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Theory of ionic-surface electrical conduction in porous media
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~Received 10 October 1995; revised manuscript received 5 April 1996!

We present a model describing ionic electrical conduction in porous media, with particular emphasis given
to surface conduction. The porous medium is assumed to consist of an insulating matrix and an interconnected
pore volume that is saturated with an electrolyte. When in contact with an electrolyte, mineral surfaces get an
excess of charge that is balanced by mobile ions in an electrical diffuse layer above the surface. Electrical
conduction in this diffuse layer can contribute substantially to the effective electrical conductivity of the porous
medium. Our surface conduction model is based on a description of surface chemical reactions and electrical
diffuse layer processes. For this purpose, we consider an amphoteric mineral surface described by a five-site-
type model. We derive the fractional occupancies of positive, negative, and neutral sites on the surface, and the
fractional ionic diffuse layer densities, as a function of the salinity and the pH. Finally, the specific surface
conductance used to describe the surface electrical conduction is related to the previously mentioned proper-
ties, via the electrical surface potential, and is found to be dependent on the electrolyte concentration and pH.
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I. INTRODUCTION

The electrical conductivity of porous media plays an i
portant role in many scientific fields including chemistry1

physics, and geophysics.2,3 The effects of surface conductiv
ity, microstructure and diffusion processes on porous me
were studied thoroughly by Johnson, Plona, and Kojim3

~called the JPK model hereinafter! and related works.3,4 In
the JPK model, the porous medium is composed of an in
connected pore volume saturated by a binary electrolyte,
an insulating rigid phase called the matrix. The matrix
composed by one mineral species and the nonconnected
rosity. The surface of the matrix is typically charged and
counterions required by macroscopic electrical neutral
form a thin diffuse layer over it. Surface conduction with
this electrical diffuse layer~noted as EDL hereinafter! can
contribute substantially to the effective electrical conduct
ity of the porous medium. The problem of electrical condu
tion in a porous medium is much more complicated tha
simple electrostatic problem, and must take into account~a!
the behavior of several kinds of ionic carriers~cations and
anions!, ~b! that each of these have conduction as well
convection currents,4 and~c! that the diffuse layer region an
the mineral surface properties are sensitive to fluid chem
try, and temperature. In the JPK model, surface conductio
accounted for by the specific surface conductance param
SS , but the dependence of this parameter upon the salinit
the pore fluid is not addressed.

The effective conductivity of a porous medium satura
with a multi-ionic electrolyte is studied in Sec. II, and
found to be a function of the four microstructural paramet
defined by JPK, and specific ionic-surface conductan
which describe surface electrical conduction. The link b
tween these specific surface conductances and the mi
surface electrical potential~called the Stern potential! is
550163-1829/97/55~3!/1757~17!/$10.00
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given in Sec. III, in the general context of the EDL theor
The origin of this phenomenon is found in a mineral surfa
charge, which is investigated in Sec. IV. In this section,
consider the specific example of a quartz mineral surf
using a five-site-type model. Section V contains a discuss
of the results of our model.

II. ELECTRICAL CONDUCTIVITY IN POROUS MEDIA

In all that follows, microscopic equations are averaged
obtain the effective macroscopic equations of interest.
assume that the averaging volume,V, is larger than the pore
microstructural heterogeneities, and is isotropic. We de
Vp as the interconnected pore space,Vm the matrix space,
and S the interface between the matrix and the interco
nected pore space. We also definen as the normal toS di-
rected from the matrix to the fluid, andS as the interface area
of S. In order to relate local and macroscopic fields, we ta
an averaging volume such as that described in Ref. 4: i.e
disk of lengthL and cross-sectional areaA ~with V5LA!,
andz is the axis in the direction normal to the end faces. W
assume also that there is no macroscopic gradient in the i
concentrations.

A. Effective conductivity

The matrix is assumed to be electrically insulating, a
electrical current is therefore restricted to the interconnec
pore space saturated by the electrolyte,Vp . Throughout this
paper we take the condition called the ‘‘point of ze
charge’’ as the thermodynamical condition at which the m
roscopic effects of mineral charged surface groups can
each other out. The point of zero charge~noted as PZC here
inafter! will be important in all that follows because it is use
both for reference and standard state. As we will see exp
1757 © 1997 The American Physical Society
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1758 55A. REVIL AND P. W. J. GLOVER
itly in Secs. III and IV, the mineral surface electrical pote
tial is considered to be zero at the PZC, which implies
EDL and no surface electrical conduction. Note that anot
way to handle properties associated with the presence o
EDL is to bring the mineral surface potential~or the so-
called Stern potential! to zero through specific adsorption o
surface-active counterions. We consider that the avera
volume is submitted to an external electric field,E52(DC/
L) ẑ, whereẑ is the unit vector parallel toE in thez direction.
In this ‘‘imposed field approximation,’’E is essentially de-
termined by charges outside of the averaging volume~in
particular, the separation of charge between the mineral
face and the EDL does not influence the macroscopic e
trical field!.4 Typically, these charges reside on extern
boundaries and, in terms of the potential,E is governed by
Laplace’s equation. At the PZC, the electrical conduct
boundary-value problem is expressed on the averaging
as3

je52s~r !“cb , ~1!

“–je50, ~2!

je•n50 on S, ~3!

C~z!5H C1 on z50

C11DC on z5L,
~4!

with the local electrical conductivity given bys(r )50 in
Vm , ands(r )5s f in Vp ~s f is the electrical Ohmic conduc
tivity of the electrolyte solution!. In these equations,cb is
the local electrical potential distribution inVp , and je is the
local electrical current density. Equation~1! is the local
Ohm’s law, Eq.~2! is a conservation equation for electric
current, Eq.~3! is an internal boundary condition onS, and
Eq. ~4! is an external boundary condition. The solution
this problem in terms of the effective conductivity of th
porous medium,sc , is given by3

Je52sc

DC

L
ẑ, ~5!

sc5
1

F
s f , ~6!

whereJe is the macroscopic electrical current density, andF
is the pore-space electrical formation factor which is a
mensionless parameter characterizing the interconne
pore space topology. It is defined in terms of the local p
tential distribution by the well-known energy repr
sentation formula ~e.g., Ref. 3!, 1/F[^eb•eb&, where
eb[2(L/uDCu)“cb , and where the angular brackets d
note a volume average operator defined inVp by

^ &[
1

V E
Vp

~ !dVp , ~7!

whereVp is the interconnected pore space volume. The fi
eb is the normalized electrical field inVp due to the externa
electrical fieldE ~u^eb&u51!. The inverse of the formation
factor appears to be a measure of the effective interconne
porosity. The formation factor is scale invariant mater
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properties. The norm of the local electric fielduebu
2 acts as a

weighting function, giving less weight to poorly conducting
pores than to highly conducting pores. For example,uebu

2

vanishes in dead-ends, as a consequence of the continu
equation, thus deads-ends are not taken into account byF.
Consequently, the effective conductivity is not an average o
the local conductivity:scÞ^s~r !&.

When thermodynamical conditions are different from the
PZC condition, the mineral surfaceS gets an excess of
charge through ionization reactions. This excess of charge
balanced by mobile ions in an EDL~Fig. 1!. Electrical con-
duction in this EDL can contribute substantially to the effec-
tive electrical conductivity of the porous medium. The total
rate of energy dissipated by Joule effect in the porous me
dium by ionic speciesi can be written as

Ẇi5sc,iVu“Cu2, ~8!

wheresc,i is the contribution to the effective conductivity of
the porous medium due to ionic speciesi . We introduce the
fraction of electrical current due to ionic speciesi , respec-
tively, in the free electrolyte and in the diffuse layer, ast i

f ,h f

and t i
S,h f. These parameters are called the Hittorf transpor

numbers for the free electrolyte and the diffuse layer, and ar
rigorously defined in the next subsection. By equatingẆi to
the sum of the local dissipations due to electrical conductio
in the free electrolyte and in the thin EDL by speciesi , we
obtain

sc,i5
L2

VuDcu2 S E u“cu2t i
f ,h fs fdVp1E u“cu2t i

S,h fSSdSD ,
~9!

FIG. 1. Schematic representation of the electrical double laye
situated at the mineral surface. The parametersc is the effective
electrical conductivity of a representative elementary volume
~R.E.V.!, whereass f andsm are, respectively, the free electrolyte
and matrix conductivities. The counterions of the electrical diffuse
layer are maintained at some distance from the mineral surface b
the water adsorbed on the surface forming the ‘‘Stern layer,’’ and a
hydration shell around each cation. The Stern layer and the diffus
layer comprise the so-called ‘‘double layer.’’
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55 1759THEORY OF IONIC-SURFACE ELECTRICAL . . .
whereSS is the specific surface conductance~in S!, andc is
the local potential distribution inVp due to the external elec
tric field E ~c→cb in absence of surface conduction, a
E52^“c&!. A complete description of the total electric
potential distribution inVp ~i.e., EDL potential distribution
plusc distribution! is given at the end of Sec. III. It shoul
be noted that Eq.~9! is independent of any relationship b
tween the specific surface conductance and the electro
concentration. The macroscopic free current density ass
ated with the ionic speciesi can be written byJi5sc,iE.
However, Eq.~9! cannot be used directly because the lo
potential distributionc is not known.

Ionic high and low salinity limits~noted I.H.S. and I.L.S.
limits! are defined, respectively, for each ionic conductiv
contribution by

I.H.S.: t i
f ,h fs f.

2

L
t i
S,h fSS , ~10!

I.L.S.: t i
f ,h fs f ,,

2

l
t i
S,h fSS . ~11!

The microstructural parametersL andl are defined in Ap-
pendix A. They are characteristic pore-size dimensions a
ciated with pore and surface transport, respectively.3 We
show in Appendix A that for an arbitrary porous medium, t
inequalityl>L is always satisfied. The length scaleL can
be interpreted as an effective pore radius for transport inVp
~L is not rigorously a geometrical parameter, however
approximates the narrow throats that control the transpo!.
For the effective conductivity, high and low salinity limit
are defined by

H.S.: s f.
2

L
SS , ~12!

L.S.: s f,
2

l
SS . ~13!

It should be noted that the transition domain between
high and low salinity domains is different for each ion
species contribution. Consequently H.S. and L.S. doma
for the rock conductivity are not similar to high and lo
salinity domains for the different ionic contributions. An
other point is that the flux of electrical current concentra
in regions of highest conductivity. Thus, at low salinity, th
flux of electrical current concentrates more in the EDL n
the mineral surface, and, as the salinity increases, it spr
increasingly into the pore space. Because the distributio
local conductivity changes with the concentration~as a result
of the different dependence of the specific surface cond
tance and the electrolyte conductivity on the ionic concen
tions!, the local potential distributionc is also salinity de-
pendent. The electrical potential distributioncS is the local
electrical potential distribution inVp ~due toDC! when the
surface conduction is dominant. The difference between
cS and cb distributions arises from two effects. First, th
roughness of the pore surface imposes that the current
for bulk and surface conductions are not parallel, hence c
ing different behaviors between high and low salinity limi
However, even if the current flux lines are locally paral
te
ci-
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everywhere, because of pore-scale heterogeneity, the d
bution of current in the porous medium is different for bu
and surface conduction leading to the same effect.5 Through-
out this paper we consider that surface conduction ta
place in the EDL, and because the diffuse layer thickn
grows as the inverse square root of the electrolyte salinity
appears to be a problem to define the conditions in which
cS distribution occurs. This is because the following analy
of Secs. III and IV is valid only for thin EDL. Consequently
we have

c~r !→
H.S.

cb~r !, ~14!

c~r ! ——→
H L.S.
xD!L

cS~r !, ~15!

wherexD is the total thickness of the EDL~actually in the
present problem, the size of the perturbed conductivity la
in the vicinity of the mineral surface!. This length will be
related to the ionic strength of the free electrolyte in Sec.
We point out that the two conditions:~a! L.S. domain@Eq.
~13!#, ~b! xD!L, allow us to determine a salinity domai
wherec→cS . As we said before, Eq.~9! is useless becaus
c is salinity dependent, and this dependence is not kno
However, it is possible to derive linear equations for each
the I.H.S. and I.L.S. limits, which are physically justifie
equations deduced by a perturbation method~e.g., Schwartz
et al.!,3

sc,i5
1

F S t if ,h fs f1
2

L
t i
S,h fSSD , I.H.S., ~16!

sc,i5
1

f S t iS,h fSS1
l

2
t i
f ,h fs f D , I.L.S. ~17!

where the parameterf is the fourth microstructural paramete
introduced by JPK to characterize transport properties in
rous media~Appendix A!. One of the differences betwee
the present model for electrical conductivity and the J
model is that we will incorporate an electro-osmotic cont
bution ~and thus an electrical convection current! in the spe-
cific surface conductance. Despite this fact, we show in S
III that the problem is similar to the electrical problem co
sidered by JPK if the classic ionic mobilitiesb i , in the for-
mulation forSS , are replaced by effective mobilitiesBi de-
fined by Bi[b i12« fkBT/h feZi , where « f is the fluid
dielectric permittivity ~in F m21!, h f is the fluid dynamic
viscosity ~h f'1023 Pa s for water at 25 °C,T is the tem-
perature, kB is the Boltzmann’s constant~1.381310223

J K21!, e is the electron charge, andZi the valence of ioni
~all quantities includinge and the ionic valences are taken
be positive!. Consequently, the perturbation method appl
by JPK can be used here, which is equivalent to the glo
averaging procedure followed in Ref. 4.

Considering the complete range of salinities between L
and H.S. domains, the rock ionic conductivity contributio
for cations or anions, is some function,G, of the ionic con-
tributions in the free electrolyte,t i

f ,h fs f , and in the diffuse
layer, t i

S,h fSS . Following JPK, I.H.S. and I.L.S. salinity lim-
its can be connected with a smooth function, e.g., a P´
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1760 55A. REVIL AND P. W. J. GLOVER
approximant. For thei th ionic contribution to the rock con
ductivity, such an analysis leads to

sc,i5G@ t i
S,h fSS ;t i

f ,h fs f #5t i
f ,h fs f G̃F t iS,h fSS

t i
f ,h fs f

G , ~18!

where

G̃@X#5
b1cX1dX2

11aX
,

a5
2/~LF !21/f

l/2f21/F
, c5

12l/L

f2lF/2
, ~19!

b51/F, d5a/ f .

The functionG̃, a ratio of two polynomials, has been chos
because it connects simply and smoothly high and low sa
ity domains where analytical forms are given by Eqs.~16!
and~17!. In numerical simulations, the Pade´ functional gives
a good approximation for the intermediate conductivities3,5

The total rock conductivity,sc , is assumed to be the sum o
all rock ionic conductivity contributions~and consequently
we neglect interactions between ionic species during t
migrations!,

sc5(
i

sc,i , ~20!

where the sum is over all the ionic species present in the p
fluid. The total free current density is given byJe5scE. It
should be emphasized that~1! sc is not a purely Ohmic
conductivity because it includes a convective term due to
electro-osmosis phenomenon~the true Ohmic conductivity is
obtain by equating the specific surface conductance with
electromigration surface conductance which is defined in
following sections!, ~2! all the previous equations are give
under the ‘‘thin-EDL’’ of Fixman,1 i.e., that the thickness o
the diffuse layer must be much smaller than the dimensi
of the pores and the local radius of curvature.3 This last
assumption is needed to derive Eqs.~16! and ~17!, and will
be important for all that follows.

We show in Appendix A, that the following inequalitie
are always satisfied:

l

f
>
2

F
>

L

f
, ~21!

~and consequentlyl>L!. Equations~16!, ~17!, and~21! im-
ply a downward curvature in a plot of each ionic contributi
to rock conductivity against electrolyte conductivity
linear-linear space, providing that the ionic-surface cond
tance contributionst i

S,h fSS are constants~i.e., independent
of the salinity!. Since the effective electrical conductivitysc
is the sum of all the individual contributions, it also has
convex-upward curvature, providing the specific surface c
ductance is held constant, i.e., (]sc /]s f)SS

.0, and

(]2sc /]s f
2)SS

,0. This is called the convexity theorem fo
an arbitrary porous media.3 As we will see in Secs. III and
IV, the specific surface conductance is concentration dep
dent. Consequently, the variation of the specific surface c
ductance with the electrolyte concentration does not gua
-

ir
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n

e
e

s

-

-

n-
n-
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tee a convex-upward curvature for the effective conductiv
versus the electrolyte conductivity curve in real condition

B. Hittorf transport numbers

The free electrolyte conductivity is

s f5(
i
eZib i

fCi
f , ~22!

whereC i
f is the concentration of ionic speciesi in the free

electrolyte. Transference and Hittorf numbers of speciei
~respectively,t i

f and t i
f ,h f! in the free electrolyte are define

by6

t i
f[~61!b i

feCi
f /s f , ~23!

t i
f ,h f[~61!Zit i

f , and (
i

~ t i
f ,h f!51. ~24!

The parameterst i
f ,h f represent the ratio between the elect

cal current due to speciesi divided by the total electrica
current in the free electrolyte. According to their definitio
the Hittorf numbers are positive for all ions~with
0<t i

f ,h f<1!.
The specific surface conductance,SS , represents the

anomalous conduction in the EDL.6 In the present approach
we do not consider electrical conduction in the Stern laye
directly through the surface sites, and consequently sur
conduction only takes place in the EDL~Fig. 1!. The specific
surface conductance can be described from the sum of
individual specific surface conductances in the EDL by

SS5(
i
eZiS i

S . ~25!

The ionic contributionsS i
S are dimensionally different from

SS . Surface transference and Hittorf numbers of speciei
~respectively,t i

S and t i
S,h f! can be now defined by analog

with t i
f and t i

f ,h f,

t i
S[~61!eS i

S/SS , ~26!

t i
S,h f[~61!Zit i

S , and (
i
t i
S,h f51, ~27!

where t i
S,h f represents the difference of electrical charg

fraction transported by speciesi during electrical conduction
~including an electro-osmotic contribution! between the EDL
and the free electrolyte~the matrix is always chosen as th
reference frame!. We have 0<t i

S,h f<1. In the next section,
we establish a relation between the surface Hittorf numb
and the Stern plane potential,wd , which can be considered
as the mineral surface potential~or the inner potential of the
EDL!. The JPK model does not explicitly include the form
SS or S i

S. It can therefore be used with any model of th
diffuse layer. Consequently, equations developed in this s
tion and the following one can be incorporated into tho
already cited in Sec. II A.



t
ti
re
t
s

n
s

D
a
s
ca

b

l

ac
e
ee

-

n
t
n
D
a
th

at

d in
eld.
f
ral
ful
ich
va-

e-

se-

e
om-

e-

s
o-
n-
e

nite
ace

d
res
id
dard
-

i-

-

-

55 1761THEORY OF IONIC-SURFACE ELECTRICAL . . .
C. Specific surface conductance

The total specific surface conductance,SS , can be di-
vided into an electromigration conductanceS S

e, and an
electro-osmotic conductanceSS

os,4

SS5SS
e1SS

os. ~28!

The electromigration surface conductance represents
excess Ohmic conductivity in the EDL. The electro-osmo
surface conductance is due to a convective electrical cur
in the EDL induced by the macroscopic electrical gradienE
~the electrical force acting on the excess of charged ion
the EDL is transmitted by friction to the fluid inVp!. The
two surface conductances terms introduced previously ca
described using the sum of their ionic contribution
S S

e[e( i(ZiS i
e), and SS

os[e( i(ZiS i
e), and consequently

with Eqs. ~25! and ~28!, S i
S5S i

e1S i
os. In the next section,

all these quantities will be related to the Stern potential.

III. THEORY OF THE ELECTRICAL
DOUBLE LAYER

This section is concerned with mineral surface and E
properties and their relations to the Stern potential. We
sume in subsectionsA, B, andC that the porous medium i
not submitted to an external electric field. The total electri
potential distribution~EDL potential distribution plusc! is
analyzed in subsection D.

A. Internal surface densities

The fractional occupancy of surface sites is defined
V i

0[n i
0/S jn j

0, wheren i
0 is the number of sites of speciesi

on the surface, and( i(V i
0)51. We can introduce the tota

surface concentration of ionic sitesG S
0 ~in m22! by

GS
0[(

i
G i
0[(

i
ni
0/S, ~29!

where G i
0 represents the surface concentration of surf

speciesi andS is the surface area of the interface betwe
the mineral and the free electrolyte. The relationship betw
V i

0 and G i
0 is obviouslyV i

05G i
0/G S

0. The surface charge
densityQS

0 ~in C m22! can be calculated from the ionic den
sity of the surface by

QS
05(

i
~61!eZi

0G i
05eGS

0S (
i

~61!Zi
0V i

0D , ~30!

whereZ i
0 equals zero for neutral surface site.

B. Diffuse layer densities

In this subsection we would like to determine a relatio
ship between the equivalent surface charge density of
EDL, the ionic concentrations in the free electrolyte solutio
and the Stern potential. Here, we are concerned with E
phenomena in isothermal, isobaric porous media in the
sence of an external electric field. The electrical field in
EDL, ew , obeys the Poisson’s equation,“•~«Sew!5r, where
«S is the dielectric permittivity, andr is the net free charge
density in the EDL. The electrostatic fieldew is irrotational, a
condition that is automatically met by requiring th
he
c
nt

in

be
,

L
s-

l

y

e
n
n

-
he
,
L
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e

ew52“w. The boundary conditions onS are given by
«S(0)n•“w5QS

0, andn3“w50. Pride4 shows that the min-
eral surface charge does not produce any electrical fiel
Vm , and does not produce a macroscopic electrostatic fi
Actually, the electrical fieldew is screened by some ions o
the electrolyte which form an ionic cloud around the mine
grains: the EDL. The model is now restricted, for use
simplifications of the general equations, to the case in wh
the EDL thickness is small compared to the radius of cur
ture of the surface and the size of pores~the thin and flat
EDL hypothesis!. Under these conditions, all parameters d
pend only on the local distance from the surface,x, and the
problem reduces to a one-dimensional problem. Con
quently, Poisson’s equation in the EDL can be written as

]

]x F«S~x!
]

]x
w~x!G52r~x!, ~31!

and the excess charge densityr~x! is given by

r~x![(
i

r i
S5(

i
~61!eZiCi

S~x!, ~32!

whereC i
S(x) are the ionic concentrations in the EDL. W

assume that dielectric saturation and viscoelectrical phen
ena can be neglected in the EDL.7 Consequently,«S(x)'« f
where« f is the dielectric constant of water~« f'80e0 where
«058.84310212 F m!. Electrochemical potentials can be d
fined by m i5m i

(°)1kBT ln a i1(61)eZic, wherec is an
electrical potential,a i is the ionic activities of speciesi in
the EDL ~superscript ‘‘S’’ !, or in the free electrolyte~super-
script ‘‘ f ’’ !, and wherem i

(°) is a constant which depend
upon an arbitrarily chosen ‘‘standard state’’ of the comp
nent. In equilibrium conditions, the electrochemical pote
tials for each ionic speciesi can be equated between th
diffuse layer~at positionx! and the free electrolyte,8–10

m i
S,~° !1kBT lna i

S~x!1~61!Ziew~x!5m i
f ,~° !1kBT lna i

f .

~33!

The reference state~activity coefficients equal unity! for both
pore fluid solution and surface species is chosen as infi
dilution relative to the aqueous phase and zero surf
charge~i.e., in the PZC condition!. The standard state~ac-
tivities equal to unity! is chosen as one molal pore flui
solution at zero surface charge. The PZC condition ensu
that there is no ionic interactions affecting either pore flu
solution or surface species in the reference and stan
states. Consequently,m i

S,(0)5m i
f ,(0), and assuming an iso

thermal, isobaric, ideal~i.e., ionic activities and ionic con-
centrations can be equated!, and reversible system in equ
librium gives

Ci
S~x!5Ci

fexp@~61!Zi w̃~x!#, ~34!

wherew̃(x)[2ew(x)/kBT is the dimensionless reduced lo
cal potential in the EDL at the positionx. Equation ~34!
implies a Maxwell-Boltzmann distribution for the ionic con
centrations in the EDL~see Ref. 8, p. 114!. There is a statis-
tic equilibrium between the electrical~attractive or repulsive!
force (61)eZi“w and the thermal agitationkBT“C i

S
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1762 55A. REVIL AND P. W. J. GLOVER
for each ionic species in the EDL. Incorporating Eq.~34! in
Eq. ~31! gives the Poisson-Boltzmann equation which can
written as

d2w̃

dx2 5(
i

~6 !e2ZiCi
f

e fkBT
exp@2~61!Zi w̃#, ~35!

with appropriate boundaries conditions given byw(0)5wd ,
and (]w/]x)xD

50, wherewd is the Stern plane potentia
andxD is the total thickness of the EDL. The electrical p
tential distribution in the EDL has, approximately, an exp
nential distribution given by

w5wd exp~2x/xd!, ~36!

wherexd is the Debye screening length defined by

xd[S « fkBT

2e2I f
D 1/2, ~37!

I f[
1

2 (
i
Zi
2Ci

f , ~38!

I f is the ionic strength of the electrolyte solution. Actual
Eq. ~36! is the solution of Eq.~35! linearized by taking
u(61)eZiwd/kBTu!2. The validity of this simple exponen
tial distribution forw ~the Debye-Hu¨ckel approximation! and
the relation between the mineral surface charge densityQS

0

andwd are discussed in Appendix A of Ref. 4. The equiv
lent surface charge density of the diffuse layer is given
the integration of the excess charge density on the diff
layer,

QS[E
0

xD
r~x!dx. ~39!

We define the equivalent surface charge density for speci
by

Qi
S[E

0

xD
r i
S~x!dx, ~40!

where r i
S(x)5(61)eZiC i

S(x). Using the definition of
r i
S(x) and Eq.~34!, the equivalent surface charge density f

speciesi is given by

Qi
S5~61!eZiCi

fE
0

xD
exp„~61!Zi w̃~x!…dx. ~41!

Pride has demonstrated@Eqs.~191! to ~194!, Ref. 4# that,

E
0

xD
exp„~61!Zi w̃~x!…dx'2xd expS ~61!Zi w̃d

2 D ,
~42!

where w̃d[2ewd/kBT is the dimensionless reduced Ste
potential. It can be shown that Eq.~42! is rigorously valid
under the Debye-Hu¨ckel approximation of low potentials
but appears also as a useful approximation even for hig
surface potentials.4 Consequently, Eqs.~39!, ~40!, ~41!, and
~42! give

QS5(
i
Qi
S'2xd(

i
~61!eZiCi

f expF ~61!Zi
w̃d

2 G .
~43!
e

-

-
y
e

s

r

er

The electroneutrality requirement between the surf
charge density and the diffuse layer density is given, in
sence of charge in the Stern layer, by

QS
01QS50. ~44!

This important equation relates surface and diffuse la
phenomena, whereas the link between diffuse layer and b
electrolyte parameters is given by the Maxwell-Boltzma
distribution for the ionic concentrations.

C. Specific surface conductance

The electromigration surface conductance,S S
e, represents

the excess Ohmic conductivity in the vicinity of the por
matrix interface and is defined by3

SS
e[E

0

xD
„s~x!2s f…dx, ~45!

wherex measures the distance along a normal directed
the pore space from the pore-matrix boundary,s~x! is the
spatially varying conductivity in the concentration disturb
zone which approachess f for x>xD , wherexD is the thick-
ness of this disturbed layer. Such defined,S S

e can be either a
positive or a negative quantity. The local electrical condu
tivity, s~x!, is given by analogy with the free electrolyt
conductivity @Eq. ~22!# by

s~x!5(
i
„eZib i

S~x!Ci
S~x!…. ~46!

The difference between the ionic mobilities in the EDL a
in the free electrolyte arises from the difference between
ionic strength in the EDL [I S(x)[( 12 )( iZ i

2C i
S(x)] and in

the free electrolyte~because the ionic mobility decreas
with the ionic strength, e.g., Ref. 6!. In the rest of the paper
we will consider that the ionic mobilities in the EDL ar
constant~and should be evaluated at the mean ionic stren
of the EDL!, but at least, in first order, it is always possib
to consider that the ionic mobilities are equal in the EDL a
in the free electrolyte for each ionic species. Consequen
from Eqs.~22!, ~45!, and~46!

SS
e5E

0

xD

(
i
eZi@b i

SCi
S~x!2b i

fCi
f #dx, ~47!

Using Eqs.~34!, ~42!, and~47!, the electromigration surface
conductance is given by

SS
e52xdF(

i
~eZi !b i

SCi
fexpS ~61!Zi

w̃d

2 D 2s f G . ~48!

The electromigration surface conductance can be wri
from the sum of its ionic contributions,S i

e ~Sec. II C! and
consequently

S i
e5E

0

xD
@b i

S~x!Ci
S~x!2b i

fCi
f #dx, ~49!

52xdCi
fFb i

SexpS ~61!Zi
w̃d

2 D2b i
f G . ~50!
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55 1763THEORY OF IONIC-SURFACE ELECTRICAL . . .
We next consider the surface electro-osmotic conducta
such as described by Bikerman,9 and generalized to a multi
ionic electrolyte by Pride.4 In homogeneous electrolyte solu
tions, the concentrations of the cation and the anion are
essarily stoechiometrically equivalent. Consequently, w
an electrical field is applied, cations and anions convey eq
overall momentum to the solvent, and there is no solv
convection. In a porous medium, for conditions other th
the PZC, the situation is different. There is a majority
cations or anions~depending of the sign of the mineral su
face charge! in Vp , specifically in the EDL. When an elec
trical field is applied, it results in a solvent convection, a
consequently a surplus conductivity called the elect
osmotic conductivity. To study this phenomenon, it is nec
sary to add equations describing the fluid velocity distrib
tion in Vp due to the external electrical fieldE. For an
incompressible fluid, the equation of continuity is“•v50,
wherev is the local fluid velocity inVp . The equation of
motion for a fluid of constant density and viscosity is a fo
of the Navier-Stokes equation~which is a form of the
momentum-conservation law!. In the limit of slow incom-
pressible flow, the Navier-Stokes equation reduces to the
ear Stokes equation,052“p1h f“

2v1F, wherep is the
thermodynamic fluid pressure~Pa!, andF is the total external
force per unit volume. This last term can be written b
F5r fg2r“c, whereg is the acceleration of gravity~m s22!,
andr is the excess charge density previously defined by
~32!, andc is an electric potential. The two terms on the le
represent the change of momentum of a fluid element du
the forces on the right, pressures forces, viscous for
gravitational forces, and electrostatic forces in the pres
case~the coupling between ionic flow and hydraulic flow is
consequence of a friction effect!. We consider a fluid satu
rated porous medium submitted to a constant electros
field, and we neglect the gravitational force. Following R
4, we notepe and ve , respectively, the thermodynamic
fluid pressure and fluid velocity induced by the macrosco
electrical field, E. The vector 2“c is now the same
electrical-field distribution used in Sec. II. The electric
force acts only in the EDL because the excess charge de
equals zero in the free electrolyte~due to the electroneutral
ity requirement!. The analysis of electro-osmosis also r
quires a statement of the internal and external bounda
conditions, which are given by Pride4 to be, pe50, as
z50,L, “pe•n50, ve50 on S. It follows thatpe50 in Vp .
Consequently, the Stokes equation reduces
h f“

2ve5r(x)“c ~and ve is solenoidal!, r~x! the excess
charge density in the EDL is given by Eq.~32!, and“c is
the local electrical potential gradient described in Sec. II a
generated inVp by the macroscopic electrical fieldE. We
assume that the shear plane~the surface defined inVp by the
condition ve50! can be merged with the Stern plane, a
also that the variations of“c can be neglected in the EDL a
a consequence of the thin and flat EDL assumption. T
solution of the Stokes equation with the previous inter
boundary conditions is given by4

ve~x!52
« f

h f
@w~x!2wd#“c. ~51!

Consequently, the rate of the electrically induced convec
in the porous medium depends chiefly on the Stern pl
ce
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potential, the local electrical field, and the fluid flow res
tance~i.e., the viscosity of the fluid!. We note that in the free
electrolyte, the fluid velocity induced by the external elect
cal fields is,ve'(« f /h f)wd“c, for x.xD . We define the
electro-osmotic mobility byve(x)[2bos~x!“c, and conse-
quently, bos~x!5(« f /h f)[w(x)2wd]. Note thatbos can be
positive or negative depending on the sign of the Stern pl
potentialwd . It is now natural to set the electro-osmotic su
face conductance in the EDL as~it should be noted again tha
there is no excess charge density in the free electrolyte!

SS
os[E

0

xD
r~x!bos~x!dx5(

i
~eZi !S i

os. ~52!

Note that the Stern potential is negative when the EDL c
tains an excess positive charge and positive when the E
contains an excess negative charge. Conseque
Sign~bos!5Sign~r~x!!, where ‘‘Sign’’ refers to the sign of
the quantity in parenthesis, and therefore, the electro-osm
surface conductance is always a positive quantity. The e
troosmotic surface conductance can be integrated by par
order to be related to the Stern plane potential~with the
appropriate boundary conditions forw given previously in
Sec. III B!. After some algebraic manipulations, and usi
the following equation:

S ]w

]x D 252kBT

« f
(
i
Ci
fFexpS 2

~61!eZiw

kbT
D21G , ~53!

which can be obtained by multiplying both sides of t
Poisson-Boltzmann equation by]w/]x and integrating, Pride
~Ref. 4! gives

SS
os5

4« fkBT

h f
xd(

i
Ci
fFexpS ~61!Zi

w̃d

2 D21G . ~54!

The ionic contributions of the electro-osmotic surface co
ductance are easily obtained from Eq.~52!. The total ionic
contribution ~electromigration plus electro-osmosis! of the
specific surface conductance can be now written from S
II C and Eqs.~50!, and~54! as

S i
S52xdCi

fFBi
SexpS ~61!Zi

w̃d

2 D2Bi
f G , ~55!

where the effective mobility Bi is defined by
Bi[b i12« fkBT/(h feZi). An evaluation of the magnitude
of the two terms in the equation of the effective mobili
show that the electro-osmotic effect is appreciable, a
therefore should not be neglected. Consequently, if we c
pare the forms of Eqs.~55! and~50!, the problem electromi-
gration plus electro-osmosis is similar to that of electrom
gration, but using effective ionic mobilitiesBi instead ofb i .
Finally, Eqs.~25!, ~26!, ~27!, and ~55! allow direct compu-
tation of the surface Hittorf numbers as a function of t
Stern potential.

It should be noted that the concentrations of the ions
perturbed by the mineral surface charge over distances e



r.
s

r
o
fa
if-

y
ce
ltz

m
t
s

ple
,

e
um
th

b
-
y

to

v

e
ry
-

lu
io
n
by

he

al

rg

-
ro

-

ng

al

se
e,

po-
tro-
the
e
n
er-
non

the

lity

or

ed
the

ult
ace
tial
tial

to

n is
nc-
al
ncy
ler

1764 55A. REVIL AND P. W. J. GLOVER
to several times the Debye screening lengthxd , whereas the
thickness of the ‘‘conductivity perturbed zone’’ is smalle
Equations~43! and~55! indicate that the final result, in term
of conductivity perturbation thickness, is equivalent to 2xd .
Similarly, Eq. ~43! shows that in terms of diffuse laye
charge, the final result is equivalent to emptying a region
thickness 2xd of ions possessing the same charge as sur
sites. Consequently, the ‘‘equivalent thickness’’ of the d
fuse layer, for the conductivity problem, is equal to 2xd , and
is a salinity-dependent parameter. When the double la
reaches its minimum thickness, the counter ions are con
trated in the Helmoltz layer. Consequently, the Helmo
layer thickness,xH , constitutes the lower limit of the diffuse
layer thickness. It can be computed from the hydration dia
eter of the counter ions present at the surface. Assuming
dimension of hydrated ions is the same within the diffu
layer and in the free solution;xH52r i

aq, wherer i
aq is the

mean hydration radius of the counter ions. For exam
Nightingale11 gives rNa

aq'3.6 Å. To account for this effect
Clavier, Coates, and Dumanoir2 introduced a ‘‘double layer
expansion factor’’ad[2xd/xH>1. ad decreases when th
concentration of the electrolyte increases. The minim
value of the double layer expansion factor is that when
diffuse layer thickness is minimum and equalsxH . An
‘‘EDL high salinity domain’’ is defined for an electrolyte
concentration greater than a critical concentration given
the equality betweenxD andxH . Consequently, for a sym
metric electrolyte, this critical concentration is given b
Cf
crit[2« fkBT/(e

2Z2xH
2 ). Approximately, Cf

crit'0.729
mol l21 for a NaCl solution at 25 °C, which corresponds
6.3 S m21.

Another point is that in the present approach, we ha
considered the mineral surface as uniformly charged~true
charges are discrete!. Consequently, in our approach th
electrical potential gradient is radial to the surface eve
where, andw}exp(2x/xd), rather than radial toward sur
face sites withw}(1/r )exp(2r /xd), wherer is the distance
from the surface site. This continuum assumption is valid
the surface charge density is larger than a critical va
which depends on the diffuse layer thickness and its relat
ship to with the salinity. The surface density of the domina
charged surface type site is defined
G~1/2!
0 [Max~G~1!

0 ,G~2!
0 ! ~we haveG (1/2)

0 <G S
0, G S

0 being the
total surface site density!. The average distance between t
charged sites is approximately~G~1/2!

0 !21/2. We consider then
that the continuum assumption for the surface charge is v
if the characteristic length associated with the EDL, sayxd ,
is greater than half of the average distance between cha
surface sites,xd>(G (1/2)

0 )21/2/2. Using the definition of the
Debye screening length@Eq. ~37!#, this condition can also be
expressed by

I f<
2« fkBT

e2
G~1/2 !
0 . ~56!

Taking, for example,G~1/2!
0 50.6 charged sites/nm2, gives

I f<0.2 mol/l. Obviously,G~1/2!
0 will also depend on the con

centration of potential determining ions in the free elect
lyte ~e.g., pH for an amphoteric surface! and ionic strength
~as it will be shown in Sec. IV!, thus, the continuum assump
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tion is valid for different ranges of ionic strength dependi
on fluid chemistry and mineral.

D. Total electrical potential distribution

If a macroscopic electrical potential gradient,E52(DC/
L) ẑ, is applied to the porous medium, the total electric
potential inVp , cT , can be considered as the sum ofc ~the
local potential generated byE in Vp!, andw ~the electrical
potential in the EDL!, that vanishes outside the EDL becau
of the Debye-Hu¨ckel screening. Consequently, we hav
cT5c1w. It should be emphasized that the distribution ofc
is dependent on the strength of the electrical potentialw. This
dependence is a consequence of the heterogeneity of the
rous medium: the specific surface conductance and elec
lyte conductivity do not have the same dependence upon
ionic strength. Thus the local conductivity distribution in th
porous medium~and consequently the potential distributio
c! changes with any variation of the ionic strength. Ref
ence 5 gives a numerical investigation of this phenome
where the specific surface conductanceSS , and, implicitly
the Stern potential, is taken as a constant. For example, if
Stern plane potentialwd ~and thusw! is high, resulting in
large specific surface conductanceSS , thenc will tend to the
low salinity distributioncS . If wd→0, which is the case in
the PZC condition, we havecT ~andc!→cb . The boundary
conditions forw and c on S are given by,“w3n50, and
“c•n50, hence, we also have, onS,

“c•“w50. ~57!

In the presence of an external electrical field, the equa
of electrochemical potentials between any positionx in the
EDL and in the free electrolyte (x.xD), along a normal to
S, reduces to the classic Maxwell-Boltzmann distribution f
C i

S(x) @Eq. ~34!# only if the variations ofc can be neglected
in the EDL. Again, the flat EDL assumption must be satisfi
~c should vary slowly over a distance small compared to
radii of curvature of the surface!. Consequently, within the
EDL, “c is tangential to the surface~because“c•n50!, and
taking Eq.~51!, ve is also tangential to the surface. The res
is that the normal electrochemical gradient to the surf
equals zero. In the EDL, the total electrochemical poten
gradient can be decomposed into normal and tangen
parts: “m i

S5“nm i
S1“ tm i

S, and because“nm i
S50, we

have,“m i
S5(61)eZi“c ~which is the net force acting on

the ions in the EDL when the porous medium is subjected
an external electric field!.

IV. APPLICATION
TO A QUARTZ/ELECTROLYTE SYSTEM

The determination of the Stern potential,wd , is the key
that enables EDL properties to be calculated. This sectio
devoted to the determination of the Stern potential as a fu
tion of pH and electrolyte salinity from surface physic
chemistry of quartz as an example. The fractional occupa
of ions in the EDL are compared with an earlier simp
two-site model ISCOM I.
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55 1765THEORY OF IONIC-SURFACE ELECTRICAL . . .
A. Surface reactions

We consider thatS is covered by.SiO-H groups~where
.refers to the mineral lattice!. These groups can be consi
ered as Bro¨nsted acid sites. Adsorption of H1 and OH2 ions
is based on protonation and deprotonation of surface sila
groups,12

.SiOH1H1 ⇔
K~1!

.SiOH2
1 , ~58!

.SiOH⇔
K~2!

.SiO21H1, ~59!

where K~6! are the intrinsic equilibrium constants of the
amphoteric reactions. Other models of surface complexa
involve more than one type of protonation site.12 Although
such multisite models are not explicitly addressed here,
expected that the model and the resolution method develo
below can also be applied to them. To complete the mode
surface complexation, we also consider the salt ions~for ex-
ample Na1 and Cl2! to bind onto the surface by the follow
ing chemical equations given by Schlinder and Stumm:13

.SiOH1Na1 ⇔
KNa

.SiONa1H1, ~60!

.SiOH1Cl2⇔.SiCl1OH2. ~61!

For the most convenience, Eq.~61! can be combined with
the water dissociation equilibrium, H2O⇔OH21H1 to give
the following chemical reaction:

.SiOH1Cl21H1⇔
KCl

.SiCl1H2O. ~62!

KNa and KCl are the intrinsic equilibrium constants of th
reactions of adsorption@Eqs.~60! and ~62!#. The adsorption
equations imply that Na1 adsorption occurs for high pH val
ues~in the basic domain!, whereas the Cl2 adsorption occurs
for low pH values~in the acid domain!. These chemical re
actions lead to five species on the surface.SiOH, .SiO2,
.SiOH2

1 , .SiONa, and.SiCl. We note, as previously de
fined, G S

0, as the total surface site density and, therefor
conservation equation can be written by

GS
05GSiOH

0 1GSiO2
0

1GSiOH
2
11GNa

0 1GCl
0 , ~63!

whereG i
0 are the density of the five surface species per u

area of the quartz interface~GNa
0 and GCl

0 are the relative
surface site densities for the adsorption of Na1 and Cl2!.

The equilibrium conditions for Eqs~58!, ~59!, ~60!, and
~62! may be written in terms of the equality of electrochem
cal potentials for each chemical equation;

mSiOH
0 5mSiO2

0
1mH1

0 , ~64!

mSiOH
0 1mH1

0
5mSiOH

2
1

0
, ~65!

mSiOH
0 1mNa1

0
5mSiONa

0 1mH1
0 , ~66!

mSiOH
0 1mCl2

0
1mH1

0
5mSiCl

0 1mH2O
0 . ~67!

The electrochemical potential of surface sites is defined
m i
0(site)5(]G/]G i

0)T,p,G
j
0( iÞ j ) , whereG is the Gibbs free
ol

n

is
ed
of

a

it

y,

energy. For simplification, the surface is assumed to be id
~surface activity coefficients equal to unity!. The number of
possible arrangements on the surface sites is given by

H5
GS
0!

GSiOH
0 !GSiO2

0 !GSiOH
2
1

0
!GSiONa

0 !GSiOCl
0 !

. ~68!

H contributes to the Gibbs free energy an entropic te
given byG5G(°)2kBT lnH, whereG(°) is the Gibbs free
energy in the standard state. As,] lnH/]G i

0'2lnG i
0, where

we have used Stirling’s formula, lnN!'N~lnN21!, we
have,m i

0~site!5m i
(°)1kBT ln G i

0. The electrochemical po
tential of an ion near the mineral surface
m i

0~ion!5m i
(°)1kBT lnC i

f2(61)eZiwd . The superscript
(°)

denotes standard chemical potentials, andC i
f is the ionic

concentration of ionic species in the free electrolyte. T
2(61)eZiwd term in the last equation represents the ene
required to bring a ionic species with a charge (61)eZi
from the reference state potential to the given mineral s
face potentialwd . The intrinsic equilibrium constants can b
defined by the following relationships:

ln K~1 ![
1

kBT
~mSiOH

~° ! 1mH1
~° !

2mSiOH2
1

~° !
!, ~69!

ln K~2 ![
1

kBT
~mSiOH

~° ! 2mSiO2
~° !

2mH1
~° !

!, ~70!

ln KNa[
1

kBT
~mSiOH

~° ! 1mNa1
~° !

2mH1
~° !

2mSiONa
~° ! !, ~71!

ln KCl[
1

kBT
~mSiOH

~° ! 1mCl2
~° !

1mH1
~° !

2mSiOCl
~° ! 2mH2O

~° ! !.

~72!

Consequently, the thermodynamic equilibrium constants
defined for the standard state conditions, and are only fu
tions of temperature and pressure through the dependen
the standard chemical potential on these quantities. Us
Eqs. ~64!–~67! and the definitions~69! to ~72!, we can de-
termine the following relationships between the surface
trinsic dissociation constants K~6! , the Stern plane potentia
wd , and the ionic-surface site density,G i

0,

K~1!5
GSiOH2

1
0

GSiOH
0 CH1

f expS ewd

kBT
D , ~73!

K~2!5
GSiO2
0 CH1

f

GSiOH
0 expS 2

ewd

kBT
D , ~74!

KNa5
GNa
0 CH1

f

GSiOH
0 CNa1

f , ~75!

KCl5
GCl
0

GSiOH
0 CH1

f CCl2
f . ~76!
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1766 55A. REVIL AND P. W. J. GLOVER
The PZC is defined here as the pH at which the macrosc
effects of charged surface groups cancel each other out~and
consequently the Stern plane potential,wd , equals zero!, i.e.,
(GSiO2

0 !pzc5~GSiOH
2
1

0
!pzc, so that, (CH1

f )pzc5AK~2! /K(1). As

pH52 log10@CH1
f

#, the pH corresponding to the PZC is

pH~pzc)52
1

2
log10S K~2!

K~1 !
D . ~77!

This last relationship gives the aqueous concentration of1

needed to produce a surface with an average neutral ch
over its entire area. We haveGSiOH2

1
0

.GSiO2
0 for pH

,pH~pzc! resulting in a positive surface charge, a
GSiOH2

1
0

,GSiO2
0 for pH.pH~pzc! resulting in a negative sur

face charge. Equation~77! is equivalent to the relationshi
derived by Gloveret al.14 Using Eqs.~73! to ~76!, the frac-
tional occupancies of surface site are given by

V~1 !
0 [

GSiOH2
1

0

GS
0 5

GSiOH
0 CH1

f K~1 !

GS
0 expS 2

ewd

kBT
D , ~78!

V~2 !
0 [

GSiO2
0

GS
0 5

GSiOH
0 K~2 !

CH1
f GS

0 expS ewd

kBT
D , ~79!

VNa
0 [

GNa
0

GS
0 5

CNa1
f GSiOH

0 KNa

CH1
f GS

0 , ~80!

VCl
0 [

GCl
0

GS
0 5

CH1
f CCl2

f GSiOH
0 KCl

GS
0 . ~81!

Using the mass balance equation, Eq.~63!, we find that
GSiOH
0 5G S

0/A, where,

A511K~1 !CH1
0

1
K~2 !

CH1
0 1KNa

CNa1
f

CH1
f 1KClCH1

f CCl2
f ,

andCH1
0 is the concentration of hydrogen ions on the surfa

S ~i.e., for x50!, which is given from the Maxwell-
Boltzmann distribution@Eq. ~34!# by CH1

0
5CH1

f exp(w̃d),
CH1
f is the hydrogen ion concentration in the free electroly

So finally from Eqs.~78! to ~81!, we have

V~1 !
0 5K~1 !CH1

0 /A, ~82!

V~2 !
0 5K~2 ! /~CH1

0 A!, ~83!

VNa
0 5KNaCNa1

f /~CH1
f A!, ~84!

VCl
0 5KClCCl2

0 /~CH1
f A!, ~85!

VSiOH
0 [GSiOH

0 /GS
051/A. ~86!

Applying Eq. ~30! ~with Z (6)
0 51 in the present case! gives

the surface electrical charge density,
ic

rge

e

.

QS
05e~GSiOH2

1
0

2GSiO2
0

!, ~87!

5eGS
0~V~1 !

0 2V~2 !
0 !, ~88!

5eGS
0 1

A S K~1 !CH1
0

2
K~2 !

CH1
0 D . ~89!

We show now that the Nernst’s equation is not adapted
describe the relationship between the Stern plane pote
and the pH. We define DpH[pH2pH~pzc)5
2 log10@CH1

f /(CH1
f )pzc#, where,CH1

f and (CH1
f )pzc, can be

estimated from Eqs.~73!, ~74!, and~77!,

CH1
0

5S K~2!V~1!
0

K~1 !V~2 !
0 D 1/2, ~90!

~CH1
f

!pzc5SK~2!

K~1 !
D 1/2. ~91!

Consequently, we have15

DpH52 log10FV~1 !
0

V~2 !
0 expS 2ewd

kBT
D G1/2, ~92!

52
1

2.303F e

kBT
wd1

1

2
lnS V~1 !

0

V~2 !
0 D G , ~93!

whereV~1!
0 /V~2!

0 can be calculated from Eqs.~78! and ~79!.
Equation ~93! must be preferred to the traditional Nern
equation given by Eq.~B4! in Appendix B. A discussion
about the deviations observed from the Nernst equation
SiO2 is given at the end of Appendix B.

B. Electrolyte reactions and diffuse layer densities

To control the pH we consider the following chemic
reactions in the particular case of a sodium chloride aque
electrolyte, NaCl⇒Na11Cl2, HCl⇒H11Cl2 ~for pH,7!,
NaOH⇒Na11OH2 ~for pH.7!. The electrolyte concentra
tion is notedCf . We assume a complete dissociation f
NaCl, HCl, and NaOH and we assume the ideality of t
solution. The water dissociation reaction is H2O⇔OH21H1,
and the dissociation constant of waterKw is close to 10213.8

at 25 °C ~Kw5CH1
f COH2

f if the water activity can be as
sumed to be 1!. We also assume that no HCl is added wh
the pH.7 and that no NaOH is added when the pH,7 ~of
course, one could always have both present and arrive
given pH with an effect on the salt-ion concentrations, N1

and Cl2!. Consequently, for an acid pH, the ionic concent
tions in the free electrolyte areCNa1

f
5Cf , CCl2

f
5Cf1Ca ,

CH1
f

5103N102pH5Ca , andCOH2
f

5103N10pH2pKw, where
N is the Avogadro’s number ~6.0231023 mol21!,
pKw[2log10Kw , Ca ~in m23! is the HCl concentration,Cf
is the salt concentration. For basic pH, ionic concentrati
in the free electrolyte are given byCNa1

f
5Cb1Cf , CCl2

f

5Cf , CH1
f

5103N102pH, andCOH2
f

5103N10pH2pKw5Cb ,
whereCb ~in m23! is the NaOH concentration. The pH in th
free electrolyte is assumed to be independent of the stat
the quartz surface. The electrolyte and macroscopic effec
conductivities are calculated using equations given in
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first section@in particular Eqs.~18! and~20!#, the summation
is done over all the ionic species present in the solutions,
H1, OH2, Na1, and Cl2. The fractional occupancy of ions i
EDL are defined, and calculated as

V i
S[

*0
xDCi

S~x!dx

(
j

*0
xDCj

S~x!dx

5
Ci
fe~61!Zi ~ w̃d/2!

(
j
Cj
fe~61!Zj ~ w̃d/2!

. ~94!

This second equation is obtained using Pride’s approxi
tion @Eq. ~42!# and the Maxwell-Boltzmann’s distribution fo
the EDL concentrations@Eq. ~34!#. Consequently, using th
electroneutrality equation in the free electrolyte,

CCl2
f

1COH2
f

5CNa1
f

1CH1
f , ~95!

the fractional occupancy of ions in the EDL can be eas
determined by
th

nic

-
d

.,

a-

y

VH1
S

5CH1
f exp~ w̃d/2!/L, ~96!

VNa1
S

5CNa1
f exp~ w̃d/2!/L, ~97!

VOH2
S

5COH2
f exp~2w̃d/2!/L, ~98!

VCl2
S

5CCl2
f exp~2w̃d/2!/L. ~99!

whereL[2(CNa1
f

1CH1
f )cosh(w̃d/2).

C. Stern plane potential determination

The surface charge density is obtained using Eqs.~34! and
~89! to give the following equation:
QS
05eGS

0

K~1 !CH1
f ew̃d2

K~2 !

CH1
f e2w̃d

11K~1 !CH1
f ew̃d1

K~2 !

CH1
f e2w̃d1KNa

CNa1

CH1
f 1KClCH1

f CCl2
f

. ~100!
ng

the
-

o a
-

The diffuse layer charge densityQS ~also in C m22! is
obtained from Eq.~43! as

QS52exd@2~CCl2
f

1COH2
f

!e2w̃d/21~CNa1
f

1CH1
f

!ew̃d/2#.

~101!

Using the electroneutrality requirement of charge in
free electrolyte~i.e., CCl2

f
1COH2

f
5CNa1

f
1CH1

f ), and the
Debye screening length definition@combining Eqs.~37! and
~38! to give 1/xd

252e2(CNa1
f

1CH1
f )/(« fkBT)#, results in

~for 0,pH,7!,

QS5A8« fkBTN10
3~Cf1102pH!sinhS w̃d

2 D . ~102!

HereCf1102pH must be replaced byCf110pH2pKw for pH
greater than 7 to account for the modification of the io
strength due to an increase in OH2 ion concentration. Con-
sequently, to account in one equation for the variation ofQS
with pH, it is possible to write

QS5A8« fkBTN10
3~Cf1102pH110pH2pKw!sinhS w̃d

2 D .
~103!

For the present electrolyte composition, Eq.~103! is similar
to the Gouy-Chapman equation between thewd potential and
the diffuse layer charge densityQS ~e.g., Ref. 16!.

The Stern plane potential,wd , must satisfy the electroneu
trality requirement between the surface charge and the
fuse layer charge in equilibrium conditions@Eq. ~44!#. Con-
sequently, as a direct consequence of Eqs.~44!, ~100!, and
e

if-

~103!, the Stern plane potential must satisfied the followi
equation~recall thatw̃d[2ewd/kBT)

F@X#50, ~104!

where the functionF[X] is given by

F@X#[
h

2
ACf1102pH110pH2pKwSX2

1

XD
3S 11K~1!10

2pHX21
K~2!

102pH X
22

1
KNa

102pH CNa1
f

1KClCCl2
f 102pHD

1K~1!10
2pHX22

K~2!

102pH X
22, ~105!

whereh[A8« fkBTN10
3/(eGS

0), andX[exp(w̃d/2). The so-
lution of Eq.~104! ~for the direct problem pH andCf are the
input parameters, andwd is the output parameter! gives the
relationship between the NaCl concentration, the pH and
Stern plane potential. From now and in the following com
putations, we neglect adsorption of salt ions in order to d
comparison with the model ISCOM I~see the next subsec
tion!. Consequently, Eq.~105! reduces to

F@X#[
h

2
ACf1102pH110pH2pKwSX2

1

XD S 11d1022pHX4

1
1

K~2!
102pHX2D1d1022pHX42150, ~106!
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and d[K~1!/K~2! . The functionF[X] is plotted in Fig. 2
~pH57, Cf50.1 mol l21, and pH~pzc!53!. In a realistic
X-value range~0.1<X<10, i.e.,2118 mV<wd<118 mV!,
the equationF[X]50 has only one solution. Consequentl
thewd potential can be found using Eq.~106!.

D. ISCOM I equations

ISCOM I is a model developed by Gloveret al.14 to de-
termine the adsorbed ionic concentrations on mineral s
faces in silica dominated rocks. In ISCOM I, the density
neutral group.SiOH is neglected and surface sites are eith
negative, or positive. Consequently, the fractional availa
ity of positive and negative surface sitesV~1!

0,ISC andV~2!
0,ISC,

are given by14

V~1 !
0,ISC5

~CH1
0

!2

~CH1
f

!pzc
2 1~CH1

0
!2
, ~107!

V~2 !
0,ISC5

~CH1
f

!pzc
2

~CH1
f

!pzc
2 1~CH1

0
!2
. ~108!

These equations can be compared with Eqs.~78! and ~79!,
which can be written in absence of specific adsorption by

V~1 !
0 5

~CH1
0

!2

CH1
0 /K~1 !1~CH1

0
!21~CH1

f
!pzc
2 , ~109!

V~2 !
0 5

~CH1
f !pzc

2

CH1
0 /K~1 !1~CH1

0
!21~CH1

f
!pzc
2 . ~110!

In the simplified case where all ions of the free soluti
have the same affinity for occupying surface sites, their
cupation depends only upon the availability of the ion
aqueous solution and the availability of the polarity surfa

FIG. 2. F[X], defined by Eq.~106!, versus the parameterX
related to the Stern plane potential by the relationship given in
main text. In a realistic range of variation of the Stern plane pot
tial, the equationF[X]50 has only one root which can be dete
mined by a Newton’s iteration method.
r-
f
r
l-

-

e

site with the correct electrical polarity. Consequently, in I
COM I the fractional occupation of ions on surface sites c
be determined by

VH1
S,ISC

5V~2!
0,ISC

CH1
f

CNa1
f

1CH1
f , ~111!

VNa1
S,ISC

5V~2!
0,ISC

CNa1
f

CNa1
f

1CH1
f , ~112!

VOH2
S,ISC

5V~1!
0,ISC

COH2
f

COH2
f

1CCl2
f , ~113!

VCl2
S,ISC

5V~1!
0,ISC

CCl2
f

COH2
f

1CCl2
f . ~114!

In Appendix B, we demonstrate that ISCOM I assum
implicitly a Nernst relationship between the Stern plane p
tential and the pH. However, as demonstrated by Levine
Smith,15 the Nernst equation is not adapted for the desc
tion of surface potential for oxides and silicates and must
replaced by Eq.~93!.

E. Numerical computation

We assume for the following computation thatG S
051.5

sites/nm2 for the effective surface site density. This valu
should be considered as a lower bound for this paramet17

Iler18 gives a silanol surface site density of 6–8 sites/nm2 on
a silica surface using geometric considerations. Howe
there exists other data indicating that in certain cases a la
surface site density is possible~e.g., 25 sites/nm2, Yates and
Healy!.19 In the latter case, the density of OH groups
greater than the possible site density for a monolayer of
anol surface site situated on a flat surface, and hence, the
groups must be present in a three-dimensional layer. T
phenomenon can be explained by the presence of a gel l
of hydrolyzed material which, when in solution, may be pe
meable to ions, and therefore explain the exceptionally h
surface charge which are observed in some cases by po
tiometric titration.19,20

The intrinsic equilibrium constants are estimated fro
Ref. 15 for SiO2: pK~2!56.3 and pH~pzc!'3 ~Ref. 21!. Such
a value for the dissociation constant,pK~2! , must also be
considered as a lower bound. Hiemstra, de Wit, and
Riemsdijk,12 have calculatedK (2)51027.5 directly from the
SiOH solution monomer analog taking into account only t
difference in Si-H distance for silicate in the interface co
pared with the distance in the solution monomer and
correction term for the presence of a negative cha
at the monomer. Marshallet al.12 have determined
K (2)51027.260.2 using a spectroscopic method.

These parameters values can be used to calculated andh
in Eq. ~106!, and this equation can be solved numerically
Newton’s method. The starting Stern plane potential for
numerical solution is zero~i.e., X51!. The Stern plane po-
tential is easily derived by usingwd52(2kBT/e)lnX. The
wd potential is given as a function of pH for different ele
trolyte concentrations in Fig. 3. The surface charge den

e
-
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QS
0 has been computed from Eq.~103! ~recall that

QS
052QS!. QS

0 versus pH is given in Fig. 4 for different
electrolyte concentrations. Figure 5 is a graph ofQS

0 versus
the electrolyte concentration at pH57, 8, and 9. The frac-
tional occupancies of surface sites and ions in the EDL c
now be deduced from the knowledge of the Stern plane p
tential using Eqs.~96! to ~99! and their behavior as a func-
tion of pH and electrolyte concentration are plotted in Figs.
and 7.

FIG. 3. Stern plane potentialwd ~mV! versus pH atT525 °C
for different electrolyte concentrations. The ‘‘pzc’’ is the point o
zero charge of the silica surface, which corresponds also to a z
Stern plane potential condition.

FIG. 4. Surface charge densityQ 0
S ~C m22! versus pH for dif-

ferent electrolyte concentrations~T525 °C!. The ‘‘pzc’’ is the
point of zero charge of the silica surface. The maximum surfa
charge density is here60.240 C m22, which corresponds to 1.5
charged site nm22.
n
o-

6

V. DISCUSSION

A. Concerning fractional ionic and surface occupancies

The fractional occupancies of ions in the diffuse layer on
a quartz surface given by Eqs.~96! to ~99! can be represented
by parametric diagrams for each species as done by Glove
et al.,14 ~Fig. 7!. Referring to Fig. 6, from pH 5 upwards, an
increasingly significant part of the surface consists of nega-
tive .Si-O2 sites. Positive sites are excluded from the sur-
face in this pH domain. In Fig. 6~b!, we compare the values
from the present theory with the data of Brady~see Ref. 12!,
which are based on potentiometric titration of SiO2 surfaces
at 25 °C. As the pH decreases, the EDL becomes occupie
by a continued decreasing number of Na1 ions and an in-
creasing number of H1 ions. Between pH 4.5 and pH 3 the
nature of the surface changes with neutral sites replacing th
.Si-O2. At pH5pH~pzc!, the surface is occupied, almost
exclusively, by neutral sites, with equal numbers of what few
positive and negative surface sites exist. For pH 2–4, the
surface charge, the Stern plane potential and the surface con
ductivity must be very low as the result of the high neutral
site occupancy~e.g., Figs. 3 and 4!. At progressively lower
pH values, the surface becomes positively charged due to th
replacement of neutral surface sites,.Si-OH, by positive
.Si-OH2

1 sites ~Fig. 6! and the diffuse layer contains H1,
Cl2, and Na1 in comparable proportions. Near the PZC, the
fractional occupancy of Cl2 ions is relatively insensitive to
changes in electrolyte concentration. As mentioned before by
Glover et al.,14 there is little competition between Cl2 and
OH2 ions. This is because the availability of OH2 in the
solution is always small at those values of pH for which
positive charged surface sites exist in significant quantity.

In Fig. 7, results for the fractional ionic occupancies as a
function of pH and electrolyte concentration are compared to
the results of ISCOM I. ISCOM I~Ref. 14! does not account
for a neutral surface site density. It is clear from Fig. 7 that

ro

e

FIG. 5. Surface charge densityQ 0
S ~C m22! versus electrolyte

concentration~mole/liter! at pH57 andT525 °C. Recall that the
maximum surface charge is60.240 C m22 ~K~2!51026.3, surface
site density of 1.5 sites nm22!.
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this leads to an important error in the derivation of ED
occupancies. This is, perhaps, the most important differe
between the two models and shows the utility of using th
or five site models~this theory! rather than a two-site mode
~ISCOM I! without EDL description. Clearly, in the applica
tion of this theory to any mineral it is important to unde
stand the mechanisms of charged and neutral surface
formation prior to modeling.

B. Concerning Stern plane potential
and surface charge density

The variation of the Stern plane potential with the pH a
the electrolyte concentration is given in Fig. 3. In practic
the Stern plane potential is not measurable experiment
however the shear plane potentialz, for example, determined

FIG. 6. ~a! Fractional site occupancies~in percent! as a function
of pH and electrolyte concentration~moles/liter!, @T525 °C,
pH~pzc!53, K~2!51026.3, 1.5 sites nm22#; ~b! comparison with the
experimental results of Brady~Ref. 12!. Curves are the result of th
present model~surface site density: 1.00 mol/kg, K~2!51027.5!.
ce
e

ite

,
ly,

by a streaming potential method, gives an indication of th
variation ofwd with ionic concentration,

17,22 the pH, and the
temperature. Electrokinetic phenomena derive from the rel
tive motion between a charged surface and its associat
double layer. Thez potential is the electrical potential at the
slipping plane or shear plane~i.e., the potential within the
double layer at the zero velocity surface!. Although thez

FIG. 7. Fractional ionic occupancies~in percent! in the diffuse
layer ~present model! and fractional ionic occupancies of adsorbed
surface ions~ISCOM I! as a function of electrolyte concentration
~NaCl, in moles/liter! and pH for a quartz surface@pH~pzc!53#. The
fractional occupancies of hydroxyl ions are not represented in th
figure because they are very small compared to the fractional occ
pancies of the other ions. In ISCOM I, the curves for the surfac
occupancy of chloride ions are almost identical for all concentra
tions. At pH 7, the electrical diffuse layer is dominated by sodium
ions, however the chloride ions concentration is not negligible.
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potential is undoubtedly an important parameter, there
problem knowing the location of the shear plane from
surface. We define this distance asxz , and therefore
z[w(xz)'wd exp(2xz/xd). In Fig. 8, the Stern plane po
tential and thez potential are plotted against the electroly
concentration together with some experimental data fo
quartz-KCl system.23 Because we have no information abo
the exact value ofxz , we usexz as an adjustable paramet
and choose its value so that the theoreticalz-pH relationship
fits the experimental data~Fig. 8!.

C. Concerning surface conduction

In Fig. 9, the specific surface conductance is estimated
pH 7, 8, and 10, and for electrolyte concentration betwe
102521 mol l21. The specific surface conductance decrea
at high salinity~0.1–1 mol l21! due to the increase of th
electrolyte conductivity. At low salinity, i.e., the second ter
of Eq. ~55! becomes negligible, and consequently the s
cific surface conductance depends indirectly of the mine
surface charge density,QS

0, which decreases when the ele
trolyte concentration decreases~Fig. 5!. The result of these
remarks is that we can say, heuristically, that when the
face is not completely saturated with negative sites the s
cific surface conductance~and therefore the surface condu
tion! should be very low at very low electrolyt
concentrations, as well as at high electrolyte concentrati
with a peak in surface conduction occurring 0.1–1 mol
liter depending on the surface site density~Fig. 9!. Note that
surface conduction in quartz is low at pH 7 due to a sign
cant fraction of sites being neutral at this pH. In Fig. 10,
plot the effective electrical conductivity as a function of t
electrolyte conductivity in a log-log diagram. The differen

FIG. 8. Zeta and Stern plane potentials~mV! versus electrolyte
concentration~moles/liter!. Experimental data are from Scale
Grieser, and Healy~Ref. 23! ~fused silica, T52061 °C, pH
55.861, KCl electrolyte!. The heavy line and the dotted line a
theory for thewd potential and thez potential, respectively~param-
eters used pH55.9, 1.5 sites/nm2, K~2!51026.3, pH~pzc!53,
xz52.4 Å!.
a
e

a

or
n
s

-
al
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e-

s,
/
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between the case where all the surface is ionized and t
prediction of the present model for a quartz sample is mo
than one order of magnitude at low salinity.

VI. CONCLUSIONS

In this work, we were interested in porous media in which
electrical transport is associated with bulk electrical conduc
tion in the pore fluid and surface electrical conduction occu
ring in the electrical diffuse layer close to the pore-minera
interface. Our model is restricted to the case in which th
electrical diffuse layer thickness is small compared to~a! the

FIG. 9. Specific surface conductance (S) versus electrolyte con-
centration~moles/liter! at pH 7, 8, and 9, andT525 °C.

FIG. 10. Effective electrical conductivitysc ~S/m! versus elec-
trolyte conductivitys f ~S/m!. The dotted line is the relationship
given with a negatively saturated surface~all sites are negative!,
whereas the line is the computation following the present model.
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1772 55A. REVIL AND P. W. J. GLOVER
local radius of curvature of the mineral surface, and~b! the
pore size~flat and thin electrical diffuse layer!, but greater
than the average distance between charged sites. In su
system, the relationship between the effective conductiv
sc , and the free electrolyte conductivity,s f , is nonlinear
due to~1! intrinsic geometrical effects, and~2! the variation
of the surface charge with the salinity. If specific adsorpt
effects can be neglected, the model used to describe su
conduction needs only three input parameters for quartz:
surface site densityG S

0, and the acid-base equilibrium con
stants of the surface reactions K~6! . Each additional specific
process of adsorbtion requires the addition of one more
rameter~the respective equilibrium constant!. The compari-
son of the results of this paper with a large experimen
dataset will be examined in a future work.
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APPENDIX A: MICROSTRUCTURAL PARAMETERS

One way to introduce the JPK microstructural parame
is to present the canonical problem in electric
conductivity.3 In the present analysis of this paper, this pro
lem should be consider as a conceptual one. Consider e
trical conduction in a porous medium saturated by a pur
conducting fluid~s f is the fluid conductivity! and having an
insulating matrix. We consider also that there is an additio
surface conductivity,SS , which coats the pore walls. W
want to determine the effective conductivity of the poro
medium. The analytical solution of this problem is given
Johnson, Plona, and Kojima,3 and has been studied nume
cally for special microstructural cases by Schwartzet al.,3

and Bernabe´ and Revil.5

First, we consider that the fluid conductivity in the inte
connected pore space is a functions~r ! of position. By
equating the macroscopic Joule dissipation to the sum of
electrical local dissipations in the pore space, we have3,5

sc5
L2

uDCu2 EVps~r !u“c~r !u2dVp , ~A1!

whereDC and L have been defined in Sec. II A. For th
special case where the electrical conductivity is unifo
s~r !5s f , andc~r !5cb~r !, the effective electrical conductiv
ity can be written bysc5s f /F, whereF is the first of the
four microstructural parameters used by JPK to model tra
port properties in porous media. The pore volume format
factor,F, is defined by3–5

1

F
[
1

V E
Vp

ueb~r !u2dVp , ~A2!

where eb~r ![2(L/uDCu)“cb~r !, and the differentialdVp
denotes integration over the interconnected pore space.
pore space formation factor is related to the pore space
h a
,

n
ce
e

a-

l

.

-

rs
l
-
c-
ly

al

e

s-
n

he
r-

tuosity byt V
25Ff. If conduction is dominated by pore fluid

with the surface conductivity as a weak perturbation,
effective conductivity is given by3

sc5
1

F S s f1
2

L
SSD . ~A3!

The parameterL is rigorously related to the local potentia
distributioncb~r ! by

3–5

2

L
[

* uebu2dS
* uebu2dVp

, ~A4!

where the differentialdS denotes integration over the inte
connected pore surface. Note thatL can be viewed as a
weighted version of the length parameterVp/S.

3–5 L is the
second microstructural parameter introduced by JPK. In
high salinity limit, Eq. ~A3! is exact to the first order in
perturbation due to surface electrical conduction.3 The oppo-
site limit, where conduction is dominated by the surface c
ductivity, is formally similar ~in this description! to that
given for the high salinity case. The effective conductivity
written in this limit by3,5

sc5
1

f S SS1
l

2
s f D , ~A5!

which contains the final two microstructural parametersf
andl. These parameters are rigorously related to the ele
cal potential distribution,cS~r !, that would exist in the ab-
sence of bulk fluid conductivity

1

f
5
1

V E ueSu2dS, ~A6!

2

l
5

* ueSu2dS
* ueSu2dVp

, ~A7!

where eS~r !52(L/uDCu)“cS~r ! ~and we haveu^eS&u51!.
The surface formation factor,f , is related to the surface tor
tuosity byt S

25 ff(S/Vp) ~note thatf has the dimension of a
length!. The parametersL, andl, are the characteristic di
mensions associated with pore and surface transport, res
tively. An application of the mathematical Cauchy-Schwa
inequality together with the definitions ofF and f leads di-
rectly to

F>
1

f
and f>

Vp

S

1

f
, ~A8!

where f[Vp/V is the interconnected porosity. Electric
conduction minimizes the Joule energy dissipation, and c
sequently,

E SSu“cbu2dS>E SSu“cSu2dS, ~A9!

E s f u“cSu2dVp>E s f u“cbu2dVp . ~A10!

It follows from the definitions of the four microstructura
parameters introduced by JPK, and because the specific
face conductance and the electrolyte conductivity are ta
independent of position, that

l

2 f
>
1

F
and

2

FL
>
1

f
~A11!

~and consequently,l>L!.
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We demonstrate here that the model of Gloveret al.,14

ISCOM I, assumes the Nernst relationship between the S
plane potential,wd , and the pH. In ISCOM I we have
w(x)→wd, and therefore the fractional occupancy of H1

ions in the EDL,VH1
S , is not defined by Eq.~94!, but by the

following equation:

V i
S,ISC[Ci

S~0!/(
j
Cj
S~0!, ~B1!

whereC i
S(0) is the ionic concentration of speciesi at the

surface~i.e., for x50!. Consequently using the Boltzman
distribution given by Eq.~34!, VH1

0,ISC is equal to

VH1
S,ISC

5
102pHew̃d

2~Cf1102pH!~coshw̃d!
. ~B2!

wherew̃d[2ewd/kBT. Note the factor of 2 in the denomi
nator of w̃d in Eq. ~96!, due to the integration over the tota
thickness of the diffuse layer, disappears in this last exp

sion. In ISCOM I,VH1
S,ISC is also given by Eq.~111!, so by
t

e

rn

s-

equating these two relationships, we have, after some a
braic manipulations,

wd5
kBT

e
lnS 1

V~2 !
0,ISC21D 1/2. ~B3!

Now using Eq.~108! for V~2!
0,ISC together with Eq.~77! for the

PZC, inside this last relationship, gives, after some algeb
manipulations, the classical Nernst equation between the
and the Stern plane potential,

DpH52
1

2.303S e

kBT
wdD , ~B4!

whereDpH[pH2pH~pzc!. Equation~34! can be compared
directly with Eq. ~93!. For oxides of the amphoteric metal
Al, Si, and Ti, it is well known that the Nernst equation
not able to account for~1! the observed change of thez
potential of 26 mV per tenfold change in the electrolyte co
centration of a 1:1 univalent electrolyte~Pride and Morgan,
Ref. 7 for quartz!, and~2! the observation that potentiometri
titrations of the surface charge show a strong dependenc
electrolyte concentration~Perram, Ref. 20!.
a

r
.

,

k,
a

. F.

ia
t
Po-
nf.
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