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ABSTRACT

One of the major uncertainties in the ability to predict future climate change, and hence its impacts, is the
lack of knowledge of the earth’s climate sensitivity. Here, data are combined from the 1985–96 Earth
Radiation Budget Experiment (ERBE) with surface temperature change information and estimates of
radiative forcing to diagnose the climate sensitivity. Importantly, the estimate is completely independent of
climate model results. A climate feedback parameter of 2.3 � 1.4 W m�2 K�1 is found. This corresponds
to a 1.0–4.1-K range for the equilibrium warming due to a doubling of carbon dioxide (assuming Gaussian
errors in observable parameters, which is approximately equivalent to a uniform “prior” in feedback
parameter). The uncertainty range is due to a combination of the short time period for the analysis as well
as uncertainties in the surface temperature time series and radiative forcing time series, mostly the former.
Radiative forcings may not all be fully accounted for; however, an argument is presented that the estimate
of climate sensitivity is still likely to be representative of longer-term climate change. The methodology can
be used to 1) retrieve shortwave and longwave components of climate feedback and 2) suggest clear-sky and
cloud feedback terms. There is preliminary evidence of a neutral or even negative longwave feedback in the
observations, suggesting that current climate models may not be representing some processes correctly if
they give a net positive longwave feedback.

1. Climate sensitivity

In 1990 the Intergovernmental Panel on Climate
Change (IPCC) suggested a range of 1.5–4.5 K for the
global surface equilibrium temperature increase associ-
ated with a doubling of CO2 (Houghton et al. 1990).
Since then, despite a massive improvement in models
and in our understanding of the mechanisms of climate
change, the uncertainty in our projections of tempera-
ture change has stubbornly refused to narrow (Hough-
ton et al. 2001). A significant part of this uncertainty is
due to different cloud feedbacks between models, al-
though differences in other feedbacks, such as water
vapor, also play a role (Houghton et al. 1990; Cess et al.

1996; Colman 2003). Recently, there have been several
efforts to try and narrow this range using a combination
of observations and climate model data; however, the
large uncertainties in climate sensitivity have, if any-
thing, increased (Forest et al. 2002; Gregory et al. 2002;
Harvey and Kaufmann 2002; Knutti et al. 2003). In par-
ticular, it has proved extremely difficult to rule out very
high values of climate sensitivity using observations
(Gregory et al. 2002).

There are many definitions of climate sensitivity in
the literature. While the most quoted sensitivity is the
equilibrium warming for 2 � CO2 this is not necessarily
the most useful, as differences in the CO2 radiative
forcing can be confused with differences in climate re-
sponse, and ideally one would like to know the climate
response to any forcing mechanism. In this work, we
use a standard linear definition of climate sensitivity,
which we state here, and go on to show how it can be
derived from observational data.
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A linear climate feedback parameter (Y) can be de-
fined, where

Y � �
�N

��Ts
, �1�

and where N is the net downward irradiance at the
top-of-atmosphere (TOA) energy balance and �Ts is
the surface temperature change.

Consider factors that directly affect the top-of-
atmosphere flux (N):

N�F, �Ts, X� � No �
�N

��F
�F �

�N

��Ts
�Ts �

�N

��X
�X

� non-linear terms, �2�

where F is a surrogate parameter for external radiative
forcing mechanisms and X represents all the other in-
ternally driven mechanisms that might affect N, which
are not directly or indirectly related to surface tempera-
ture

As we are concerned with linear changes in N, we can
set No � 0 and ignore the nonlinear terms. The term
(	N/	�F) �F is a radiative forcing term, which we chose
to rewrite as Q:

N � Q � Y�Ts �
�N

��X
�X. �3�

This equation includes a term [(	N/	�X) �X ] that al-
lows N to vary independently of surface temperature. A
similar equation was used by Gregory et al. (2004). If
we regress (Q�N) against �Ts, we should be able to
obtain a value for Y.

The X terms are likely to contaminate the result for
short datasets, but provided the X terms are uncorre-
lated to �Ts, the regression should give the correct
value for Y, if the dataset is long enough.

The concept of radiative forcing relates this climate
feedback parameter to the expected equilibrium sur-
face warming (�Teq) caused by a constant radiative
forcing (Qc; Houghton et al. 2001):

�Teq � Qc�YNET. �4�

If the radiative forcing (Qc) is due to a doubling of
carbon dioxide (approximately 3.7 W m�2), then �Teq

is termed the equilibrium climate sensitivity. A smaller
value of YNET leads to a larger equilibrium surface tem-
perature change and corresponds to a larger equilib-
rium climate sensitivity. Models indicate that while
most radiative forcing mechanisms have climate sensi-
tivities that are within 
30% of that from carbon diox-
ide changes, some do not, such as absorbing aerosol and
ozone changes (Hansen et al. 1997; Joshi et al. 2003).
Also, for the same radiative forcing mechanism, a cli-
mate model’s climate sensitivity can vary with time, and
some climate feedbacks, such as certain cloud changes,

may not be linear (Colman et al. 1997; Senior and
Mitchell 2000; Gregory et al. 2004). Acknowledging
these limitations, we search for a single value for YNET

in observations, and return to discussion of its applica-
bility later.

2. Method

For our approach we use Eq. (3) to diagnose the
climate feedback parameter (YNET) from observed
time series of N and �Ts. We estimate corresponding
values for Q and then regress Q�N against �Ts to find
a value for YNET from the slope of the regression line
(also see Gregory et al. 2004). We use either seasonal
data (with the annual cycle removed) or annual aver-
ages. Importantly, with this method, YNET is only de-
termined by changes in N, Q, and �Ts over the time
period considered. Hence, we do not need to identify a
base state of zero climate change. The methodology is
applicable to: 1) an equilibrium nonforced situation,
where Q would be constant and N is responding to
internal variability in �Ts; 2) transient forced climate
change situations, where N and �Ts are responding to a
radiative forcing (Q); and 3) a combination of internal
variability and forced climate change. Sources of abso-
lute error can safely be ignored as they only affect the
intercept of the regression line and not its slope; N in
particular might be expected to have large absolute er-
rors, being difficult to measure.

The best estimate of the equilibrium climate sensi-
tivity and its uncertainty range are derived from the
linear regression analyses. The choice of linear regres-
sion model has an important influence on results, since
the scatter is quite large. For our analyses, we adopted
a robust fitting technique, based on ordinary least
squares (OLS) regression of Q�N against �Ts (Feigel-
son and Babu 1992). Compared to other techniques this
gave larger error estimates. For a number of reasons we
believe that OLS methodology was the most appropri-
ate choice of the regression model. Ordinary least
squares regression will give a bias toward small Y val-
ues and high climate sensitivities; all the other linear
regression models examined suggested less than a 2-K
doubling for 2 � CO2 (see appendix).

For the uncertainty analysis we assume, like Gregory
et al. (2002), that errors in the observable parameters
(N, Q, and �Ts) all have Gaussian distributions. In a
Bayesian statistics framework, this is equivalent to as-
suming Gaussian observational errors and a uniform
“prior” in each of the observables. Since the uncertain-
ties in Q and N are much larger than in �Ts (a factor
influencing our choice of regression model; see appen-
dix), uncertainty in Q�N is linearly related to uncer-
tainty in Y, so our assumption is also approximately
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equivalent to assuming a uniform prior in Y. Other
studies (Forest et al. 2002; Knutti et al. 2003) have as-
sumed a prior that is uniformly distributed in equilib-
rium climate sensitivity, which is proportional to 1/Y.
Compared with our prior, theirs emphasizes the higher
values of equilibrium climate sensitivity. We believe
our choice is more appropriate for our analysis and
input data, but it has the result that our range of climate
sensitivity lies lower. Differences in priors should be
taken into account when comparing quoted ranges of
possible temperature change.

3. Data

a. Net energy imbalance (N)

For this work we take N to be the net flux imbalance
at the top of the atmosphere (positive downward) mea-
sured by instruments on the Earth Radiation Budget
Satellite (ERBS); we use data from the 15 yr of wide-
field-of-view (WFOV) data and the shorter 
5 yr
dataset from the scanning radiometer. These instru-
ments measure radiation between 60°S and 60°N. The
WFOV instrument uses two cavity radiometers to mea-
sure the absorbed solar radiation and the outgoing
longwave radiation (OLR); the scanning instrument
measures shortwave (SW) and longwave (LW) radi-
ances with a thermistor bolometer (Wielicki et al.
2002). As a result of battery problems, there are several
gaps in the data, especially during 1993, and for these
reasons we do not use data from 1993 or after 1997 for
computing annual averages. Our data are essentially
the same as the datasets presented in Wielicki et al.
(2002), except we have additionally applied a correc-
tion to the WFOV data for the decay in the satellite’s
orbit (T. M. Wong 2005, personal communication). This
correction reduces the positive trend in OLR and in-
creases the positive trend in absorbed solar radiation.
The annual averaged anomalies used in this study from
the WFOV instrument are shown in Fig. 1b. These data
arguably represent the best observations we have for N
and relative calibration in SW and LW fluxes are ex-
pected to be better than 0.5 W m�2 (for decadal time-
scale changes) and even better than this on interannual
time scales (Wielicki et al. 2002). The changes we ob-
serve in the data are considerably larger than this (see
Fig. 1b).

b. Surface temperature (�Ts)

We use two global surface temperature anomaly
datasets; one from the Goddard Institute for Space
Studies (GISS; Hansen et al. 1999) and the other from
the Hadley Centre and University of East Anglia’s Cli-
mate Research Unit (HADCRU) (Jones et al. 1999).

Their anomalies are similar for the 1985–97 period (Fig.
1a). However, the two surface temperature time series
shown give quite different changes between 1996 and
1997. As our approach is dependant on stable time se-
ries of robust data, 1997 was excluded from subsequent
analysis.

c. Radiative forcing (Q)

Radiative forcing time series were obtained from
various sources (Sato et al. 1993; Myhre et al. 2001;
Hansen et al. 2002). We found that volcanic and well-
mixed greenhouse gas radiative forcings played the
most important role in determining YNET; changes in
total solar irradiance also had some effect, but these
values could be derived directly from the ERBS instru-
ments, which largely eliminated them as a source of
uncertainty. Time series of the important datasets are
shown in Fig. 1c. The tropospheric aerosol direct and
indirect radiative forcings were found not to impact our
regression. Despite potentially large absolute errors in
these forcings, their impact on our analysis is likely to
be small, as the tropospheric aerosol forcing in the
datasets analyzed changed very little over 1985–96
(Myhre et al. 2001). However, we acknowledge that any
undiagnosed change in aerosol radiative forcing could
have significant effects on our shortwave results. Over
this relatively short time period any undiagnosed forc-
ing changes would likely be uncorrelated with global
mean surface temperature changes; these forcings
would therefore increase the uncertainty, or noise, in
the analysis, rather than lead to systematic errors in Y.
The forcing that had by far the largest impact on the
regression was volcanism and, in particular, the erup-
tion of Mt. Pinatubo in 1991. For this study, we used
SW and LW volcanic forcing estimates from several
sources (derived from data outlined in Myhre et al.
2001; Sato et al. 1993). This volcanic forcing may be in
error by as much as 30% (Houghton et al. 2001); the
impact of this uncertainty on the results is discussed in
the results (and in Table 3).

As the ERBS instruments measured SW and LW
components of the energy budget separately, the short-
wave climate feedback parameter (YSW) and longwave
climate feedback parameter (YLW) could also be found.
To do this, we separately considered SW or LW com-
ponents of Q and N in Eq. (1) for the regression analy-
sis. For the scanning instrument, we were able to fur-
ther subdivide N into clear- and cloudy-sky components
and use these to find corresponding Y values. For the
regression of Q�N versus �Ts an appropriate Q, rep-
resentative of the N being measured, needed to be es-
timated. Therefore, to derive YSW and YLW we had to
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FIG. 1. The 1985–97 globally averaged seasonal anomalies in (a) surface temperature (HADCRU, GISS) and midtropospheric
temperature (MSU-TMT), (b) ERBE WFOV N data, and (c) well-mixed greenhouse gas and volcanic radiative forcing. The seasonal
cycle has been removed from these datasets. ERBE N values are all measured positive downward, and 1993 data are not shown due
to missing data in the ERBE record.
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split radiative forcing into SW and LW components.
For the cloudy case where Ncloud is taken to be N�
Nclear we set Q to zero. This assumes that there is no
difference between the clear-sky and all-sky radiative
forcing terms. In practice, over the short 5-yr time pe-
riod where the scanner data were available, Q uncer-
tainties had little impact on the derived Y values.

4. Results

For several time periods, we present values for the
total climate feedback parameter (YNET) and its com-
ponents. For the ERBS WFOV instrument, we divide
the record into the pre-Pinatubo period (1985–90), the
Pinatubo years (1991–92), and the 1985–96 period; 1993
is missing in the ERBE record. Table 1 gives the results
of the regression analyses, using both annual averages
and seasonal data (with the annual cycle removed); it
also compares the results from using the two surface
temperature datasets. Corresponding figures to several
of these regressions are shown in Figs. 2 and 3. Figure
4 summarizes the overall findings for the annual results
of the WFOV instrument. Consistent with the lower
correlations, seasonal climate feedback parameters are
slightly smaller in magnitude than the feedback param-
eters derived from annual averages, although they
agree to within their respective uncertainty estimates.
Results derived from annual averages typically have the
highest correlations. Table 2 and Fig. 5 show the results
of the scanning instrument analyses, which are summa-
rized in Fig. 6.

The results show that the linear model of climate
sensitivity adopted works well in the longwave, and we

are able to quantify YNET quite well and YLW values
better. For YSW the simple model does not work as
well, but we are still able to usually determine a sign.
Figure 4 shows that over both the pre-Pinatubo period
and the 1985–96 record we find that a YLW of 
4 W
m�2 K�1 is partly offset by a likely negative YSW, to
give a YNET of 
2.0 W m�2 K�1. Several climate mod-
els exhibit a similar “NET” positive feedback (Hough-
ton et al. 2001). The NET climate feedback derived
from the Pinatubo response is similar, but its LW and
SW components are very different. Uncertainties in the
radiative forcing (see below) cannot account for these
differences, so these results indicate that the Pinatubo
year’s climate response is not the same as the longer-
term response. The 1985–89 results from the scanning
instrument agree well with those from the WFOV in-
strument (Table 2). Although errors in the regression
are much larger, the scanning instrument also hints at
the clear- and cloudy-sky feedbacks.

5. Uncertainties in deriving Y values

The 95% uncertainties for Y, presented in the tables,
are purely statistical and are from the straight-line fits.
However, we also analyzed the effects of using different
temperature and/or radiative forcing datasets (Table 1
and Table 2), and compared results from annually av-
eraged data with those from seasonal data (Table 1).

In the LW, Q�N values are well correlated to �Ts

values, especially for the 1985–90 period, where corre-
lations are larger than 0.95 for the annual averages and
the regression gives a near-perfect straight line for YLW.
For all the time periods analyzed, both YLW and YNET

TABLE 1. For different time periods the table shows the YSW, YLW, and YNET values derived from the WFOV instrument. A 95%
uncertainty and the correlation of Q�N vs �Ts are also presented. Data are shown for the two surface temperature anomalies
(HADCRU and GISS). These data use the GISS well-mixed greenhouse gas forcing. Results are shown for seasonal and annual
anomalies, with the seasonal cycle removed from the seasonal data.

Year range

SW LW NET

Y
W m�2 K�1

95% error
W m�2 K�1

Corre-
lation

Y
W m�2 K�1

95% error
W m�2 K�1

Corre-
lation

Y
W m�2 K�1

95% error
W m�2 K�1

Corre-
lation

GISS (�Ts)
1985–90 �1.4 2.5 �0.51 3.6 0.9 0.97 2.4 2.2 0.71
1985–96 (no 1993) �1.6 3.3 �0.23 3.8 2.4 0.62 2.3 1.3 0.66
1985–90 (seasonal) �1.4 1.5 �0.34 2.6 1.3 0.67 1.4 0.8 0.40
1985–96 (seasonal) �1.3 1.6 �0.19 2.7 1.2 0.51 1.5 0.7 0.43
Pinatubo 1991–92

(seasonal)
1.1 1.0 0.57 0.9 0.9 0.62 2.1 1.3 0.74

HADCRU (�Ts)
1985–90 �1.6 3.5 �0.50 4.4 1.5 0.95 2.9 3.2 0.70
1985–96 (no 1993) �3.3 3.7 �0.41 5.7 0.2 0.75 2.5 1.8 0.54
1985–90 (seasonal) �1.2 2.0 �0.22 3.3 1.6 0.64 2.4 1.1 0.51
1985–96 (seasonal) �2.6 2.0 �0.32 4.4 1.4 0.62 1.8 1.1 0.37
Pinatubo 1991–92

(seasonal)
1.4 2.0 0.41 1.4 1.7 0.57 2.9 2.4 0.60
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FIG. 2. Data used to derive Y values from WFOV data. Shown are the SW, LW, and NET flux anomalies and the surface temperature
anomalies (multiplied by 2 for scaling). GISS surface temperature and well-mixed greenhouse gas forcing datasets are employed. Data
are for (top) 1985–90 annual data, (middle) 1985–96 annual data, and (bottom) and 1991–92 seasonal data.
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are reasonably well constrained by the regression
analysis and correlations of annually averaged data are
almost always above 0.6. The regression analysis does
not work as well for deriving YSW; uncertainties are
larger and correlations smaller, compared with those
for YLW and YNET. Although its correlations are simi-
lar, the HADCRU surface temperature dataset gives
higher YLW values than the GISS dataset. However,
again, these differences are no larger than the 95%
errors in the regression analysis. Annual YNET values
for 1985–96 calculated with the two datasets differed by
0.2 W m�2 K�1. For the summary in Figs. 4 and 6 the
results from the analysis using the GISS surface tem-
perature and forcing datasets are used as these often

had higher correlations and smaller errors than found
when using other analyses.

Table 3 analyzes how uncertainty in the radiative
forcing term affects the derived YNET values. The vol-
canic forcing and the well-mixed greenhouse gas forc-
ing (WMGHG) both play a role in determining Y val-
ues, and results become largely meaningless if either
forcing is ignored. However, the two estimates of
WMGHG forcing are very similar, so uncertainty in
this forcing has a small effect on Y (0.1 W m�2 K�1). In
addition, we also examined the effect of including a
10% uncertainty estimate in the WMGHG forcing
(Houghton et al. 2001); this also added 0.1 W m�2 K�1

to the overall uncertainty estimate. Varying the magni-

FIG. 3. Robust OLS linear regression of Q�N vs �Ts from the data shown in Fig. 2. A Y value, with
95% uncertainty, and the correlation of Q�N vs �Ts are also shown. GISS surface temperature and
well-mixed greenhouse gas forcing datasets are employed. Regressions are for (top) 1985–90 annual
data, (middle) 1985–96 annual data, and (bottom) 1991–92 seasonal data.
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tude of the volcanic radiative forcing by its suggested
uncertainty of 30% (Houghton et al. 2001) changed
YNET values by 0.5 W m�2 K�1. Over the 1991–92 time
frame of the major Pinatubo climate response, the forc-
ing term plays a larger role; but, even here, uncertainty
in the forcing only varied YSW by 1.0 W m�2 K�1 and
YLW by 0.5 W m�2 K�1. We can therefore conclude
that, provided we are not ignoring an important forcing
term, uncertainties in radiative forcing ought not to
have had a major impact on the derived Y values. If
there are undiagnosed aerosol changes, they would im-
pact our analysis. However, as the temperature changes
over this time period are far from being a monotonic
increase (Fig. 1), it would hopefully be unlikely that any
undiagnosed forcing would correlate with �Ts. If these
forcings were uncorrelated with �Ts, aerosol would be
unlikely to alter the slope of the regression; rather they
would make the regression noisier. Some of the noise in
the YSW regression could easily be the result of this
undiagnosed forcing. However, experiments with the
Third Hadley Centre Coupled Ocean–Atmosphere
GCM (HadCM3), in which all the forcings were known
(Gregory et al. 2004), also found a noisier YSW. It is
likely that shortwave cloud feedback processes also ac-
count for at least part of this noise (also see section 7).
If, however, aerosol was correlated with �Ts (such as

could conceivably be the case with forest fires), it could
have a major impact, especially on our estimate of YSW.

To estimate the complete error in our analysis of Y
we also need to include the likely error introduced by
uncertainties in the ERBE time series. Over 1985–96
the total change in Q�N is about 2–3 W m�2 (Fig. 1),
which can be compared to a suggested interdecadal
calibration error of less than 0.5 W m�2 (Wielicki et al.
2002). A change in the N of 0.5 W m�2 would signifi-
cantly alter the results. However, these errors would
not necessarily correlate with �Ts, so the fact that the
regression gives any meaningful results at all, and
sometimes very good straight line fits, indicates that the
ERBE data may be reliable. Similar analyses with other
available datasets for N produced little or no meaning-
ful result. The N values were also estimated using 1981–
87 Nimbus-7 data (Jacobowitz et al. 1984), 1950–2000
ocean heat uptake data (Levitus et al. 2000), and a
1983–2000 dataset derived from several satellite instru-
ments (Zhang et al. 2004). Several time periods were
considered. For the Nimbus-7 analysis, although uncer-
tainties are much larger, correlations were found to be
around 0.5 for YNET and YLW, and the derived Y values
agreed well with those from the ERBE data. For the
other datasets, Q�N and �Ts were always uncorrelated
and no significant relationships were found. Using the
WFOV data without their latest orbital decay correc-
tions also gave an indication of how uncertainty in N
affected our results. For the 1985–96 time period, the
uncorrected data, compared to the results in Table 1,
gave a much higher value for YLW (but the correlations
were 
0.2 smaller). This resulted in a YNET of around
4.0 W m�2 K�1, which would correspond to only a 1-K
warming for a doubling of carbon dioxide.

The errors in ERBE that would have the largest af-
fect on our derived Y values are those caused by long-
term calibration drift; in these cases a correlation would
remain. The data used in this study have had latest
correction data applied; using the uncorrected data
would increase YNET by over 50%. For the summarized

TABLE 2. The seasonally averaged YSW, YLW, and YNET values derived from scanner and WFOV data for 1985–89. The table also
shows the 95% uncertainty in Y and the correlation of Q�N vs �Ts. For the scanner data, Y is also separated into clear and cloudy
scenes. The GISS surface temperature anomaly and well-mixed greenhouse gas forcing are employed. The results with the HADCRU
surface temperature dataset and/or GISS radiative forcing dataset are very similar.

1985–89 seasonal
analysis

SW LW NET

Y
W m�2 K�1

95% error
W m�2 K�1

Corre-
lation

Y
W m�2 K�1

95% error
W m�2 K�1

Corre-
lation

Y
W m�2 K�1

95% error
W m�2 K�1

Corre-
lation

Type of measurement
WFOV �1.1 1.3 �0.32 2.6 0.9 0.76 1.7 1.2 0.42
Scanner �0.3 1.8 �0.06 2.6 1.3 0.56 2.4 1.3 0.55
Scanner (clear sky) 1.1 0.7 0.50 1.0 1.6 0.24 2.2 1.6 0.46
Scanner (clouds) �1.4 1.6 �0.32 1.6 1.6 0.31 0.2 1.4 0.04

FIG. 4. Values of YSW, YLW, and YNET and their 95% uncer-
tainties (vertical lines) from ERBE WFOV data. Annual values
derived for the GISS surface temperature dataset are used.
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Y values and their uncertainties, presented in Figs. 4
and 6 and in the conclusions, we assume that the cor-
rected ERBE time series are perfect apart from an un-
known constant offset.

To obtain the overall uncertainty estimate presented
in the abstract and conclusions, we took the central best
estimate, with the GISS dataset and used its regression
uncertainty range. We then added surface temperature

and radiative forcing uncertainties (discussed above),
assuming they are independent of each other. This gave
an overall uncertainty estimate for YNET of 2.3 � 1.4 W
m�2 K�1. This uncertainty range does not account for
uncertainty in the ERBE time series (N). We used the
GISS central estimate and its regression uncertainty, as
these data had the highest correlations. Reasons for
using the highest correlation to select the central value
are that it may suggest that this dataset is more reliable,
and the regression will have the smallest bias in the
OLS slope.

6. Applicability of results for long-term climate
change

Here we ask two questions about the applicability of
the results for determining future climate change.

a. How representative is YNET of the climate
feedback from CO2-induced global warming?

Model results indicate that Y varies between differ-
ent forcing mechanisms, especially ones with very dif-
ferent patterns of surface and vertical temperature

FIG. 6. Same as in Fig. 5, but from ERBE scanner data. Results
are also shown for the clear-sky and cloudy values. Seasonal val-
ues derived for the GISS surface temperature datasets are used.

FIG. 5. Values of Y derived from annually averaged 1985–89 scanner data. Panels show the linear
regression of Q�N vs �Ts. A Y value, with 95% uncertainty, and the correlation of Q�N vs �Ts are also
shown. (top) T Total YSW, YLW, and YNET values; (middle), (bottom) the clear- and cloudy-sky com-
ponents of these Y values, respectively. GISS surface temperature and well-mixed greenhouse gas
forcing datasets are employed.
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change (Hansen et al. 1997; Joshi et al. 2003). If our
YNET value is derived from tropical temperature vari-
ability and El Niño, it could be unrepresentative of
long-term climate change (Soden 1997; Houghton et al.
2001). Furthermore, it has also been suggested that sub-
annual changes in temperature are often confined to
the surface layer and that using such changes to diag-
nose climate feedback leads to an underestimate of the
water vapor feedback (Hall and Manabe 1999). In ad-
dition, the ERBE instruments do not measure radiation
poleward of 60°, so they may not adequately detect
certain climate feedbacks, particularly the surface al-
bedo feedback.

The years 1995 and 1985 span the range of global �Ts

anomalies seen in the time series. Figure 7 shows that
the change in surface temperature between these two
years has a pattern that is a little like that of both the
observed long-term surface temperature trends (e.g.,
Houghton et al. 2001, their Fig. 2.9d). Furthermore, Fig.
1 shows that the 1985–97 temperature changes are oc-
curring throughout the troposphere, in a similar man-
ner to that expected from long-term climate change.
Therefore, we argue that the Y values we derive from

the regression are likely to be representative of those
due to longer-term climate change. In addition, using
shorter time periods where the temperature changes
may not be representative of longer-term climate
change (such as 1991–92) gives distinctly different an-
swers (Fig. 4). However, as it is likely that the observed
temperature changes are a combination of variability
(on different time scales) and forced climate change,
with contributions from different forcing agents, there
is still the possibility that such variability biases our
result. For example, this variability could involve circu-
lation responses that differ from those expected in a
long-term climate change situation. Thus, our diag-
nosed climate sensitivity may also be a signature of this
variability.

Integrations from HadCM3 were also employed to
test the regression technique. We analyzed data from a
HadCM3 integration of 1860–2100 with historical
greenhouse gas concentrations and future concentra-
tions following the IFCC Scenario 1992a (IS92a; Legget
et al. 1992). The result from the regression was Y � 1.11
� 0.02 W m�2 K�1, which is much more precise than
from the observations because the future radiative forc-
ing and the resulting climate change are large, so the
signal/noise is improved. Gregory et al. (2004) used the
regression method of diagnosing climate sensitivity to
compare its value in the coupled model (HadCM3) to
that in the slab version of the same model. (The “slab”
model uses a mixed layer ocean of 50-m depth with
prescribed heat convergences rather than a 3D ocean
GCM. Because the slab ocean heat capacity is relatively
small, this kind of model is frequently used to diagnose
equilibrium climate sensitivity.) They found the CO2

climate sensitivity of the slab model to be slightly
higher than in the first century of coupled model inte-
grations, the latter being in agreement with our value
above from the IS92a integration. If equilibrium and
transient integrations give different Y values, the latter

TABLE 3. YNET values derived from WFOV data, using different radiative forcings. Two WMGHG forcings are used [Hansen et al.
(2002): GISS and Myhre et al. (2001): MYHRE]. The volcanic forcing from Sato et al. (1993; SATO) is also varied. The table also shows
the 95% uncertainty in YNET and the correlation of Q�N vs �Ts. The GISS surface temperature anomaly is used. YNET values are
shown as they are affected more by Q than either YSW or YLW, this is because YNET is essentially as residual between a negative YSW

and positive YLW.

1985–96 analysis, GISS (�Ts)
Q series

NET

Y
W m�2 K�1

95% error
W m�2 K�1 Correlation

GISS(WMGHG), SATO (volcanic) 2.3 1.3 0.66
MYHRE(WMGHG), SATO (volcanic) 2.2 1.3 0.65
MYHRE(WMGHG), 0.7SATO (volcanic) 1.7 1.5 0.48
No WMGHG, SATO volcanic 1.0 2.5 0.12
MYHRE(WMGHG), no volcanic 0.4 3.1 0.06
No forcing �0.4 3.1 �0.07

FIG. 7. The 1985–95 change in annually averaged surface tem-
perature. Temperature anomalies are taken from HADCRU
data.
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is practically more relevant for projections of climate
change in coming decades.

We then analyzed the years 1985–96 in an ensemble
of four HadCM3 simulations of the twentieth century
forced by both natural and anthropogenic factors (from
Stott et al. 2000). The mean of the four Y values was 1.6
W m�2 K�1 and the standard deviation was 1.2 W m�2

K�1, implying a standard error of estimate of 0.6 W m�2

K�1 on Y from the ensemble. The “true” value of 1.1 W
m�2 K�1 lies within this interval of 1.6 � 0.6 W m�2

K�1, suggesting that the observed data should similarly
give an estimate of the climate sensitivity relevant to
projections in the real world. Moreover, the ensemble
standard deviation of 1.2 W m�2 K�1 was similar to the
typical uncertainty on the slope estimated from the re-
gression procedure in the individual integrations; the
mean of the regression uncertainties was 1.1 W m�2

K�1, suggesting that the regression uncertainty from
the observed data should give a good estimate of the
accuracy of our Y value. In the model, excluding data
poleward of 60° from calculations of global radiation
made only a small difference to the Y value (reducing it
to 1.5 � 0.6 W m�2 K�1), because the surface albedo
term is not a dominant component of the total climate
feedback (Colman 2003), and in the model much of the
surface albedo feedback term comes from seasonal
snow cover on the northern continents south of 60°N.
Further discussion of differences between model and
observations is outside the scope of this study.

b. How good is the linear model of climate
sensitivity?

As well as data errors, poor correlations could also
arise if different responses from different forcings were
being observed in the same dataset. This is certainly the
case for 1985–96, as we include the Pinatubo response,
knowing its climate feedback to be different (Fig. 4).
However, excluding 1991–92 only decreased uncertain-
ties in the 1985–96 derived Y values by 
20% (not
shown), which indicates that this issue is unlikely to be
a major source of uncertainty in the regression. The
linear model appears to work particularly well in the
LW, but not as well in the SW (Figs. 2 and 3). This is
also found to be the case in models, where the poorer fit
in the SW has been attributed to nonlinear cloud effects
(Colman et al. 1997). The scanner data support this
hypothesis, as they reveal a better straight-line fit for
clear-sky YSW values, compared to cloudy YSW values.
Another possibility is that internal variability in the cli-
mate system produces fluctuations in cloud cover, caus-
ing cloud forcings, especially in the shortwave, that will
be seen in N and produce a lagged response in �Ts and
cloud feedbacks. This mixture of forcing and feedback

will degrade the correlation. Analysis of the HadCM3
control integration, which has no externally forced
changes, supports this possibility. There is internally
generated variability in TOA fluxes and �Ts; the clear-
sky Y values are statistically consistent with the re-
sponse to greenhouse gases, but the cloudy-sky re-
sponse shows poor correlation.

7. Climate feedbacks

The Y values derived can be interpreted in terms of
climate feedbacks. With no feedback, the earth behaves
like a blackbody and we expect a YNET � YLW response
of roughly 3.3 W m�2 K�1 (Colman 2003). This Y value
can be increased through negative feedbacks that make
the climate response smaller [through Eq. (2)] or de-
creased by positive feedbacks that would make the cli-
mate response larger. For the long-term changes, a sub-
stantial positive SW feedback (YSW � 0) and a small
negative LW feedback combine to decrease YNET and
give an overall positive feedback of 
1.3 W m�2 K�1.

Over the short 1985–90 time period, we appear to
find a near neutral LW feedback (YLW is close to 3.3 W
m�2 K�1). This result is particularly interesting as most
climate models exhibit a positive longwave feedback
(Houghton et al. 2001). If our results are accurate, it
could mean either that there is little or no positive wa-
ter vapor feedback and a neutral cloud feedback or it
could imply that the longwave cloud feedback is nega-
tive, offsetting the positive water vapor feedback. In
contrast, during the Pinatubo years the longwave feed-
back is positive (
2.3 W m�2 K�1). This value agrees
both with estimates of the water vapor feedback diag-
nosed from observations over the same period and with
that diagnosed from climate models (Soden et al. 2002;
Forster and Collins 2004). Therefore, if the water vapor
feedback is similar over the entire time period (which
appears to be the case; see below), one might speculate
that during the Pinatubo cooling the longwave cloud
feedback is near to neutral, but over the full period it is
negative. Differences in global feedbacks (and hence in
Y ) for different forcing agents could plausibly be
caused by the differing geographical and seasonal dis-
tribution of the forcings concerned. Volcanic forcing,
for instance, is principally in the shortwave and hence
greater when insolation is high, whereas CO2 forcing is
in the longwave.

To try to answer some of these questions we can
extend this analysis to other climate feedbacks with the
scanner data for the 1985–90 period. Note that this dis-
cussion is somewhat speculative as errors in the regres-
sions for the scanner data are large and the conclusions
are particularly dependent on the ability of the ERBE
algorithms to unambiguously separate clear and cloudy
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scenes. This feedback analysis uses the cloud radiative
forcing concept (Cess et al. 1996; Houghton et al. 2001).
As a result of cloud masking of the noncloud feedback
terms, feedbacks analyzed using cloud radiative forcing
will be systematically different than those from partial
radiative perturbations (Soden et al. 2004). Soden et al.
found that in one climate model the cloud radiative
forcing feedback was 0.3–0.4 W m�2 K�1 more negative
than the actual cloud feedback. Likewise the clear-sky
feedback analyzed employing cloud radiative forcing
would be more positive than the actual clear-sky feed-
back.

a. Water vapor and lapse rate

Models and observations suggest a positive feedback
of around 1.7 � 0.4 W m�2 K�1 from water vapor and
lapse rate changes (Colman 2003). When this number is
subtracted from the blackbody YLW value, a clear-sky
YLW of 1.6 W m�2 K�1 would result. Although it is one
of the most uncertain of our Y retrievals, a similar num-
ber is seen for our clear-sky YLW results (Fig. 6).

b. Surface albedo

Models have a positive clear-sky albedo feedback
(YSW � 0) of 0.4 � 0.2 W m�2 K�1 (Colman 2003).
However, our clear-sky SW results indicate a negative
clear-sky albedo feedback. Applying the Soden et al.
(2004) correction to our clear-sky feedback could mean
that the actual clear-sky feedback is more negative still.
The negative feedback we find may be due to the
ERBE instruments being unresponsive to changes in N
caused by the cryosphere, as they do not measure lati-
tudes higher than 60°. However, climate model results
indicated that this was unlikely to be the problem (see
section 5b). Examining the pattern of N variations re-
vealed no obvious large-scale regional pattern associ-
ated with a possible mechanism. However, it is also
possible that feedback from thin clouds (for example) is
being misinterpreted as a clear-sky feedback by the
ERBE algorithms.

c. Clouds

The NET cloud feedback appears close to neutral in
the scanner data; it is made up of components due to a
positive SW feedback and negative LW feedback of
around 2.0 W m�2 K�1 each (Fig. 6). Soden et al. (2004)
point out that this feedback is not representative of the
actual cloud feedback term. However, we are still able
to compare it to similar diagnostics from other models.
One model out of the 10 models presented in Fig. 7.2 of
the 2001 Intergovernmental Panel on Climate Change
(IPCC) report had a similar cloud radiative forcing

feedback (Houghton et al. 2001); other models behaved
quite differently. As the clear-sky Y values from the
scanner data (Fig. 6) resemble the total Y values for the
Pinatubo response (Fig. 4), it is interesting to speculate
that this may indicate that Pinatubo caused few cloud
changes.

8. Conclusions

Data from the ERBS instruments appear sufficiently
well calibrated to estimate the climate feedback param-
eter. Using the best estimate of radiative forcing and
the GISS surface temperature dataset, a value for the
climate feedback parameter is particularly well deter-
mined in the LW for 1985–90, where YLW is 3.7 � 0.9 W
m�2 K�1. Overall, for 1985–96 the ERBE data suggest
that YNET is 2.3 � 1.3 W m�2 K�1 (Fig. 4). This indi-
cates a net positive feedback, compared to the black-
body response. Uncertainties in specifying surface tem-
perature and radiative forcing changes are examined
and found to be a smaller source of error than quoted
uncertainties in the regression analyses. Forcing uncer-
tainty is estimated to vary YNET by no more than 
0.5
W m�2 K�1, and surface temperature change uncer-
tainty varies YNET by 
0.2 W m�2 K�1. Our data gave
an overall uncertainty range for YNET of 2.3 � 1.4 W
m�2 K�1 (not accounting for uncertainty in the ERBE
time series, N).

Our results show a net positive feedback relative to
the blackbody response, which is consistent with cli-
mate models; they also hint at the possibility of near-
neutral longwave feedback, which is inconsistent with
most (if not all) climate models (Houghton et al. 2001;
Colman 2003). However, as our longwave results are
only well constrained for the 1985–90 period, it is prob-
ably premature to conclude that climate models are
incorrectly modeling longwave feedbacks.

These results indicate a 1.0–4.1-K range warming for
a doubling of CO2 (assuming Gaussian-distributed er-
rors in the observable parameters and a radiative forc-
ing for a doubling of CO2 of 3.7 W m�2). Several state-
of-the-art climate models exhibit climate sensitivities
closer to the upper bound (Houghton et al. 2001),
which would imply a YNET � 1.0 W m�2 K�1. Simply
inspecting the range of variations in N and �Ts in the
figures shows that this value is extremely unlikely. It
was noticed that climate models underestimate the
ERBE decadal variability (Wielicki et al. 2002) in N.
Even though this conclusion was based on data from
the uncorrected ERBE analysis, our results suggest that
this underestimate in variability could be because cli-
mate models tend to overestimate the equilibrium cli-
mate sensitivity. A climate model with a smaller sensi-
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tivity would produce larger variability in N, for the
same variability in �Ts.

Patterns of surface and vertical temperature change
and Hadley Centre model results indicate that the Y
values found for the ERBE record are likely to be rep-
resentative of that associated with longer-term climate
change scenarios and the equilibrium climate sensitiv-
ity. The climate feedback from Mt. Pinatubo time pe-
riod appears to be different. This means that the Y
values derived may not necessarily be applicable to all
forcing mechanisms, but it could also mean that short
time-scale variability has different feedback properties.

The ERBE scanner record, although it only covers 5
yr, gives some intriguing, but somewhat uncertain, in-
sights into the different components of the climate
feedback parameter. In particular, it suggests a near-
neutral cloud feedback (by offsetting a negative LW
cloud feedback against a positive SW cloud feedback).
It also suggests a positive surface albedo feedback. The
scanning data show the potential benefits that could
arise from 10 or more years of well-calibrated data of
this kind.

We believe we have illustrated a powerful technique
for determining linear components of climate feedback.
Until now, it has been very difficult to assess how re-
alistic a given climate model’s feedback is, as we lacked
measures of distinguishing a “good” model from a
“bad.” Comparing these ERBE analyses with those
from climate models would facilitate such judgments.
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APPENDIX

Linear Regression and Its Uncertainty

A “robust” technique was used to estimate the errors
in our regression analysis. As our datasets are relatively
short, robust techniques give a truer estimate of the
likely errors (Feigelson and Babu 1992). We generated
10 000 Monte Carlo simulations, subsetting an equal
number of random data points from the original

dataset, and performing OLS regression for each of
these sets. The quoted mean and 95% uncertainty in Y
is then derived from the mean and standard deviation
of the 10 000 simulated Y values.

The appropriate choice of regression analysis is com-
plicated by the fact that we are unable to determine the
error characteristics of Q�N and �Ts. An accurate es-
timate of Y will likely not result even with perfect data,
because of unknown intrinsic variations in N or �Ts,
which do not fit the simple linear model. For less than
perfectly correlated data, OLS regression of Q�N
against �Ts will tend to underestimate Y values and
therefore overestimate the equilibrium climate sensitiv-
ity (see Isobe et al. 1990). However, for a couple of
reasons, we believe OLS regression gave a better esti-
mate of climate sensitivity than other approaches ex-
amined:

1) The OLS regression model of y against x assumes no
“error” in x. Although we cannot characterize the
intrinsic independent variations, or errors, in either
Q�N or �Ts, we imagine several types of cloud
changes could cause Q�N to vary independently of
global-mean surface temperature. It is more difficult
to imagine a change in �Ts that N does not respond
to. Isobe et al. (1990) recommend the use of OLS
when variation x is the cause of variation in y, which
we believe is mostly the case with our data.

2) OLS regression of Q�N against �Ts was found to be
the best predictor of the climate sensitivity in the
Hadley Centre climate model. Values of Y derived
from short 10-yr time series agreed best with the
value derived from longer-term datasets (and the
climate sensitivity to 2 � CO2) when OLS regres-
sion of Q�N of �Ts was used. For example, the OLS
bisector method applied to HadCM3 simulations of
the observational period gave Y � 2.9 � 0.7 W m�2

K�1, a range that does not include the true value for
HadCM3 projections.

Another important reason for adopting our regression
model was to reinforce the main conclusion of the pa-
per: the suggestion of a relatively small equilibrium cli-
mate sensitivity. To show the robustness of this conclu-
sion, we deliberately adopted the regression model that
gave the highest climate sensitivity (smallest Y value).
It has been suggested that a technique based on total
least squares regression or bisector least squares regres-
sion gives a better fit, when errors in the data are un-
characterized (Isobe et al. 1990). For example, for
1985–96 both of these methods suggest YNET of around
3.5 � 2.0 W m�2 K�1 (a 0.7–2.4-K equilibrium surface
temperature increase for 2 � CO2), and this should be
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compared to our 1.0–3.6-K range quoted in the conclu-
sions of the paper.
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