A universal uptake mechanism for cobalt(II) on soil constituents: Ferrihydrite, kaolinite, humic acid, and organo-mineral composites.

Gemma L. Woodward¹*, Caroline L. Peacock¹*, Alba Otero-Fariña², Olivia R. Thompson³, Andrew P. Brown⁴ and, Ian T. Burke¹*

¹School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

²Department of Physical Chemistry, University of Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain.

³National Nuclear Laboratory Ltd., Risley, Warrington, Cheshire, WA3 6AS, U.K.

⁴School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.

<u>Corresponding Authors:</u> Gemma L. Woodward; Email: <u>ee11glw@leeds.ac.uk;</u> Caroline L. Peacock; Email: <u>C.L.Peacock@leeds.ac.uk;</u> Ian T. Burke; Email: <u>I.T.Burke@leeds.ac.uk</u>

Prepared for submission to Geochimica et Cosmochimica Acta.

2 Consists of 7 pages, 4 figures and 1 table.

4 1. Sensitivity Analysis of the Co-Ferrihydrite, -Kaolinite, and Humic Acid Surface

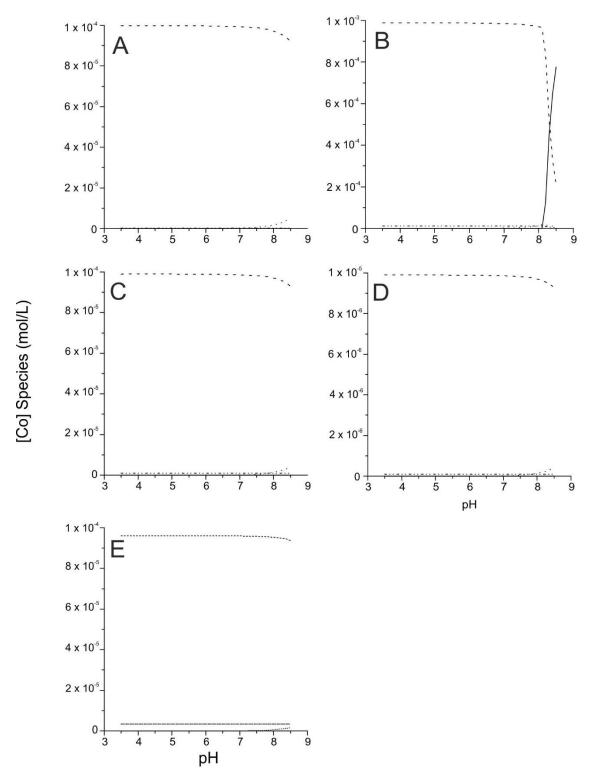
5

Complexation Models

A sensitivity analysis was performed to evaluate the sensitivity of the end-member models to the input parameters. For each model, the input parameters (C_{stern} , electrolyte binding constants, surface site densities, and surface area) were systematically varied while monitoring the log *K* values for the Co adsorption complexes. The analyses are based on the protocols of Moon and Peacock (2013). The C_{stern} was varied by ±50%, the log *K* electrolyte binding constants between -1.5 and 0.5, and the surface site densities and the surface areas were varied by a factor of ±3. Log K values for each surface site and their uncertainty are presented in table 4 in the main text.

13

15 Supplementary Tables


Table S1: Co K-edge EXAFS fitting parameters for high signal: noise ferrihydrite samples, where N

17 is the Occupancy, r is the interatomic distance, σ^2 is the Debye–Waller Factor and reduced χ^2 and R 18 are the goodness of fit parameters. Uncertainties in the last digit shown in parentheses. MS = multiple

are the goodness of fit parameters. Uncertainties in the last digit shown in parentheses. MS = multiplscattering pathways within the CoO₆ octahedral and Co-O-Co linkages. MS pathways are italicised and do not contribute to the structural fit.

Experiment Description	Pathway	Ν	r (Å)	σ ² (Å ²)	χ^2 ; R
A: Fh_5wt%Co_0.1_pH8	Co-O	6(2)	2.05(1)	0.013(8)	851; 0.011
δe0 = -2(1) S20 = 0.92	Co-Fe	1.2(3)	2.98(2)	0.006(3)	
	Co-Co	1.6(4)	3.14(1)	0.006(2)	
	CoO ₆ MS	12(3)	4.10(2)	0.026(16)	
	Co-O-Co MS	6(2)	3.65(2)	0.009(5)	
B: Fh_2wt%Co_0.1_pH 6.5	Co-O	6(2)	2.04(1)	0.006(1)	299; 0.086
$\delta e0 = -4(2)$ $S^2_0 = 0.92$	Co-Co	1.7(4)	3.09(4)	0.010(5)	
	CoO ₆ MS	12(3)	4.08(1)	0.013(1)	
	Co-O-Co MS	6(2)	3.62(3)	0.008(3)	
C: Fh_1wt%Co_0.1_pH7 $\delta e0 = -2(2)$ $S^{2}_{0} = 0.92$	Co-O	6(2)	2.04(2)	0.009(1)	66; 0.065
	Co-Co	1.8(4)	3.09(3)	0.008(4)	
D: Fh_0.5wt%Co_0.1_pH8	Co-O	6(2)	2.04(1)	0.004(1)	532; 0.058
$\delta e0 = -4(2)$ $S^2_0 = 0.92$	Co-Co	1.6(4)	3.08(2)	0.006(3)	

21

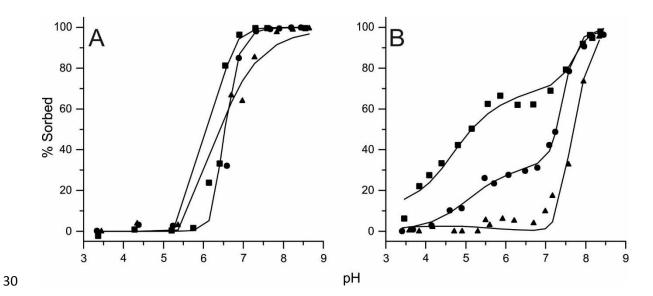
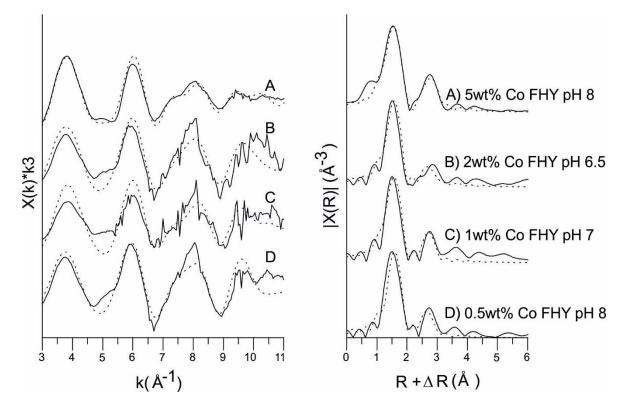

24

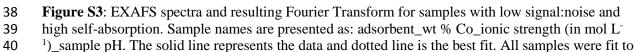
Figure S1: Co speciation plots for each of the ionic strength and Co concentrations used in the

sorption experiments (solid lines, $Co(OH)_2$, dashes, Co^{+2} , dots, $CoOH^+$, and dash-dot-dot, $CoNO_3^+$).

27 Panels A, C, and E show 10^{-4} mol L⁻¹ Co at 10^{-3} , 10^{-2} , and 10^{-1} mol L⁻¹ NaNO₃, respectively. Panels B

28 and C show 10^{-3} and 10^{-5} mol L⁻¹ Co at 10^{-2} mol L⁻¹ NaNO₃.




Figure S2: Co sorption to ferrihydrite (A) and kaolinite (B) as a function of pH and Co concentration.

For ferrihydrite, squares show 0.058 wt% Co, circles show 0.58 wt% Co, and triangles show 5.8 wt%
Co systems. For kaolinite, squares show 0.0058 wt% Co, circles show 0.058 wt% Co, and triangles

show 0.58 wt% Co. Solid lines represent the EQLFOR fits. The solid:solution ratio was 1 g L^{-1} for

35 ferrihydrite experiments, and 10 g L^{-1} for kaolinite.

41 a similar model to that of the 2 wt% Co FHY pH 8 sample in figure 4.

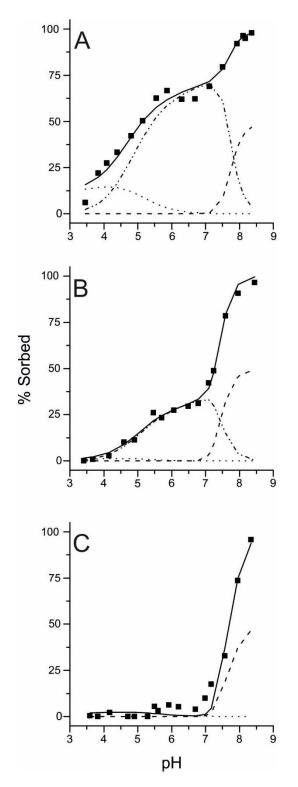


Figure S4: EQLFOR model predictions for Co sorption to kaolinite surface sites. Panel A shows
predicted sorption at 0.0058 wt% Co, panel B at 0.058 wt% Co, and panel C at 0.58 wt% Co. Solid
lines represent total amount of Co predicted to be sorbed, dashed lines show sorption to ≡AlOH sites,

47 dotted lines show sorption to \equiv XH sites, and dash-dot-dot lines show sorption to \equiv X⁻ sites.

48