer. Such definBd can be either a
positive or a negative quantity. The local electrical conduc-
tivity, o(x), is given by analogy with the free electrolyte
conductivity[Eq. (22)] by

I+ is the ionic strength of the electrolyte solution. Actually,
Eqg. (36) is the solution of Eq.(35 linearized by taking
[(x1)eZey/ksT|<2. The validity of this simple exponen-
tial distribution for ¢ (the Debye-Hukel approximatiopand
the relation between the mineral surface charge deg8y
and ¢4 are discussed in Appendix A of Ref. 4. The equiva-
lent surface charge density of the diffuse layer is given by

the integration of the excess charge density on the diffuse a(x)=2, €ZBx)CAx)). (46)
layer, i
_ (¥ The difference between the ionic mobilities in the EDL and
= dy. 39
Qs fo p(X)dx 39 in the free electrolyte arises from the difference between the

, , , ___ionic strength in the EDL I[s(x)=(3)2;Z2C(x)] and in
We define the equivalent surface charge density for spéciesy,e free electrolyte(because the ionic mobility decreases
by i with the ionic strength, e.g., Ref).an the rest of the paper,
_ [P s we will consider that the ionic mobilities in the EDL are
Q _J PrXAX. 40 constantand should be evaluated at the mean ionic strength
s s i L of the EDL), but at least, in first order, it is always possible
wgere pi(x)=(£1)ezC(x). Using the definition of 4 consider that the ionic mobilities are equal in the EDL and
pi'(x) and Eq.(34), the equivalent surface charge density forj, the free electrolyte for each ionic species. Consequently,

species is given by from Egs.(22), (45), and(46)

S_ of XD -~ XD
QP tnezc! ] " (= 1Z G0, @) s¢- | S ezipcio-gichax. @)
Pride has demonstrat¢gigs. (191) to (194), Ref. 4 that, Using Eqgs.(34), (42), and(47), the electromigration surface
conductance is given by

XD —_~ (il)Z@d
|7® exst= nzB00d~2x exp(T),
> <e2)ﬁ?crexp(<t1>zi =

(42) 35=2x4q . (48

where p4=—eg4/kgT is the dimensionless reduced Stern
potential. It can be shown that E¢}2) is rigorously valid
under the Debye-Hikel approximation of low potentials,
but appears also as a useful approximation even for highgenseauently
surface potential$.Consequently, Eq<39), (40), (41), and

(42) give st- [“sfoocioo-sichiox, @9
Qs=2 QP~2xa2) (+1)e7C| exp[(tl)zi %}

— 0y

The electromigration surface conductance can be written
from the sum of its ionic contributions, 7 (Sec. Il Q and

=2x4C| B?exp((rl)zi %) —Br] (50)

(43
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We next consider the surface electro-osmotic conductancgotential, the local electrical field, and the fluid flow resis-
such as described by Bikermamand generalized to a multi- tance(i.e., the viscosity of the fluijd We note that in the free
ionic electrolyte by Pridé.In homogeneous electrolyte solu- electrolyte, the fluid velocity induced by the external electri-
tions, the concentrations of the cation and the anion are necal fields is,ve~(e:/ 7;) o4V ¢, for x> xp . We define the
essarily stoechiometrically equivalent. Consequently, whemlectro-osmotic mobility byw.(x)=— B.{x)V#, and conse-
an electrical field is applied, cations and anions convey equajuently, B,dx)=(e¢/ 7:)[ ¢(x) — ¢4]. Note thatB.,; can be
overall momentum to the solvent, and there is no solvenpositive or negative depending on the sign of the Stern plane
convection. In a porous medium, for conditions other tharpotentiale, . It is now natural to set the electro-osmotic sur-
the PZC, the situation is different. There is a majority offace conductance in the EDL ésshould be noted again that
cations or aniongdepending of the sign of the mineral sur- there is no excess charge density in the free electrolyte
face charggin V,,, specifically in the EDL. When an elec-
trical field is applied, it results in a solvent convection, and o
consequently a surplus conductivity called the electro- zgszf p(X),BOS(X)dX:E (ezZ)xrs. (52
osmotic conductivity. To study this phenomenon, it is neces- 0 :
sary to add equations describing the fluid velocity distribu-
tion in V, due to the external electrical field. For an Note that the Stern potential is negative when the EDL con-
incompressible fluid, the equation of continuity ®v=0,  tains an excess positive charge and positive when the EDL
wherev is the local fluid velocity inV,. The equation of contains an excess negative charge. Consequently,
motion for a fluid of constant density and viscosity is a form Sign(B,s)=Sign(p(x)), where “Sign” refers to the sign of
of the Navier-Stokes equatiofwhich is a form of the the quantity in parenthesis, and therefore, the electro-osmotic
momentum-conservation lawlin the limit of slow incom-  surface conductance is always a positive quantity. The elec-
pressible flow, the Navier-Stokes equation reduces to the linfroosmotic surface conductance can be integrated by parts in
ear Stokes equatiof)=—Vp+ 7;V2v+F, wherep is the order to be related to the Stern plane potenfimith the
thermodynamic fluid pressut@a), andF is the total external appropriate boundary conditions fer given previously in
force per unit volume. This last term can be written by, Sec. Il B). After some algebraic manipulations, and using
F=p;9—pV, whereg is the acceleration of gravigm s 2,  the following equation:
andp is the excess charge density previously defined by Eq.

(32), andy is an electric potential. The two terms on the left p\2 2kgT . (x1)eZg
represent the change of momentum of a fluid element due to = Z TTTRT
the forces on the right, pressures forces, viscous forces, b
gravitational forces, and electrostatic forces in the present ) o )
case(the coupling between ionic flow and hydraulic flow is a Which can be obtained by multiplying both sides of the
consequence of a friction efféctWe consider a fluid satu- Poisson-Boltzmann equation By/dx and integrating, Pride
rated porous medium submitted to a constant electrostatidXef- 4 gives

field, and we neglect the gravitational force. Following Ref.

4, we notep, and v,, respectively, the thermodynamical os AeiksT ;
fluid pressure and fluid velocity induced by the macroscopic 5= . XdZ Ci
electrical field, E. The vector —V¢ is now the same

electrical-field distribution used in Sec. Il. The electrical
force acts only in the EDL because the excess charge densiy1
equals zero in the free electrolytdue to the electroneutral- ¢Yctance e ;
ity requirement The analysis of electro-osmosis also re- contr'lt}utlon (electromigration plus electro—osmo)smf the
quires a statement of the internal and external boundarie?DeCIfIC surface conductance can be now written from Sec.
conditions, which are given by Prifido be, p,=0, as | C and Egs.(50), and(54) as

z=0L, Vpe-n=0, vo=0o0n S. It follows thatp,=0 in V.

Consequently, the Stokes equation reduces to s ;
7VVe=p(x) V¢ (and v, is solenoidal, p(x) the excess 27=2x4C;
charge density in the EDL is given by E(B2), andV is

the local electrical potential gradient described in Sec. Il anQ/vhere
generated iV, by the macroscopic electrical fieH. We
assume that the shear plaftiee surface defined i, by the

—1}, (53)

ax g 9

exp( (+1)Z, %) - 1}. (54)

e ionic contributions of the electro-osmotic surface con-
ctance are easily obtained from E§2). The total ionic

B?exp((i 1)Z, %) - B{}, (55)

the effective mobility B; is defined by

B;=pg;+2e;kgT/(ns€Z). An evaluation of the magnitude

. " . of the two terms in the equation of the effective mobility

condition ve=0) can be merged with the Ste_rn plane, andshow that the electro-osmotic effect is appreciable, and

also that the variations (Sh_pcan be neglected in the E.DL S therefore should not be neglected. Consequently, if we com-

a lcopsequlerr]]ce of kthe thin and flgth EEL assgmptlpn. Th:f)are the forms of Eq¢55) and(50), the problem electromi-

solution of t e_Sto es gquatEn with the previous Internagration plus electro-osmosis is similar to that of electromi-

boundary conditions is given by gration, but using effective ionic mobilitid3; instead ofg; .

& Finally, Egs.(25), (26), (27), and (55) allow direct compu-
Ve(x)=——[o(x)—¢qlV . (52 tation of the surface Hittorf numbers as a function of the

K Stern potential.
Consequently, the rate of the electrically induced convection It should be noted that the concentrations of the ions are
in the porous medium depends chiefly on the Stern planperturbed by the mineral surface charge over distances equal
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to several times the Debye screening lenggh whereas the tion is valid for different ranges of ionic strength depending
thickness of the “conductivity perturbed zone” is smaller. on fluid chemistry and mineral.

Equationg43) and(55) indicate that the final result, in terms

of conductivity perturbation thickness, is equivalent g2

Similarly, Eq. (43 shows that in terms of diffuse layer D. Total electrical potential distribution

charge, the final result is equivalent to emptying a region of |f a macroscopic electrical potential gradieBt= — (AW¥/
thickness %4 of ions possessing the same charge as surface)z, is applied to the porous medium, the total electrical
sites. Consequently, the “equivalent thickness” of the dif- potential inV,,, ¢, can be considered as the sumyofthe
fuse layer, for the conductivity problem, is equal toe2 and  ocal potential generated b in V), and ¢ (the electrical
is a salinity-dependent parameter. When the double lay&fotential in the EDI, that vanishes outside the EDL because
reaches its minimum thickness, the counter ions are concewf the Debye-Hukel screening. Consequently, we have,
trated in the Helmoltz layer. Consequently, the Helmoltz,. =+ . It should be emphasized that the distributionjof
layer thicknessy , constitutes the lower limit of the diffuse js dependent on the strength of the electrical potegtidlhis
layer thickness. It can be computed from the hydration diamgependence is a consequence of the heterogeneity of the po-
eter of the counter ions present at the surface. Assuming th@us medium: the specific surface conductance and electro-
dimension of hydrated ions is the same within the diffuselyte conductivity do not have the same dependence upon the
layer and in the free solution;,=2r %, wherer }9 is the  jonic strength. Thus the local conductivity distribution in the
mean hydration radius of the counter ions. For exampleporous mediun{and consequently the potential distribution
Nightingalé! givesri?~3.6 A. To account for this effect, y) changes with any variation of the ionic strength. Refer-
Clavier, Coates, and Dumanbintroduced a “double layer ence 5 gives a numerical investigation of this phenomenon
expansion factor’ay=2y4/x4=1. a4 decreases when the where the specific surface conductarXxe, and, implicitly
concentration of the electrolyte increases. The minimunthe Stern potential, is taken as a constant. For example, if the
value of the double layer expansion factor is that when theStern plane potentiapy (and thuse) is high, resulting in
diffuse layer thickness is minimum and equalg. An  large specific surface conductarke, theny will tend to the
“EDL high salinity domain” is defined for an electrolyte low salinity distributionis. If ¢4— 0, which is the case in
concentration greater than a critical concentration given byhe PZC condition, we havé; (and ¢)— i, . The boundary
the equality betweery, and xy . Consequently, for a sym- conditions fore and s on S are given by,Vexn=0, and
metric electrolyte, this critical concentration is given by Vi-n=0, hence, we also have, &)
Ci"M=2¢kgT/(e?Z?x3). Approximately, C{"~0.729
mol |1 for a NaCl solution at 25 °C, which corresponds to
6.3Smk Vi-Ve=0. (57)
Another point is that in the present approach, we have
considered the mineral surface as uniformly chardede In the presence of an external electrical field, the equality

charges are discreteConsequently, in our approach the ol hemical Sls b iom th
electrical potential gradient is radial to the surface every2! €lectrochemical potentials between any positom the

where, andepxexp(— x/xq), rather than radial toward sur- EDL dand in th?\ frele eI_ectl\erIytex(i é(Dl), along (‘;i. no_[)ma_ll tof
face sites withe= (L1 )exp(—r/x,), wherer is the distance > reduces to the classic Maxwell-Boltzmann distribution for

S . . .
from the surface site. This continuum assumption is valid ifCi (X) [Ed. (34] only if the variations o can be neglected

the surface charge density is larger than a critical valud" thﬁ E%L' Agailn, tl?e flat ED(Ij‘. assumption”must be SgtiSﬁ?]d
which depends on the diffuse layer thickness and its relation(—‘/’ds.. O;J vary s Ony kc:ver af Istance sma clomp.akr](.e tﬁ the
ship to with the salinity. The surface density of the dominant’@dil of curvature of the sur ageConsequently, within the
charged surface  type  site is defined by ED_L, Viis tanger_mal to the surf_ac(becauswwn:O), and

I M T ) e v T =T begthe 4SSN e e
total surface site densityThe average distance between the 9 . .
charged sites is approximate(lyf’“ ))—1/2. We consider then €duals zero. In the EDL, the total electrochemical potential
that the continuum assumption for the surface charge is valigr"’ld'fanvt Cgfvbe Sde%)mgosedd mk;[o norrgval and tangential
if the characteristic length associated with the EDL, gay parts.v Ka Tk +V““i : hanh . ehcaus f“'“i =0, we

is greater than half of the average distance between charg@@v‘_a’ i =(*1)eZVy (which is the net force acting on
surface sitesyy= (T <()+/_))—1/2/2_ Using the definition of the the ions in the EDL vyhen the porous medium is subjected to
Debye screening lengftEq. (37)], this condition can also be @ external electric field

expressed by

IV. APPLICATION

2e:kgT 0 TO A QUARTZ/ELECTROLYTE SYSTEM

IfsTF(+,_). (56)
The determination of the Stern potentialy, is the key

that enables EDL properties to be calculated. This section is
Taking, for example,l“?+,,)=0.6 charged sites/Mmgives  devoted to the determination of the Stern potential as a func-
[:=<0.2 mol/l. Obviously,‘l“?+,,> will also depend on the con- tion of pH and electrolyte salinity from surface physical
centration of potential determining ions in the free electro-chemistry of quartz as an example. The fractional occupancy
lyte (e.g., pH for an amphoteric surfgcand ionic strength of ions in the EDL are compared with an earlier simpler
(as it will be shown in Sec. 1Y thus, the continuum assump- two-site model ISCOM 1.
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A. Surface reactions energy. For simplification, the surface is assumed to be ideal
We consider thas is covered by>SiO-H groupswhere (surface activity coefficients equal to unityrhe number of

>refers to the mineral lattige These groups can be consid- POSsible arrangements on the surface sites is given by
ered as Brosted acid sites. Adsorption of'Hand OH ions

is based on protonation and deprotonation of surface silanol 1ﬂ(s)!
groupst? =0 /0 0 0 o (68)
! FSiOH'FSiO"F SiOH;'rSiONa' FSiOCI-
K+
>SiOH+H" & >SiOH; , (58) H contributes to the Gibbs free energy an entropic term

given by G=G)—kgT InH, whereG'") is the Gibbs free
Ko energy in the standard state. AgnH/JT ?~—InI"?, where
>SiIOH« >8I0 +H™, (59 we have used Stirling’s formula, N!~N(nN-1), we

T — O(site) = () 0 ical po-
where K., are the intrinsic equilibrium constants of these Nave. i (sit9=p; '+kgT InI'j. The electrochemical po-
amphoteric reactions. Other models of surface complexatioffjtial of jan on  near the mineral surface is
involve more than one type of protonation siteAlthough 41 (0N)=p; +kgT INCi—(*1)eZ¢y. The sgperscr_lp‘t.
such multisite models are not explicitly addressed here, it i§énotes standard chemical potentials, anflis the ionic
expected that the model and the resolution method developé&®ncentration of ionic species in the free electrolyte. The
below can also be applied to them. To complete the model of (= 1)€Z ¢4 term in the last equation represents the energy
surface complexation, we also consider the salt ibmsex- ~ '€duired to bring a ionic species with a charge 1)eZ

ample N& and CI) to bind onto the surface by the follow- from the reference state potential to the given mineral sur-
ing chemical equations given by Schlinder and Stufdm:  face potentialp . The intrinsic equilibrium constants can be
defined by the following relationships:

Kna
>SjOH+Na" < >SiONat+H*, (60) 1 . ©) )
. . InK=i—~< (M(Si)CJH+MH+_MSiOHZ+)- (69
> SiOH+Cl~<>SiCl+OH™. (61 B
For the most convenience, E1) can be combined with 1 . . .
the water dissociation equilibrium,,B<OH™+H" to give InK == (LSbH— Rsh-— b, (70)
the following chemical reaction: B
Kei 1 . . . .
> SIOH+CI™ +H* & >SiCl+H,0. (62) In Kne= i (HSoHT e~ iyt~ SO (7D)
B

Kna @nd K, are the intrinsic equilibrium constants of the

reactions of adsorptiofEgs.(60) and(62)]. The adsorption 1 . .

equations imply that Naadsorption occurs for high pH val- In Kgi= T (uSout M(Cll + ,u(Hi — pSbe ,usz)o).
ues(in the basic domain whereas the Cladsorption occurs B

for low pH values(in the acid domainp These chemical re-

actions lead to five species on the surfaeiOH, >SIO",  consequently, the thermodynamic equilibrium constants are
?S|OH20 , >SiONa, and>SiCl. We note, as previously de- gefined for the standard state conditions, and are only func-
fined, I's, as the total surface site density and, therefore gjons of temperature and pressure through the dependence of
conservation equation can be written by the standard chemical potential on these quantities. Using
Egs. (64)—(67) and the definitiong69) to (72), we can de-
termine the following relationships between the surface in-
frinsic dissociation constants K, the Stern plane potential,

@4, and the ionic-surface site densify?,

(72

Te=T3ont g0 +Tsion; +TRat T (63)

whereT ? are the density of the five surface species per uni
area of the quartz interfacd'}, and I', are the relative
surface site densities for the adsorption of Nend CI).

The equilibrium conditions for Eq&58), (59), (60), and ngOH2+ eqq
(62) may be written in terms of the equality of electrochemi- Ko ==o = eXB =/ (73
re..c kgT
cal potentials for each chemical equation; SIOH>H* B
0 0
HSioH= Ko+ My (64) e, Cl. eoq
oo T T O i) 7
MgiOH+MH+ = ’u“SiOH; ) (65) I
rd.c
MgiOH+Mg|a+ = tgiona™ MEH! (66) KNa:#;_ , (75
I‘ISiOHCNaJr
0 0
H3ion M- T My = H3iorT Ko (67) .
r
The electrochemical potential of surface sites is defined by, KClz—fC'—f—_ (76)

0
,uio(site)z(&G/&F?)T,p,r?a#j), where G is the Gibbs free I'siorCp+Coi-
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The PZC is defined here as the pH at which the macroscopic

effects of charged surface groups cancel each othetamat
consequently the Stern plane potentigl, equals zerp i.e.,

0 f —
(ngO’)pZCZ(FSiOH;)DZC’ so that, Cy+)pzc= VK /K(4). As

pH= —IoglO[CLt], the pH corresponding to the PZC is

1 K
pH(pzc)= Ioglo( K, )) (77)

This last relationship gives the aqueous concentrationof Hand  the pH.
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Qg= e(rgiortzt _rgiO’)’ (87)
=el'yQ?, -0? ), (88)
_er? X (k. ,c0, Ko 89

SA| P o) (89

We show now that the Nernst's equation is not adapted to
describe the relationship between the Stern plane potential
We deflne ApH= pH pH(pzc)=

needed to produce a surface with an average neutral Chargeloglo[CH+/(CH+)pzc] where, CH+ and (CHt)pZO can be

over its entire area. We hav@SIOH +>Fs.07 for pH

<pH(pzo resulting in a positive surface charge, and
ngOH2+<ngo, for pH>pH(pzo resulting in a negative sur-
face charge. EquatioV7) is equivalent to the relationship

derived by Glovert al* Using Eqgs.(73) to (76), the frac-
tional occupancies of surface site are given by

re 0 f
00 = sior,*  I'sionCp+K() _ €¢g (78)
e re kgT)’
Too ToK e
0o _ Sio- _ 1sioH™N(-) Pd
Q(_)= 0 - T 0 4_‘( ), (79)
FS CH+FS BT
f
0 _ F%a_ CNa*fI‘giOHKNa (80)
~— 10~ ~f 0
“TETT ol
0 fo~f 0
o La Ch+Co-T'siorKai 81)

R

Using the mass balance equation, E3), we find that
I'2oy=T YA, where,

f

A1tk . O KO Cnat
- (+H)~H+ CG Na Cf Cley+Y—
Ht Ht

estimated from Eq473), (74), and(77),

B QO )1/2
(=)*5(+)
Ch=l—a0| - (90)
MK
172
(Ch) =(—K” G
el )
Consequently, we hav
QO 2e 1/2
_ (+) Pd
ApH=—log;q _Q?,) exp( kBT) , (92
1 e 1I Q?+
2303 kg7 #472 M0 || 9
WhereQ /Q ) can be calculated from Eqé8) and (79).

Equatlon (93) must be preferred to the traditional Nernst
equation given by Eq(B4) in Appendix B. A discussion
about the deviations observed from the Nernst equation for
SiO, is given at the end of Appendix B.

B. Electrolyte reactions and diffuse layer densities

To control the pH we consider the following chemical
reactions in the particular case of a sodium chloride aqueous
electrolyte, NaGkNa*+Cl~, HCI=H*+CI~ (for pH<7),
NaOH=Na"+OH~ (for pH>7). The electrolyte concentra-
tion is notedC;. We assume a complete dissociation for
NaCl, HCI, and NaOH and we assume the ideality of the

andCH+ is the concentration of hydrogen ions on the surfaces()lunon The water dissociation reaction igQd&OH +H™,

S (i.e.,

Boltzmann distribution[Eq. (34)] by CH+ H+ expley),

for x=0), which is given from the Maxwell-

and the dISSOCIatlon constant of wat€y, is close to 10 8
at 25°C (K= H+C0H— if the water activity can be as-

c 4+ is the hydrogen ion concentration in the free electrolyte.sumed to be 1 We also assume that no HCl is added when

So finally from Eqs.(78) to (81), we have

Q% =K1 Ch/A, (82)
Q% =K, /(CH:A), (83
02, =KnClp/(CLiA), (84)
0%=KC2 /(Cl.A), (85)
Q3o=Tgio/I's=1/A. (86)

Applying Eqg. (30) (with Z?i)zl in the present cag@ives
the surface electrical charge density,

the pH>7 and that no NaOH is added when the<pH (of
course, one could always have both present and arrive at a
given pH with an effect on the salt-ion concentrations, Na
and CI'). Consequently, for an acid pH, the ionic concentra-
t|ons in the free electrolyte al@Na+ Ct, CEI_=Cf+Ca,
[.=10°N10"PH=C,, andC[, =10°N10°""PKw, where
N is the Avogadro’s number (6.02x10?° mol™?),
pK,=—log;oK,,, C, (in m3) is the HCI concentratiorC;
is the salt concentration. For basic pH, ionic concentrations
in the free electrolyte are given b/ .=Cy+C;, Cf-
=Ct, Cl.=10°N10"P", andC[, =10°N10°H PKw=C,,
whereC,, (in m~3) is the NaOH concentration. The pH in the
free electrolyte is assumed to be independent of the state of
the quartz surface. The electrolyte and macroscopic effective
conductivities are calculated using equations given in the
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first section[in particular Eqs(18) and(20)], the summation Q.= CL+ exp@4/2)/L, (96)
is done over all the ionic species present in the solutions, i.e.,
H*, OH™, Na", and CI'. The fractional occupancy of ions in

EDL are defined, and calculated as Q5 =Cl+ exp@dl2)/L, (97)
s [PCiondy  clel=vziEd 04 < . -
P= = . (99 Q3 =Copn eXp(—2dl2)/L, (99)

2 [PCndy X Clet=12Ed
] i
f —~
This second equation is obtained using Pride’s approxima- 08 =Cg- exp(—gq/2)/L. (99)
tion [Eq. (42)] and the Maxwell-Boltzmann’s distribution for
the EDL concentrationfEq. (34)]. Consequently, using the whereLEZ(Cf L +Cf .)coshGy/2).
electroneutrality equation in the free electrolyte, Na H

f f f f
Co-+Cou-=Crar T Ch+ s (95 C. Stern plane potential determination
the fractional occupancy of ions in the EDL can be easily The surface charge density is obtained using E2f.and
determined by (89) to give the following equation:
|
t 3. Ko 3
K(+)CH+E"DC‘— Ef— e %
+

QQ=erg . (100

1+K, ., Cf e¢d+—f—K<‘)e—5d+K —f—CNa++K ch.ch_
(+)~HT C Nac Cl~HtYcl

Ht Ht

The diffuse layer charge densifs (also in Cm?) is (103, the Stern plane potential must satisfied the following
obtained from Eq(43) as equation(recall thate = —e@y/kgT)

Qs=2exd[ — (CL-+CL,-)e™#¢2+(Cl . + C/ 1) e¥]. F[X]=0, (104
(102 where the functior[ X] is given by

Using the electroneutrality requirement of charge in the n [ 1
free electrolyte(i.e., CL_+Cf,-=Cl.+Cl.), and the FIXI=5 VCi+ 107pH+1UJH7pKWk X— ;)
Debye screening length definitidgpombining Eqs(37) and

(38) to give 1/5(522e2(CLa++CL+)/(8kaT)], results in iy 2 Koy ooy
(for O<pH<7), X 1+ K10 PX+ 10 PF X
© Na f f _
Qs= V8ekgTN10*(Cs+ 1OPH)sinl—(%> . (102 + 79-w" Cnat T KciCq-10 PH)
Here C;+10 PH must be replaced bg;+ 10°"~PXw for pH +K 4107 PHX2— Ko X2, (105)

10 PH

wheren=\/8s kg TN10/(el'Y), andX=exp(@4/2). The so-
lution of Eq.(104) (for the direct problem pH an@; are the
input parameters, and, is the output parametegives the
~ ) relationship between the NaCl concentration, the pH and the

greater than 7 to account for the modification of the ionic
strength due to an increase in Okbn concentration. Con-
sequently, to account in one equation for the variatio@gf
with pH, it is possible to write

Qs= \/sgkaTN103(cf+1o—PH+1c}3H—PKw)siny-(% Stern plane potential. From now and in the following com-
putations, we neglect adsorption of salt ions in order to do a
(103 comparison with the model ISCOM (kee the next subsec-

For the present electrolyte composition, Ef03) is similar ~ tion). Consequently, Eq109) reduces to

to the Gouy-Chapman equation between ¢hegotential and

the diffuse layer charge densis (e.g., Ref. 16 F[X]= n JCit lOpH+100HpKW(X_ E
The Stern plane potentiap,, must satisfy the electroneu- 2 X

trality requirement between the surface charge and the dif-

fuse layer charge in equilibrium conditiopgqg. (44)]. Con- + 10 PHx2

sequently, as a direct consequence of E4d), (100, and K

1+ 510 2PHx4

+ 5107 2PHX4—1=0, (106)
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-2.0 site with the correct electrical polarity. Consequently, in IS-
' COM 1| the fractional occupation of ions on surface sites can
be determined by
-1.0
" Ch+
[ Q55 =0015C ——— (112)
B Crar T Ch+
0.0
= f A f
™ = S,ISC Na‘t
- X=5.66 Qo =05 T (112
10 Nat T G
i f
) Slse=qose_ O (113
o pH=7 OH (+) )
20~ P Con-+Cq-
F C,=0.01M
B f
[ [T ST R SN SRS W N SR WY WNNS NN WY N U S,ISC__ ~0,ISC Cl~
300 2 4 6 8 Qo==0" o (114
X OH~ cl-

FIG. 2. F[X], defined by Eq.(106), versus the parametet

In Appendix B, we demonstrate that ISCOM | assumes
implicitly a Nernst relationship between the Stern plane po-

related to the Stern plane potential by the relationship given in theential and the pH. However, as demonstrated by Levine and
main text. In a realistic range of variation of the Stern plane potenSmith1® the Nernst equation is not adapted for the descrip-
tial, the equatiorF[X]=0 has only one root which can be deter- tjon of surface potential for oxides and silicates and must be

mined by a Newton’s iteration method.

and o=K /K _). The functionF[X] is plotted in Fig. 2
(pH=7, C;=0.1 mol I'}, and pHpzo=3). In a realistic
X-value rangg0.1=X<10, i.e.,—118 mV<¢4=<118 mV),
the equatiorF[X]=0 has only one solution. Consequently,
the ¢4 potential can be found using E¢L06).

D. ISCOM | equations
ISCOM 1 is a model developed by Glovet al'* to de-

termine the adsorbed ionic concentrations on mineral sury
faces in silica dominated rocks. In ISCOM I, the density of
neutral group>SiOH is neglected and surface sites are eithe

negative, or positive. Consequently, the fractional availabil

ity of positive and negative surface Site}$¢ and Q5
are given by*
0 2
0St=— eiad 0 (107
(+) (CH+)'2)ZC+(CH+)2
f 2
0,ISC_ (CH+)pzc
&) =raf 2 0 (108
(Ch)pzet (Ch)

These equations can be compared with E@8) and (79),
which can be written in absence of specific adsorption by

0
. (Ch)?

Q% = —
() CRulK (49 + (Cpe )2+ (Crpe ) 256

(109

( CL+)SZC

CoLIK 1)+ (CO)Z+(CL)2y

0
Q(—)

(110

replaced by Eq(93).

E. Numerical computation

We assume for the following computation tHaf=1.5
sites/nnd for the effective surface site density. This value
should be considered as a lower bound for this paraniéter.
ller'® gives a silanol surface site density of 68 sites/iom
a silica surface using geometric considerations. However,
there exists other data indicating that in certain cases a larger
surface site density is possitfle.g., 25 sites/nfy Yates and
ealy).!® In the latter case, the density of OH groups is

Igreater than the possible site density for a monolayer of sil-

anol surface site situated on a flat surface, and hence, the OH

groups must be present in a three-dimensional layer. This
phenomenon can be explained by the presence of a gel layer
of hydrolyzed material which, when in solution, may be per-
meable to ions, and therefore explain the exceptionally high
surface charge which are observed in some cases by poten-
tiometric titration®2°

The intrinsic equilibrium constants are estimated from
Ref. 15 for SiQ: pK(_,=6.3 and pHpzg~3 (Ref. 2. Such
a value for the dissociation constami_,, must also be
considered as a lower bound. Hiemstra, de Wit, and van
Riemsdijk'? have calculated _,=10""* directly from the
SiOH solution monomer analog taking into account only the
difference in Si-H distance for silicate in the interface com-
pared with the distance in the solution monomer and the
correction term for the presence of a negative charge
at the monomer. Marshallet al’> have determined
K(-y=10""*°2using a spectroscopic method.

These parameters values can be used to calcédlatel »
in Eqg. (106), and this equation can be solved numerically by
Newton’s method. The starting Stern plane potential for the

In the simplified case where all ions of the free solutionnumerical solution is zeréi.e., X=1). The Stern plane po-
have the same affinity for occupying surface sites, their octential is easily derived by usingy= —(2kgT/e)InX. The
cupation depends only upon the availability of the ion in¢q4 potential is given as a function of pH for different elec-
aqueous solution and the availability of the polarity surfacerolyte concentrations in Fig. 3. The surface charge density
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FIG. 3. Stem plane potentiady (mV) versus pH aff =25°C FIG. 5. Surface charge densi@§ (C m™2) versus electrolyte

for dn‘fﬁrent elfecr:roly_tlg conc]tcentranorr‘\_s.hThe “pzc ('js thle point of concentration(mole/liter) at pH=7 andT=25 °C. Recall that the
éero ¢ Iarge oft e.s; Ica Zur ace, which corresponds aiso to a ZeiQ,imum surface charge 50.240 C ni2 (K,_,=10 3 surface
tern plane potential condition. site density of 1.5 sites nm).

Q% has been computed from Eq103 (recall that V. DISCUSSION

Qs=—Qy). Q2 versus pH is given in Fig. 4 for different ) ) o )
electrolyte concentrations. Figure 5 is a graprﬁ versus A. Concerning fractional ionic and surface occupancies

the electrolyte concentration at pt, 8, and 9. The frac- The fractional occupancies of ions in the diffuse layer on

tional occupancies of surface sites and ions in the EDL cam quartz surface given by Eq86) to (99) can be represented
now be deduced from the knowledge of the Stern plane poby parametric diagrams for each species as done by Glover
tential using Eqs(96) to (99) and their behavior as a func- et al,'* (Fig. 7). Referring to Fig. 6, from pH 5 upwards, an
tion of pH and electrolyte concentration are plotted in Figs. Gincreasingly significant part of the surface consists of nega-
and 7. tive >Si-O~ sites. Positive sites are excluded from the sur-
face in this pH domain. In Fig.(6), we compare the values
from the present theory with the data of Bragge Ref. 12

0.25 which are based on potentiometric titration of Si€lrfaces
T=25C at 25 °C. As the pH decreases, the EDL becomes occupied
by a continued decreasing number of N@ns and an in-
creasing number of Hions. Between pH 4.5 and pH 3 the
nature of the surface changes with neutral sites replacing the
>Si-O". At pH=pH(pzo), the surface is occupied, almost
exclusively, by neutral sites, with equal numbers of what few
0.1M positive and negative surface sites exist. For pH 2-4, the
surface charge, the Stern plane potential and the surface con-
ductivity must be very low as the result of the high neutral
\ site occupancye.g., Figs. 3 and M At progressively lower
! pH values, the surface becomes positively charged due to the
replacement of neutral surface sitesSi-OH, by positive
; >Si-OH; sites(Fig. 6) and the diffuse layer contains™H
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Cl7, and N4 in comparable proportions. Near the PZC, the
fractional occupancy of Clions is relatively insensitive to
oos——u Lo b L b b b changes in electrolyte concentration. As mentioned before by
0 2 4 6 8 10 12 Glover et al,'* there is little competition between CTland
pH OH™ ions. This is because the availability of OHn the
solution is always small at those values of pH for which
FIG. 4. Surface charge densi§ (C m™2) versus pH for dif-  Positive charged surface sites exist in significant quantity.
ferent electrolyte concentrationd =25 °C). The “pzc” is the In Fig. 7, results for the fractional ionic occupancies as a
point of zero charge of the silica surface. The maximum surfacdunction of pH and electrolyte concentration are compared to
charge density is herez0.240 C nm72, which corresponds to 1.5 the results of ISCOM |. ISCOM (Ref. 14 does not account
charged site ni?. for a neutral surface site density. It is clear from Fig. 7 that
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FIG. 6. (a) Fractional site occupanciém percent as a function T X 3 N
of pH and electrolyte concentratiofmoles/litej, [T=25 °C, °0 1 2 3 4 5 6 7
PH(pz0 =3, K(_y=10"°3 1.5 sites nm?]; (b) comparison with the pH

experimental results of Bradyref. 19. Curves are the result of the

present modefsurface site density: 1.00 mol/kg, K=10""-). _ o o _ _
FIG. 7. Fractional ionic occupanciém percent in the diffuse

his lead . in the derivati f layer (present modegland fractional ionic occupancies of adsorbed
this leads to an important error in the derivation of EDL surface iongISCOM I) as a function of electrolyte concentration

occupancies. This is, perhaps, the most important differenc&'\laCL in moles/litey and pH for a quartz surfageH(pz9=3]. The

between the two models and shows the utility of using thregactional occupancies of hydroxyl ions are not represented in this
or five site modelsthis theory rather than a two-site model figure because they are very small compared to the fractional occu-
(ISCOM ) without EDL description. Clearly, in the applica- pancies of the other ions. In ISCOM |, the curves for the surface
tion of this theory to any mineral it is important to under- occupancy of chloride ions are almost identical for all concentra-
stand the mechanisms of charged and neutral surface sitiens. At pH 7, the electrical diffuse layer is dominated by sodium
formation prior to modeling. ions, however the chloride ions concentration is not negligible.

by a streaming potential method, gives an indication of the
variation of ¢4 with ionic concentratiort/?*the pH, and the
temperature. Electrokinetic phenomena derive from the rela-
The variation of the Stern plane potential with the pH andtive motion between a charged surface and its associated
the electrolyte concentration is given in Fig. 3. In practice,double layer. The potential is the electrical potential at the
the Stern plane potential is not measurable experimentallyslipping plane or shear plange., the potential within the
however the shear plane potentiafor example, determined double layer at the zero velocity surfacélthough the!

B. Concerning Stern plane potential
and surface charge density
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FIG. 8. Zeta and Stern plane potenti&isV) versus electrolyte
concentration(moles/lite). Experimental data are from Scales, FIG. 9. Specific surface conductanc®) (ersus electrolyte con-
Grieser, and Healy(Ref. 23 (fused silica, T=20+1 °C, pH centration(moles/litey at pH 7, 8, and 9, and@=25 °C.
=5.8+1, KCI electrolytg. The heavy line and the dotted line are
theory for thepy potential and the potential, respectivelyparam-  between the case where all the surface is ionized and the
eters used pH5.9, 1.5 sitesinf) K_,=10"%% pH(pzg=3,  prediction of the present model for a quartz sample is more
xi=2.4 A). than one order of magnitude at low salinity.

potential is undoubtedly an important parameter, there is a VI. CONCLUSIONS

problem knowing the location of the shear plane from the _ _ _ o _
surface. We define this distance ag, and therefore In this work, we were interested in porous media in which
{=¢(x;)~ ¢4 exp(— x,/xq). In Fig. 8, the Stern plane po- electrical transport is associated with bulk electrical conduc-
tential and thel potential are plotted against the electrolyte tion in the pore fluid and surface electrical conduction occur-
concentration together with some experimental data for &ing in the electrical diffuse layer close to the pore-mineral
quartz-KCl systeni® Because we have no information about interface. Our model is restricted to the case in which the
the exact value of,, we usey; as an adjustable parameter electrical diffuse layer thickness is small comparedddahe
and choose its value so that the theoretitpH relationship
fits the experimental datdrig. 8).

10
F=10 f=1pm

T 1T ITTm

C. Concerning surface conduction A=1pm =1 um

In Fig. 9, the specific surface conductance is estimated for
pH 7, 8, and 10, and for electrolyte concentration between
107°—1 mol I"%. The specific surface conductance decreases

[

b

(-]

(-]

T lllllﬂl

at high salinity (0.1-1 mol I'}) due to the increase of the 1°":E

electrolyte conductivity. At low salinity, i.e., the second term E .

of Eq. (55 becomes negligible, and consequently the spe- A
10°

cific surface conductance depends indirectly of the mineral
surface charge densit@)2, which decreases when the elec-
trolyte concentration decreaséSig. 5. The result of these

Effective electrical conductivity ¢ (S/m)

remarks is that we can say, heuristically, that when the sur- 10°? pH=7

face is not completely saturated with negative sites the spe- T =25°C
cific surface conductand@and therefore the surface conduc- | | |

tion) should be very low at very low electrolyte 1o R
concentrations, as well as at high electrolyte concentrations, 10 10 10 1o
with a peak in surface conduction occurring 0.1-1 moles/ Electrolyte conductivity o, (S/m)

liter depending on the surface site densijg. 9). Note that

surface conduction in quartz is low at pH 7 due to a signifi- FIG. 10. Effective electrical conductivity. (S/m) versus elec-
cant fraction of sites being neutral at this pH. In Fig. 10, wetrolyte conductivity o (S/m). The dotted line is the relationship
plot the effective electrical conductivity as a function of the given with a negatively saturated surfa@@ sites are negative
electrolyte conductivity in a log-log diagram. The difference whereas the line is the computation following the present model.
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local radius of curvature of the mineral surface, dhfthe  tuosity byr2=F ¢. If conduction is dominated by pore fluid,
pore size(flat and thin electrical diffuse laygrbut greater with the surface conductivity as a weak perturbation, the
than the average distance between charged sites. In sucheffective conductivity is given by

system, the relationship between the effective conductivity, 1
o., and the free electrolyte conductivity;;, is nonlinear Oc=E
due to(1) intrinsic geometrical effects, an@) the variation

of the surface charge with the salinity. If specific adsorptionThe parameteA is rigorously related to the local potential
effects can be neglected, the model used to describe surfadéstribution ¢,(r) by*=>

conduction needs only three input parameters for quartz: the 2 [ley)2dS

surface site density' 2, and the acid-base equilibrium con- KEW' (A4)
stants of the surface reactions.K Each additional specific & p

process of adsorbtion requires the addition of one more pawhere the differentiall S denotes integration over the inter-
rameter(the respective equilibrium constanThe compari- connected pore surface. Note th&tcan be viewed as a
son of the results of this paper with a large experimentalveighted version of the length paramete,;/S.?"E’ A is the

2
O'f‘f’Kzs). (A3)

dataset will be examined in a future work. second microstructural parameter introduced by JPK. In the
high salinity limit, Eq. (A3) is exact to the first order in
ACKNOWLEDGMENTS perturbation due to surface electrical conducfide oppo-

. . ] ) site limit, where conduction is dominated by the surface con-
The authors are gratEful for fruitful discussions with P. A. ductivity, is forma"y similar (|n this descriptiom to that

Pezard, Y. BernaheY. Tardy, S. Best, and J.-J. Schott. given for the high salinity case. The effective conductivity is
CNRS and Universitd-ouis Pasteur de Strasbourg are ac-wyritten in this limit by*®

knowledged for their support. One of us, AndRevil, thanks 1 N
M. Darot for having initially stimulated his interest in this o== | St = m), (A5)
subject. f 2

which contains the final two microstructural parametdrs,
APPENDIX A: MICROSTRUCTURAL PARAMETERS and\. These parameters are rigorously related to the electri-
cal potential distributiongg(r), that would exist in the ab-

One way to introduce the JPK microstructural parameterganca of bulk fluid conductivity

is to present the canonical problem in electrical

conductivity® In the present analysis of this paper, this prob- 1 — 1 f leg2dS, (AB)
lem should be consider as a conceptual one. Consider elec- f Vv
trical conduction in a porous medium saturated by a purely 2 [led?ds

conducting fluid(c; is the fluid conductivity and having an = W, (A7)

insulating matrix. We consider also that there is an additional S p

surface conductivity s, which coats the pore walls. We where eq(r)=—(L/|A¥|)Vys(r) (and we havel(es)|=1).

want to determine the effective conductivity of the porousThe surface formation factof, is related to the surface tor-

medium. The analytical solution of this problem is given by tuosity by7'§=f¢(S/Vp) (note thatf has the dimension of a

Johnson, Plona, and Kojintaand has been studied numeri- length. The parameterd, and\, are the characteristic di-

cally for special microstructural cases by Schwaetzl.’ mensions associated with pore and surface transport, respec-

and Bernaband Revil® tively. An application of the mathematical Cauchy-Schwartz
First, we consider that the fluid conductivity in the inter- inequality together with the definitions & andf leads di-

connected pore space is a functiofir) of position. By rectly to

equating the macroscopic Joule dissipation to the sum of the 1

V, 1
electrical local dissipations in the pore space, we have F= and f=—2=

2 7

¢ S ¢
_ 2 where ¢=V/V is the interconnected porosity. Electrical

T AV fvpa(r)|Vz,/;(r)| dVp, (AD " conduction minimizes the Joule energy dissipation, and con-

sequently,
where AV and L have been defined in Sec. Il A. For the

special case where the electrical conductivity is uniform f Es|V‘//b|2dS>f 24 Vyd?ds, (A9)
o(r)=oy, andy(r)=u,(r), the effective electrical conductiv-

(A8)

2

ity can be written byo.=o/F, whereF is the first of the 20\ = 5
four microstructural parameters used by JPK to model trans- o[ Vil “dVp= | o Vip|*dV,. (A10)
port properties in porous media. The pore volume formatio

factor, F, is defined b§‘5 r]t follows from the definitions of the four microstructural

parameters introduced by JPK, and because the specific sur-
face conductance and the electrolyte conductivity are taken

1 1
—E—f lep(r)|2dV,, (A2) independent of position, that
FVy, P
h L/|[AYV d the diff tiadV, r 1 d 2 !
=— —_—= = —_——
where e, (r)=—(L/|A¥|)V 4y(r), and the differentialdV,, = F andep=+ (A1l

denotes integration over the interconnected pore space. The
pore space formation factor is related to the pore space tofand consequentihy=A).
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APPENDIX B: ISCOM | ANALYSIS equating these two relationships, we have, after some alge-

We demonstrate here that the model of Gloeeal,'* braic manipulations,

ISCOM I, assumes the Nernst relationship between the Stern keT 1 12
plane potential,¢4, and the pH. In ISCOM | we have ¢d=—ln(§m—1> (B3)
o(x)— @4, and therefore the fractional occupancy of H € (-)

ions in the EDL,);., is not defined by Eq94), but by the  Now using Eq(108) for Q25 together with Eq(77) for the

following equation: PZC, inside this last relationship, gives, after some algebraic
manipulations, the classical Nernst equation between the pH
QiS’ISCECiS(O)/E st(o)’ (B1) and the Stern plane potential,
J
e
where C 3(0) is the ionic concentration of speciesat the ApH=— o= | = ¢4|, (B4)
i . 2.303\ kgT
surface(i.e., for y=0). Consequently using the Boltzmann
distribution given by Eq(34), Qa"f;c is equal to where ApH=pH—-pH(pzg. Equation(34) can be compared
5 directly with Eq.(93). For oxides of the amphoteric metals
sIsC 10 PHe®d Al, Si, and Ti, it is well known that the Nernst equation is
Qe ~ 2(C;+10 P (coshpy) " (B2)  not able to account fofl) the observed change of thie

_ . _potential of 26 mV per tenfold change in the electrolyte con-
where 4= —eg4/kgT. Note the factor of 2 in the denomi- centration of a 1:1 univalent electrolyteride and Morgan,
nator of ¢4 in Eq. (96), due to the integration over the total Ref. 7 for quarty, and(2) the observation that potentiometric
thickness of the diffuse layer, disappears in this last expresitrations of the surface charge show a strong dependence on
sion. In ISCOM I,Qf"lsc is also given by Eq(111), so by electrolyte concentratiofPerram, Ref. 20
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