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Abstract. Measurements of complex electrical conduc- 
tivity as a function of frequency is an extremely sensi- 
tive probe for changes in pore and crack volume, crack 
connectivity, and crack surface topography. Such mea- 
surements have been made during triaxial deformation 
experiments on rock samples, at varying confining pres- 
sures. The first part of this paper [Glover et al., 1996, 
this volume] described the effects of triaxial deforma- 
tion on the complex electrical conductivity of saturated 
porous rocks. This second part will use these measure- 
ments to model the mechanical stress-strain behavior of 
porous rocks by deriving first a crack damage parame- 
ter from the complex electrical conductivity data at a 
frequency of I kHz. The electrical conductivity-derived 
crack damage parameter is then used as an input to a 
model of cracked solid, and inverted to reconstruct the 
experimental stress-strain curves. The resultant syn- 
thetic stress-strain curves show good agreement with the 
experimentally derived stress-strain curves, and the val- 
ues of the parameters after the inversion procedure com- 
pare succesfully with the experimenatally-derived ones. 
© 1997 Published by Elsevier Science Ltd 

I Introduction 

The failure of brittle materials during compression is 
preceded by the formation, growth and coalescence of 
microcracks [Atkinson, 1987, Lawn, 1993]. This pro- 
cess of accumulated microcracking, termed damage, pro- 
duces a concommitant change in bulk elastic properties, 
and the goal of a damage model is to predict changes in 
elastic properties from changes in the crack population. 
The geometrical properties of the crack population are 
lumped into a scalar or tensoriai crack damage param- 
eter, (CDP also termed crack density parameter in the 
literature of cracked solids), which accounts for basic 
properties of individual microcracks as size, aspect ra- 
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tio, and orientation, and also for properties of the crack 
population as spatial distribution. The most commonly 
used CDP is defined in three dimensions as [Kachanov, 
1992]: 

n! 
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where li is the mayor semiaxis of the ith crack (out of 
nl) inside volume V. If crack length is independent of 
orientation, the previous expression can be rewritten as 
X = n/f3/V, which means that crack density is a mea- 
sure of the relative volume of spheres with cracks as di- 
ameters. It is important to note that crack density and 
crack porosity (i.e., the standard experimental measure 
of the volume accupied by cracks relative to bulk vol- 
ume) are not equivalent quantities. For n/three dimen- 
sional spheroidal cracks of aspect ratio r -- ell inside 
volume I/(c being the minor semiaxis), the porosity, ~b, 
is 

n /4  -3 
= ~-~,~l ~ ,  (2) 

and the ratio of porosity to density 

- = r. (3) 
X 

For spherical cavities (r = 1), porosity and density are 
equivalent, but for very fiat cracks (r << 1) we have 

'~ , 

x>>~. 
Several authors [see Kachanov, 1992 for a review] have 
developed models relating the change in elastic proper- 
ties of a solid to the amount of microcraking via a crack 
density parameter. These theoretical models (based upon 
the effect of a crack on the elastic properties of an infi- 
nite three-dimensional isotropic linear elastic medium) 
relate the change in bulk elastic properties to the density 
of cracks, but do not tell us explicitly how crack den- 
sity actually changes with deformation. For this to be 
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Fig. 1. Flowchart of the inversion procedure. Main 
steps are depicted as boxes, ellipses refer to theoreti- 
cal concepts used by the procedure, and rectangles with 
rounded edges to experimental information used for test- 
ing the goodness of the inversion. 
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Fig. 2. Flowchart of the main steps involved in the pro- 
cess of converting experimental electrical conductance 
data  into a crack damage parameter, X. 

2 E l e c t r i c a l  c o n d u c t i v i t y  as a Crack D e n s i t y  
P a r a m e t e r  

possible, we need a way of relating crack density to bulk 
deformation (strain) within the solid. As a direct knowl- 
edge of the evolving crack population inside a deforming 
solid is not possible, we have used electrical conductiv- 
ity measurements as an indirect measure of the amount 
of microcracking and, therefore, as a crack density pa- 
rameter. 

The electrical conductivity crack density parameter is 
then feed into a model of cracked solid to compute the 
change in effective elastic moduli as deformation pro- 
cedes. From there, the reconstruction of the stress- 
strain curve is straightforward. Figure 1 displays a flow- 
chart of the main steps involved in the procedure. As 
indicated there, and to test the procedure, we have per- 
formed a nonlinear fitting to the experimental stress- 
strain curve, in order to obtain a set of estimated values 
for the model parameters, which can be then compared 
with their experimental counterparts. All the tests were 
made using Darley Dale sandstone, a poorly graded, well 
cemented, highly porous and permeable arkose. Basic 
information regarding the tests can be found in Table 
1, and further information in the first part of this paper 
(Glover et al., this volume). 

Figure 2 summarises, again in the form of a flowchart, 
the steps involved in the conversion of the raw exper- 
imental data  (complex electrical conductances) into a 
crack damage parameter. The basic step is the use of 
Archie's Law, 

. . /c ,  s = ¢~ (4) 

(where err and cry are bulk and pore fluid conductivi- 
ties, ¢ is porosity, and m Archie's exponent), to obtain 
electrical porosity values from the 1 kHz electrical con- 
ductivity da ta  set (see Glover et al., this volume, for 
a full account of the differences between electrical and 
volumetric porosity). The resulting electrical porosity 
can be computed by taking logarithms of (4) and rear- 
ranging terms: 

[ln ~r(c) - 1n(71 ] 
, ( ~ ) = e x p l  -~]7)" J' (5) 

where we have explicitly written the dependence in the 
axial strain, e, of all the variables. 
Equation (5) gives total electrical porosity values. For 
the definition of a crack damage parameter however, we 
only need that part of total porosity which is due to the 
presence of cracks (crack porosity). The rest, the poros- 
ity due to the presence ofequant cavities (hole porosity) 
acts as a background static porosity. Denoting crack 
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Table 1. Summary of tests performed. 
Code Type Pore Pressure Confining Pressure Porosity 

A Triaxial, undrained variable 50 MPa 28% 
B Triaxial, undrained variable 25 MPa 23% 
C Triaxial, drained atmospheric 50 MPa 16 % 

porosity by 0, and hole porosity by r/, we can write to- 
tal porosity as ¢(e) = r/(e) + 0(e), and using Eq.(3) to 
convert crack porosity to crack density we arrive at the 
following expression for the crack damage parameter, X, 

¢(~) - ~(~) (6) x(~) - 

where ~ denotes the initial mean crack aspect ratio of 
the microcracks. 
The behaviour of cracks and holes under a compressive 
stress field (with or without a pore fluid) is very different 
[Budiansky and O'Connell, 1976]. Cracks can be closed 
under 'normal' confining pressures in brittle deformation 
experiments (Peony < 0.3 GPa), but holes will remain 
open at these pressures. In the pressure range 0-250 
MPa, the change in porosity due to the elastic closure 
of spherical holes is (for a solid with K0 = 40 GPa, 
v0 = 0.13, and ¢0 = 15%, values compatible with DDS) 
of the order of 0.1% (Horii and Nemat-Nasser, 1993), 
much less than the change in crack porosity (~ 2%) 
in the same pressure range. We can, therefore, ignore 
this contribution and consider that all the change in 
total porosity is due to changes in crack porosity, and 
take r/(e) = 70 as a constant during deformation. The 
expression for the crack damage parameter, equation 
(6), transforms to 

x ( ~ )  - ¢(~) - 70 ( 7 )  

where 70 is the initiM hole porosity (before any deforma- 
tion takes place). Note, however, that the above consid- 
eration is only Valid if the rock matrix acts as an elastic 
continuum where (potentially important) processes like 
grain sliding and grain rotation are ignored. This extra 
term in porosity evolution is not modelled with our ap- 
proach, and is the main responsible of the discrepancy 
between the toe regions of the synthetic and experimen- 
tal stress-strain curves (see below and Fig. 3). 

3 How the procedure works 

The predicted stress, ~m, acting on a sample submitted 
to an axial strain e can be written for this model in the 
general form 

~.. = f(~, E0,-0, x) x = f(~0, ~, ¢),  (8) 

where E0 is Young's modulus for the crackless (not hole- 
less) solid. The particular form of function f depends 
basically on four aspects of the model, namely: (i) the 

shape assumed for an individual crack; (ii) the distribu- 
tion of crack orientations; (iii) the presence/absence of 
a pare fluid; and (iv) the way interactions among cracks 
are implemented. 
With reference to this last point, we can distinguish 
three basic group of models of cracked solids: (i) non- 
interacting, where crack interactions are omitted [Walsh, 
1965]; (ii) self-consistent, where crack interactions are 
introduced in the model in one step [O'Connell and Bu- 
diansky, 1974]; and (iii) differential, where crack intr- 
eractions are introduced incrementally [Bruner, 1976]. 
Kachanov [1992] has shown that the approximation of 
non-interacting cracks may remain accurate at high crack 
densities for randomly located cracks. From computer 
experiments he showed that the non-interacting approx- 
imation provided surprisingly good results well into the 
domain of strong interactions. Indeed, better results 
than the differential scheme, both for ramdomly ori- 
ented and vertically aligned cracks [see Figs. 8 and 9 
in Kachanov, 1992]. Following Kachanov [1992], we will 
use the non-interacting approximation in our inversion 
procedure. 
Assuming cracks as flat three-dimensional randomly ori- 
ented spheroids, the non-interacting approximation gives 
the following expression for the normalised, effective 
Young's modulus, E I, as a function of crack density 
[Walsh, 1965]: 

E 1 
E ! ~ 

Eo 1 + g(vo)X(e) ' (9) 

where E is Young's modulus for axial strain is e, and 
g(vo) is a constant function which depends only on v0. 
For an isotropic solid we have ~,n = Ee, and using (7) 
we can rewrite (9) in the final form 

~0e 

I -{- g(vo) 

Equation (10) can be interpreted as a synthetic stress- 
strain (~m - e) curve. In this equation, e, the axial 
strain, and ¢(e), the electrciai porosity as a function of 
strain are experimental data, and E0, 9(v0), v0, and 
are parameters which can either be computed through 
the inversion procedure (nonlinear fitting to the exper- 
imental stress-strain curve), or be drawn (at least ap- 
proximatelly) from other sources or models. The result 
of the nonlinear fitting is presented in the next section, 
and the comparison between synthetic and experimental 
parameter values in the last section. 
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T a b l e  2. Pa rame te r  values for test A. 

Estimated Experimental  

E0 10.5 G P a  10.9 GPa 
u0 0.2 0.11-0.25 

0.014 0.005-0.02 
80 0.02 0.017-0.03 

J. B. G 6 m e z  et al. 

150 

4 R e s u l t s  

We have performed a nonlinear fitting of model equation 
(10) to the experimental stress-strain curves to obtain 
an estimate of the model parameters, i.e., E0, ~'0, T]0, 
and ~. Figure 3 shows the best-fit synthetic curve for 
the three tests performed, together with best-fit model 
parameter values. 
We can see from the figure that  the inversion procedure 
works very well up to macroscopic failure (stress-drop 
point, marked with an open circle on the experimen- 
tal stress-strain curves), being able to recover both the 
stress-hardening region located between the end of the 
straight region and peak stress, and the extended stress- 
softening region covering the region between peak stress 
(marked with an open square in Figure 3) and the stress- 
drop point. Note also, that  for undrained tests A and B 
(Figure 3), peak stress and stress-drop points are well 
apart,  but for drained test C both points are very close 
together (This results is a consequence of the stiffening 
effect that pressurised fluids in the pore space causes 
on the bulk mechanical properties of the solid during 
undrained experiments). It is also worth noting that 
the initial toe region of the experimental stress-strain 
curve is not reproduced in the synthetic curve due to 
the fact that  we are using a secant Young's modulus. 

5 D i s c u s s i o n  

How can we test the goodness of the synthetic curves 
in a more quantitative way than by a simple visual in- 
spection? The answer is performing a sensitivity anal- 
ysis i.e., to change by a certain amount the value of 
the parameters, one by one, and see how the synthetic 
stress-strain curves are affected: no change in the curves 
means very low sensitivity to that  particular parameter 
(i.e., poor constraint on its value); on the other hand, 
a noticeable change in the inverted curves will mean a 
high sensitivity of the model to that  parameter (i.e., 
good constraint in its value). Only parameters showing 
high sensitivity are indeed ' resolved' by the inversion 
and are, therefore, the only ones that  can be properly 
called ' model parameters ' .  
We have performed a sensitivity analysis on the four 
parameters which enter our model: Young's modulus 
of the crackless solid, E0, Poisson's ratio of the crack- 
less solid, v0, initial crack porosity, 00, and initial mean 
crack aspect ratio, ~. Figure 4 shows the results of the 
sensitivity analysis. Initial crack porosity was changed 
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Fig. 3. Best-fit stress-strain synthetic curves after non- 
linear fitting to the experimental stress-strain curves. 
Results are shown for the non-interacting model for the 
three triaxial tests performed. A: undrained test at 50 
MPa confinig pressure; B: undrained test at 25 MPa 
confinig pressure; C: drained test at 50 MPa confinig 
pressure. On all the graphs the thick solid line repre- 
sents the experimental stress-strain curve, and the thin 
solid line the synthetic curve. 
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Fig. 4. Sensitivity analysis for test A in Figure 3, again using the non-interacting approximation. On all the graphs 
the thick solid line represents the experimental stress-strain curve, the thin solid line the synthetic curve, and the two 
thin dashed lines the synthetic curves after variyng the relevant parameter in the amount shown on the corresponding 
graph. 

in a factor of two around the best-fit value (00 = 2%); 
initial mean crack aspect ratio has also been changed 
in a factor of two (from 0.02 to 0.005, with a best-fit 
value of around 0.01); initial Poisson's ratio in a factor 
of two (0.1-0.3, around best-fit value of 0.2); and initial 
Young's modulus in a +/-10% around its best-fit value 
of 10.5 GPa. 

From the figure we can immediately conclude that  Pois- 
son's ratio is a parameter not resolved during the in- 
version: changing its value in almost the whole possible 
range for sandstones does not affect the shape of the 
synthetic curve (This result is quite logical because we 
are measuring axial quantities, while Poisson's ratio de- 
pends also on radial mechanical properties). As for the 
rest of the parameters, they are well resolved during the 
inversion and show high sensitivity to changes in their 
values. 

The next step in testing the goodness of the procedure 
is to compare the best-fit parameter values with exper- 
imentally derived values for the same parameters. It is 
possible to derive initial crack porosity and initial mean 
crack aspect ratio values from a total porosity against 
confining pressure curve logged during a hydrostatic de- 
formation experiment [Zimmerman, 1991]. From an ex- 
ponential fitting to this curve we can obtain directly 
a value for the initial crack'porosity (in doing so, we 

are ignoring the small decrease in porosity due to the 
elastic closure of spherical cavities; see Glover et al., 
1996). The initial mean crack aspect ratio can be cal- 
culated by means of Morlier's method [Morlier, 1971]. 
Morlier's method is based upon the fact that low aspect 
ratio cracks close under lower confining pressures than 
high aspect ratio cracks. During a hydrostatic deforma- 
tion experiment, where confining pressure is increased 
stepwise, changes in total porosity can be adscribed to 
closure of cracks of increasing initial crack aspect ra- 
tio. The output of the method is a crack aspect ratio 
spectrum (i.e., the probability P( r )  of finding a crack of 
initial crack aspect ratio r), from which it is straight- 
forward to derive a mean crack aspect ratio. Finally, 
Young's modulus of the crackless solid can be approx- 
imated by the slope of the straight part of the experi- 
mental stress-strain curve. 

Apart  from the three triaxial deformation experiments, 
we have also carried out a hydrostatic test on the same 
material (DDS) to compute both initial crack porosity 
and initial mean crack aspect ratio• Table 2 shows the 
result of the computation, together with the best-fit val- 
ues obtained from the inversion. The table gathers also 
the experimental and best-fit value of the other resolved 
parameter, Young's modulus of the crackless solid. A 
comparison of both sets of values show that best-fit val- 
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ues are always bracketed  by the  exper imenta l ly-der ived 
ones, which is an  indica t ion  . that  the  inversion is able 
to resolve three pa rame te r s  t h a t  showed high sensi t ivi ty 
dur ing  the  sensi t ivi ty  analysis.  

6 C o n c l u s i o n s  

Measurement  of the  complex conduct iv i ty  of sa tu ra ted  
rocks dur ing  t r iaxia l  de fo rmat ion  has  the  po ten t ia l  for 
giving useful in fo rmat ion  concerning the  closure and  
subsequent  f o rma t ion  and  growth  of new cracks. 
The  sensi t ivi ty  of complex  electrical measu remen t s  to 
crack or ienta t ion ,  and  crack connect ivi ty ,  has  been used 
to create a new direct ion sensi t ive crack d a m a g e  pa- 
rameter .  St ress-s t ra in  curves reconst ructed  using this  
damage  pa rame te r  show very good agreement  wi th  the  
measured  s t ress-s t ra in  curves. 
A nonlinear fit to the experimental stress-strain curves 
gives a set of best-fit model parameter values which com- 
pare very well with experimentally-derived values for 
these very same parameters. The sensitivity analysis 
carried out demostrates also that the procedure is able 
to resolve (i.e shows high sensitivity to) three of the 
four model parameters (Young's modulus of the crack- 
less rock, initial crack porosity, and initial mean crack 
aspect ratio), meaning that we can use this procedure 
to compute important mechanical properties of the de- 
forming solid. 
To our knowledge, this is the first time that a mechanical 
property varying during triaxial deformation has been 
succesfully modelled using information from the mea- 
surement of a transport property. 

Acknowledgements. One of the authors ( JBG ) thanks J.M. Alvarez- 
Tostado for useful comments and discussions about crack density 
tensors. This work was funded by NERC research grant GR3/8289 
and by Spanish DGICYT grant PB93-0304. 

J. B. G6mez et al. 

References 

Atkinson, B.K. (F_a:l), Fracture mechanics oJ rock, Academic Press, 
London, 533 pp., 1987. 

Bruner, W.M., Comment on " Seismic velocities in dry and satu- 
rated cracked solids", J. Geophys. Res., 81, 2573-2576, 1976. 

Budiansky, B., and O'Connell, R.J., Elastic moduli of cracked 
solid, Int. J. Solid Strnct., I~, 81-97, 1976. 

Glover, P.W.J., Gdmez, J.B., Meredith, P.G., Boon, S.A., Sam- 
monds, P.R., and Murrell, S.A.F., Modelling the stress-strain 
behaviour of saturated rocks undergoing triaxial deformation 
using complex electrical conductivity measurements, Surveys 
in Geophysics,17, 120-144, 1996. 

Hill, R., The elastic behaviour of a crystalline aggregate, Proc. 
Phys. Soc. London, Ser. A, 65, 349-354, 1952. 

Kachanov, M., Effective elastic properties of cracked solids: crit- 
ical review of some basic concepts, Appl. Mech. Rev., 45, 304- 
335, 1992. 

Lawn, B., Fracture o? brittle solids, Cambridge Univ. Press, Cam- 
bridge, U.K., 375 pp., 1993 (2nd edition). 

Morlier, P., Description de l'et~t de fissuration d'une roche/t partir 
d'essais non-destructifs simples. Rock Mechanics, 3, 125-138, 
1971. 

Nemat-Nasser, S., and Horii, M.,Micromechanics: Overall Prop- 
erties o] Heterogeneous Materials, North-Holland, Amsterdam, 
1993. 

O'Conneli, R.J., and Budiansky, B., Seismic velocities in dry and 
saturated cracked solids,J. Geophys. Res., 79, 5412-5426, 1974. 

Walsh, J.B., The Effect of Cracks on the Uniaxial Elastic Com- 
pression of Rocks, J. Geophys. Res., 70, 381-389, 1965. 

Zimmerman, R.W., Compressibility o] sandstones, Elsevier, Am- 
sterdam, 173 pp., 1991. 


