Biogeochemical reduction processes in a hyper-alkaline affected leachate soil profile

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Geomicrobiology Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>UGMB-2011-0080.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Burke, Ian; University of Leeds, School of Earth and Environment
Whittleston, Rob; University of Leeds, School of Earth and Environment
Palani, Shanmugam; Central Leather Research Institute
Mortimer, Rob; University of Leeds, School of Earth and Environment
Lockwood, Cindy; University of Leeds, School of Earth and Environment
Ashley, David; University of Leeds, School of Earth and Environment
Stewart, Doug; University of Leeds, School of Civil Engineering |
| Keywords: | alkaliphile, bacteria, nitrate-reduction, iron-reduction, contaminated land |
Biogeochemical reduction processes in a hyper-alkaline affected leachate soil profile

Ian T. Burke¹*, Robert J.G. Mortimer¹, Shanmugam Palani²#, Robert A. Whittleston¹, Cindy L. Lockwood¹, David J. Ashley¹ and Douglas J. Stewart²*

¹ Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
² School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
*Corresponding Author e-mail: i.burke@see.leeds.ac.uk / d.i.stewart@leeds.ac.uk
Present address: Central Leather Research Institute, Chennai, India

Abstract

Hyperalkaline surface environments can occur naturally or because of contamination by hydroxide-rich wastes. The high pH produced in these areas has the potential to lead to highly specialised microbial communities and unusual biogeochemical processes. This paper reports an investigation into the geochemical processes that are occurring in a buried, saturated, organic–rich soil layer at pH 12.3. The soil has been trapped beneath calcite precipitate (tufa) that is accumulating where highly alkaline leachate from a lime kiln waste tip is emerging to atmosphere. A population of anaerobic alkaliphilic bacteria dominated by a single, unidentified species within the Comamonadaceae family of β-proteobacteria has established itself near the top of the soil layer. This bacterial population appears to be capable of nitrate reduction using electron donors derived from the soil organic matter. Below the zone of nitrate reduction a significant proportion of the 0.5N HCl extractable iron (a proxy for microbial available iron) is in the Fe(II) oxidation state indicating there is increasing anoxia with depth and suggesting that microbial iron reduction is occurring.

Keywords: anaerobe, alkaliphile, bacteria, contaminated land, iron-reduction, nitrate-reduction, microbial-reduction
Introduction

There are many different environments that occur both on and in the Earth that are characterised by high pH. Some are entirely natural, e.g., soda lakes, hot springs, oceanographic cold seeps, deep mine waters (Takai et al. 2001; Takai et al. 2005; Pollock et al. 2007; McMillan et al. 2009; Brazelton et al. 2010), but many are also due to human activities. These anthropogenic sites occur as a result of the presence of residues from a range of industrial processes, e.g., lime production waste, steelworks slags, coal combustion residues, Solvay process waste, chromite ore processing residues, bauxite processing wastes, borax wastes and cementitious construction wastes (Effler et al. 1991; Carlson and Adriano 1993; Townsend et al. 1999; Deakin et al. 2001; Ye et al. 2004; Mayes et al. 2006; Mayes et al. 2008; Hartland et al. 2009; Mayes et al. 2011). Weathering of these wastes typically produces highly alkaline leachate (pH 10-13) due to the ubiquitous presence of Ca, Na and K oxides (primarily CaO) that hydrolyze in natural waters to produce soluble metal hydroxides. As these wastes are often a legacy from times when disposal was poorly controlled, alkaline leachate emanating from such wastes can contaminate any groundwater resources beneath disposal sites (Hartland et al. 2009; Stewart et al. 2009).

The trace metal composition of these leachates varies greatly with the composition of individual wastes but elevated concentrations of contaminant trace metals and metalloids such as As, Pb, V and Cr are commonly reported (Chaurand et al. 2007; Stewart et al. 2007; Mayes et al. 2009). In addition, due to the leaching of sulphur bearing minerals, elevated sulphate concentrations are often reported to affect overall water quality (Schwab et al. 2006; Mayes et al. 2008; Whittleston et al. 2010). When Ca concentrations are not limiting, the alkaline leachate reacts rapidly with atmospheric CO$_2$ where it emerges into sub-aerial environments, sometimes producing very high rates of calcite precipitation (Deakin et al. 2001; Hartland et al. 2009). This has a detrimental impact on surface environments due to the build up of tufa deposits that
smother natural vegetation and benthic organisms (Effler et al. 1991). As disposal sites rarely
have impermeable barriers underneath the waste, the fate of the alkaline leachate, and
particularly any contaminants within that leachate, depends solely on biogeochemical
interactions with soils and sediments present beneath or adjacent to waste disposal sites.

The ability of indigenous soil microorganisms to couple organic matter oxidation to the
reduction of soluble oxyanions such as nitrate and sulphate, and transition metals such as iron
and manganese, is well documented (Lovley 1993; Lovley 1997; Tebo and Obraztsova 1998;
Lovley et al. 2004). Where sufficient organic matter is available for oxidation, progressively
more anoxic conditions develop and a cascade of terminal-electron-accepting processes occur in
sequence (but dependent on the availability of electron acceptors), with either increasing
incubation time (Burke et al. 2005), or depth within sediments (Froelich et al. 1979). Microbial
processes releasing most energy are favoured, so the sequence in which electron acceptors are
used typically follows the decreasing order of redox potentials shown in Table 1 (calculated
from standard thermodynamic data using the Nernst equation).

A broad range of microorganisms have been isolated and identified that can grow
optimally and robustly in high pH environments. These microbes, called alkaliphiles, have
adapted to this challenging environment with mechanisms for regulating cytoplasmic pH and by
producing surface layer enzymes that function at high pH. For example many alkaliphiles use a
Na\(^+\) electrochemical gradient to maintain pH homeostasis and to energize solute uptake and
motility (Krulwich et al. 2001; Detkova and Pusheva 2006). Alkaliphiles are commonly divided
into two broad groups; those that grow from circum-neutral to alkaline conditions are classified
as facultative alkaliphiles (Sturr et al. 1994), however, those that only growth at around pH 9 or
above are classified as obligate alkaliphiles (McMillan et al. 2009). Although for all alkaliphiles
optimum growth commonly occurs at around pH 9-10, some species are reported to continue to
grow up to around pH 12.5 (Takai et al. 2001; Ye et al. 2004; Pollock et al. 2007). Another
important consideration in alkaline environments is the nature of the organic matter (electron
donors) present in affected soils. Indeed, some alkaliphiles show facultative or obligate
behaviour dependant on whether fermentable or non-fermentable electron donors are present
respectively (McMillan et al. 2009). This has importance to alkaline affected soils, where at high
pH, humic substances can be solubilised and leached from soils and sediments (Macleod and
Semple 2000). Removal of such humic substances will leave behind less labile organic carbon
that is more difficult for microbes to breakdown and metabolise and thus the soil microbial
communities may differ significantly from those found at less alkaline pH.

The purpose of this study is to investigate the potential for biogeochemical redox cycling in
a soil environment affected by hyperalkaline pH 13 leachate from a former lime burning waste
disposal site near Buxton, UK. We have produced detailed vertical porewater profiles of redox
active chemical species in order to characterise the range of biogeochemical processes that are
supported within these soils; and used molecular ecology techniques to determine the genetic
diversity of anaerobes present in the soil.

Methods and Materials.

Site description

The site is near Harpur Hill, in Derbyshire, UK, in an area of upland farming. The
Hoffman lime kiln operated by the Buxton Lime Company was one of the biggest of its type and
was in operation continuously from 1872 until it was closed in 1944; the kiln was demolished
and removed in 1980 (Anon. 2008). The lime works has been restored for commercial/light
industrial use. Limestone-roasting for the alkali-carbonate industry on this site produced huge
volumes of alkali-generating waste. This was deposited into an adjacent valley to the north west
of the kiln. Highly alkaline groundwater springs at the base of the waste (Figure 1; 53°14’07N,
001°55’02W) and flows northwards along the valley (known locally as Brook Bottom). A
carbonate tufa is actively forming where this highly alkaline leachate emerges to atmosphere
that is infilling the valley and completely smothering the natural valley floor to a depth in excess of 2 m for a distance of over 250 m.

Field Sampling

In July 2009 a borehole (HH1) was advanced through the carbonate precipitate into soil layers below using a 6 cm diameter auger, and a 39 cm core sample was recovered. Minor disturbance of the core material was observed during sampling, and groundwater was found within 5 cm of the surface. The core was sliced into approximately 4 cm sections using a clean stainless steel palate knife and stored in polypropylene containers (see Figure 2). Each core section was centrifuged at 6000 g within 24 hours to recover porewater samples for analysis. The pH of the spring water was measured on site using a Hanna HI 98129 Combo meter that had been calibrated using pH 7.01 and 10.01 buffer solutions. In May 2010 two samples of topsoil were recovered from a location about 5m away from the carbonate deposit at depths of about 12.5 and 17.5 cm (see Figure 1).

Soil sample characterisation

Soil samples (dried and ground to < 75 µm) were characterized with a Bruker D8 powder X-ray diffractometer fitted with a GE (111) monochromator (XRD, CuKa=1.54Å; 2θ=5-70° range; patterns recorded at 0.001° steps at 0.5 sec/step) to identify their mineralogical composition. X-ray fluorescence (XRF) analysis was undertaken using a fused sample on a PANalytical Axios Advanced spectrometer (data were corrected for loss on ignition). The total organic carbon content was determined using approximately 10 g of homogenised soil that was oven dried at 105 °C, disaggregated with a mortar and pestle, and pre-treated with 10% HCl to remove any carbonates present. The carbon content was then measured using a Eurovector EA 3000 series combustion analyser (Pella 1990).
Geochemical methods.

Eh and pH were measured on extracted porewater using an Hanna bench top meter and calibrated electrodes (the pH electrode was calibrated between 4 and 10 using standard buffer solutions). Soil pH was measured using a 1:1 suspension in deionised water (ASTM 2006).

Sulphate and nitrate concentrations were determined by ion chromatography on a Dionex DX-600 with AS50 autosampler using a 2mm AS16 analytical column, with suppressed conductivity detection and gradient elution to 15 mM potassium hydroxide over 10 minutes. Samples were loaded in a random order to avoid systematic errors.

A standard UV/VIS spectroscopy method based on the reactions with Ferrozine was used to determine aqueous Fe concentrations using a Cecil CE3021 UV/VIS Spectrophotometer (Goto et al. 1977; Viollier et al. 2000). Nitrite was determined colourimetrically after reaction with N-(1-napthyl)-ethylenediamine (Shinn 1941). Fe(II) in solids was determined after extraction by 0.5 N HCl and reaction with ferrozine (Lovley and Phillips 1986). Standards for each analyte were used regularly. Calibration graphs exhibited good linearity (typically $r^2>0.99$).

DNA Extraction.

Microbial DNA was extracted from ~0.5 g of sample HH1-5 (soil from a depth of 21-25 cm: Figure 2) using a FastDNA spin kit for soil (Qbiogene, Inc.) and FastPREP instrument (unless explicitly stated, the manufacturer’s protocols supplied with all kits employed were followed precisely). DNA fragments in the size range 3 kb ~20 kb were isolated on a 1% “1x” Tris-borate-EDTA (TBE) gel stained with ethidium bromide to enable viewing under UV light (10x TBE solution from Invitrogen Ltd., UK). The DNA was extracted from the gel using a QIAquick gel extraction kit (QIAGEN Ltd., UK.). This purified DNA was used for subsequent analysis.
16S rRNA Gene Sequencing.

A fragment of the 16S rRNA gene of approximately ~500 bp was PCR amplified using broad-specificity bacterial primers 8f (5’-AGAGTTTGATCCTGGCTCAG-3’) (Eden et al. 1991) and 519r (5’-GWATTACCGCGGCKGCTG-3’) (Lane et al. 1985) where K = G or T, W = A or T. The PCR reaction mixture contained 25 µl of purified DNA solution, GoTaq DNA polymerase (5 units), 1× PCR reaction buffer (containing 1.5mM MgCl₂), PCR nucleotide mix (0.2 mM) and primers (0.6 µM each) in a final volume of 50 µl. The reaction mixture was incubated at 95°C for 2 min, and then cycled 30 times through three steps: denaturing (95°C, 30s), annealing (50°C, 30s), primer extension (72°C, 45s). This was followed by a final extension step at 72°C for 7min. The PCR product was purified using a QIAquick PCR Purification Kit. Amplification product size was verified by electrophoresis of 10 µl samples in a 1.0% agarose TBE gel with ethidium bromide staining.

The PCR product was ligated into the standard cloning vector pGEM-T Easy (Promega Corp., USA), and transformed into E. coli XL1-Blue supercompetent (Stratagene). Transformed cells were grown on LB-agar plates containing ampicillin (100 µg.ml⁻¹) at 37°C for 17 hours. The plates were surface dressed with IPTG and X-gal (as per Stratagene protocol) for blue-white colour screening. Colonies containing an insert were restreaked on LB-ampicillin agar plates and incubated at 37°C. Single colonies from these plates were incubated overnight in liquid LB-ampicillin. Plasmid DNA was extracted using the PureYield Plasmid Miniprep System (Promega, UK) and sent for automated DNA sequencing on an ABI 3100xl Capillary Sequencer using the T7P primer.

The quality of each 16s rRNA gene sequence was evaluated with Mallard 1.02 (Ashelford et al. 2006) and putative chimeras were excluded from subsequent analyses. Each non chimeric sequence was then classified using the Ribosomal Database Project (RDP) naïve Bayesian Classifier version 2.2 (Wang et al. 2007) in August 2010. Sequences were submitted to the GenBank database (accession numbers JF827038 - JF827074).
Multidimensional Scaling Analysis

Multidimensional scaling (MDS) was employed to represent the phylogenetic relationships among 16s rRNA gene sequences. Multidimensional scaling is a popular visualisation tool that can create a representation of a dataset (usually in two- or three-dimensions) from information about the pair-wise dissimilarity of the objects (Kruskal and Wish 1978; Coxon 1982). It transforms dissimilarity values into Euclidean distance in multidimensional space using a “stress” function that is optimised to minimise the error in the final representation. The 16s rRNA gene sequences were aligned using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and the distance matrix (a matrix of pair-wise dissimilarity scores) was downloaded into NewMDSX (Roskam et al. 2005). Basic non-metric MDS was undertaken using the Minissa-N algorithm within NewMDSX.

Phylogenetic Tree Building.

The 16S rRNA gene sequences were grouped into operational taxonomic units (OTUs) by using >98% furthest neighbour similarity as a cut-off value in the MOTHUR software (Schloss et al. 2009). Representative sequences from selected OTUs were then aligned with known bacterial 16S rRNA gene sequences from the GeneBank database using the ClustalX software package (version 2.0.11), and phylogenetic trees were constructed from the distance matrix by neighbour joining. Bootstrap analysis was performed with 1000 replicates, and resulting phylograms drawn using the TreeView (version 1.6.6) software package.

Results

Soil Profile

Borehole HH1 (Figure 2) penetrated through the surface precipitate and encountered a dark brown clayey silt layer containing occasional plant matter at 17.5 cm, and a grey gravelly layer.
at about 35 cm, and it terminated at a depth of 39 cm. Ten samples were recovered: sample 1 was from the grey gravelly layer, samples 2-6 were from the brown soil layer, and samples 7 to 10 were from the surface precipitate. The pH of the surface water immediately adjacent to the spring was 13.1 in July 2009. A small volume of water with a pH value of 7.9 enters the stream from the brick culvert; however the pH of the surface water less than 10m downstream of the culvert was 12.8.

Soil characterisation

XRD analysis of the surface precipitate (samples HH1-10 and HH1-8) identified it as calcite. XRD and XRF analyses of the brown soil (samples HH1-5 and HH1-3) identified that the main minerals as calcite and quartz (see tables 2 and 3). The average TOC content was about 5%. Similarly, XRD and XRF analyses of the grey gravelly material identified that the main minerals were also calcite and quartz, although the TOC content was only 0.9%.

Geochemical profiles

The pore water collected from core HH1 was consistently highly alkaline and slightly reducing with an average pH of 12.3 ± 0.1 and Eh of -77 ± 12 mV respectively (Figure 3). Nitrate concentrations in the top 15 cm were consistently above 100 µmols L$^{-1}$ but dropped to below detection limits at 30 cm. Conversely nitrite concentrations were less than 15 µmols L$^{-1}$ in the top 7 cm but increased to a peak of over 200 µmols L$^{-1}$ at 27 cm, below 27 cm nitrite concentration dropped rapidly to less than 5 µmols L$^{-1}$ by 35 cm. Solid phase 0.5 N HCl extractable Fe(II) was not detected in samples from the top 10 cm, but rose in the soil horizon to above 30 % Fe(II), peaking at 69 % Fe(II) at 30 cm. Aqueous Fe was below 3 µmols L$^{-1}$ in the top 23 cm, but peaked at 21 µmols L$^{-1}$ at 27 cm depth and reduced to 8 µmols L$^{-1}$ by 34 cm. Sulphate concentration was between 50-60 µmols L$^{-1}$ throughout most the core with the exception of two peaks of around 90-100 µmols L$^{-1}$ at 7-10 cm and 27 cm.
Microbial community analysis

A total of 37 rRNA gene sequences were obtained from HH1-5. These were assigned to 6 different bacterial phyla by the RDP classifier (confidence threshold >98%), with 16% of sequences remaining unassigned (see Figure 4). Sequences were allocated to an OTU that corresponded very approximately to a genus level assignment using MOTHUR (detailed listings of these assignments is given in Supplementary Table A). The rarefaction curve (Supplementary Figure A) and the Shannon indices ($H' = 1.72 \pm 0.39$) indicate that species richness is low (just eleven different OTUs were represented in the clone library).

The two dimensional MDS representation of the sequence dissimilarity scores (Figure 5) confirms the low species diversity described above. In this figure sequences from the same phylum group together, with sequences in the same OTU forming closely grouped clusters. The most significant cluster contains 19 sequences that were assigned to the β-class of proteobacteria. These sequences form a single OTU (labelled A6 in Supplementary Table A) and represent 57% of the population. A phylogenetic tree was constructed for the characteristic representative of this OTU (i.e. the sequence that is the minimum distance from the other members of this OTU; Schloss et al. 2009). This tree (Figure 6) suggests that sequences from this OTU are probably from members of a single genus within the Comamonadaceae family of β-proteobacteria, and appear to be most closely related to the genera Rhodoferax, Pseudorhodoferax, Hydrogenophaga and Malikia. The second largest OTU contained five of the six unidentified sequences. The third largest OTU (A4) contained only three sequences (8% of the population) that are closely related to the genus Petrotoga in the Thermotogaceae family of the phylum Thermotogae (a phylogenetic tree showing the characteristic representative of this OTU is shown in Supplementary Figure B). The remaining 10 sequences (27% of the population) fell in 8 different OTUs from across the phyla Bacteroidetes, Firmicutes, Chloroflexi and Verrucomicrobia, and one further unidentified sequence.
Lime kiln waste is rich in CaO, so groundwater that percolates through it becomes saturated with Ca(OH)$_2$. When this highly alkaline, calcium rich water emerges to atmosphere it absorbs CO$_2$(g), precipitates calcite, and the pH buffers downwards towards the value for calcite equilibrium. The reaction scheme is (Clark et al. 1992).

\[
\begin{align*}
\text{CO}_2(g) & \rightarrow \text{CO}_2(aq) \quad (1) \\
\text{CO}_2(aq) + \text{OH}^- & \rightarrow \text{HCO}_3^-(aq) \quad (2) \\
\text{HCO}_3^-(aq) & \rightarrow \text{CO}_3^{2-}(aq) + \text{H}^+ \quad (3) \\
\text{Ca}^{2+}(aq) + \text{CO}_3^{2-}(aq) & \rightarrow \text{CaCO}_3(\text{precip}) \quad (4)
\end{align*}
\]

Reaction (2), which is rate limiting, occurs slowly in neutral conditions but proceeds rapidly at high pH. Microbial activity can influence the rate of calcite precipitation by increasing the CO$_2$ flux and by providing potential nucleation (Mayes et al. 2006), however the reaction scheme above accounts for the formation of a large tufa deposit immediately where the spring water emerges and the gradual reduction in the stream’s pH value down the site (in July 2009 the pH of stream just below the area of continuous surface precipitate was 8.6).

The brown soil layer seen in borehole HH1 has a total organic carbon content of ~5% and contains occasional plant matter. It has a similar composition to topsoil samples recovered from nearby. Thus the brown soil was probably the original surface deposit which has become buried as the precipitate level has risen. This soil layer is now saturated with hyperalkaline groundwater (currently the water table is just below the top of the precipitate).

The geochemical profile indicates that the pore fluid nitrate concentration in the brown soil is lower than in the precipitate layer above, whereas the pore fluid nitrite concentration is significantly higher in the top half of the soil layer. As the pore water originates from a single source (the lime kiln waste), and diffusion acts to eliminate spatial differences in concentration, these profiles indicate that nitrate reduction to nitrite must be occurring in-situ in the brown soil.
around the time of sampling. The nitrite concentration peaks at a depth of 27cm, and then
decreases towards zero at the base of the brown soil layer. In this zone there is a peak in the
aqueous iron concentration and, more importantly, a peak in the proportion of 0.5 HCl
extractable iron in the Fe(II) oxidation state, which suggests that iron reduction may also have
been occurring within the lower part of the brown soil layer (it is unlikely that a high proportion
of the acid extractable iron in a former surface layer would be Fe(II) prior to inundation and
burial).

The presence of organic matter and a bacterial population in the brown soil layer suggest
that the mechanism responsible for nitrate reduction is microbial. Initially this may seem
surprising as the pH value is above 12, however microbial mediated nitrate reduction has been
widely reported in high pH systems where the microbial community has adapted to the ambient
pH (Glass and Silverstein 1998; Dhamole et al. 2008; Whittleston et al. 2010). It is also reported
that nitrite reduction to N$_2$ in these systems tends to lag behind nitrate reduction to nitrite (Glass
and Silverstein 1998). As the nitrate deficit in the top half of the brown soil equates quite well
with the nitrite concentration it appears that nitrite reduction is lagging in this system. The
depletion of terminal electron acceptors with depth in the order associated with decreasing
energy yield suggests the mechanism responsible for iron reduction may also be microbial.

Microbial growth supported by iron reduction has been observed at pH values up to 11 (Ye et al.
2004; Pollock et al. 2007; Wu et al. 2011) suggesting that the brown soil with a pH value >12 is
a rather marginal environment for iron reducing bacteria. However an average pH value does
not fully characterise the geochemical environment of a soil, where there may be micro-
environments.

The bacterial population in sample HH1-5 which was recovered from the zone of nitrate
reduction is dominated by members of a single genus of bacteria in the *Comamonadaceae*
family (OTU A6). Genera in the Comamonadaceae family and neighbouring phylogenetic
groups are phenotypically highly diverse, even if they are phylogenetically closely related
(Spring et al. 2005), so the similarity is not evidence of shared metabolic pathways. Nonetheless it is interesting to note that several species in the closely related genera of *Rhodoferax* and *Hydrogenophaga* are facultative anaerobes that can couple oxidation of simple organic molecules such as glucose, lactate and acetate to the reduction of nitrate (Finneran et al. 2003; Kampfer et al. 2005). Thus the dominance of OTU A6 within the bacterial population suggests that it is capable of nitrate reduction. It is also interesting that this OTU shares ≥99% identity with 16s rRNA gene sequences isolated in four separate studies of alkaline soil and groundwater (Genebank accession numbers AM777999 shown in Figure 6, and AM884725, DQ266899 & AM980998).

The electron donors that support nitrate reduction are most likely derived from the soil organic matter. However the soil has been buried below the calcite precipitate for a number of years and, without replenishment, any labile organic carbon would have been consumed by the bacterial population or leached from the soil over that period (humic substances, for example, are soluble at high pH; Macleod and Semple 2000). Therefore dissimilative nitrate reduction, which requires labile organic carbon that can be taken-up by bacterial cells (Gottschalk 1986; Kim and Gadd 2008), must be indicative of the continued breakdown of less labile organic substrates. In anaerobic systems the complete oxidation of organic matter requires the cooperative activity of a community of microorganisms collectively exhibiting several different metabolic pathways (e.g. hydrolysis of complex organic matter, fermentation of sugars, and oxidation of fatty acids, lactate, acetate and H2; Lovley 1993; Leschine 1995). The second largest identifiable OTU (A4) may be an important part of this symbiotic population. It was classified as a *Petrotoga* specie within the phylum *Thermotogae*. Typically *Petrotoga* species are strictly anaerobic fermentative bacteria that can oxidise sugars and some polymers during energy metabolism to produce lactate, acetate, CO₂ and H₂ as metabolites (Lien et al. 1998; L’Haridon et al. 2002; Miranda-Tello et al. 2004; Miranda-Tello et al. 2007). Most members of this phylum that have been isolated to date are tough thermophiles recovered from deep oil.
reservoirs, and have adapted to this harsh environment with a sheath-like outer structure that
helps them resist environmental stress (Miranda-Tello et al. 2004). Recently similar gene
sequences have been detected in mesophilic anaerobic environments under stress from toxic
chemicals (Nesbo et al. 2006), suggesting that adaptations to survive at high temperatures may
also provide resistance to chemical stress. The characteristic member of OTU A4 (HH1-5-39)
shares ≥99% identity with 16s rRNA gene sequences from thermophilic species isolated from an
anaerobic digester and an anaerobic reactor (GeneBank accession numbers EF559065,
FN436142).

In summary, the primary finding of this study is that the bacterial population of a soil
that has been in contact with highly alkaline groundwater for an extended time period has
evolved to tolerate the high pH and is now undertaking geo-microbiological processes similar to
those commonly observed in anoxic soils at near neutral pH values. The exact sequence of the
cascade of terminal electron accepting processes varies slightly from circum-neutral pH (e.g.
nitrite reduction lags behind nitrate reduction) because the relative thermodynamic favourability
of these reactions varies with pH and possibly because some enzymatically catalysed reactions
may be inhibited. However it appears that the process of adaptation to pH is not unique to the
study site, as bacterial species similar to the dominant members of the observed population have
been found in several other near-surface hyperalkaline environments. This suggests that, given
enough time, soil bacterial populations can readily adapt to high pH.

Conclusions

A population of anaerobic alkaliphilic bacteria has established itself in the organic rich
soil layer that is buried beneath calcite precipitate and receiving groundwater from a lime kiln
waste tip despite the pH value >12. This bacteria population, which is dominated by a single
bacterial species within the Comamonadaceae family of β-proteobacteria, appears to be capable
of nitrate reduction while respiring on an electron donor(s) that is probably derived from the soil
organic matter. Deeper in the same soil layer there is evidence that anoxia has developed further to the point where microbial iron reduction is occurring.

Supplementary Information

Supplementary Information associated with this paper gives full details of the 16S rRNA gene sequence assignments (Table A), a rarefaction curve for sequences from HH1-5 (Figure A), and phylogenetic tree for sequence HH1-5-39 and other Thermotogaceae species (Figure B).

Acknowledgements

The authors would like to thank Martin Pedley and Mike Rogerson for introducing us to the site and Juan Diego Rodriguez-Blanco for organising XRD and XRF analysis.

References

Tebo, B. M. and A. Y. Obraztsova (1998). "Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors." Fems Microbiology Letters 162(1): 193-198.

Table 1: Microbially significant half-reaction reduction potentials: Standard Reduction Potential, E^0, and redox potential, E_h, at pH 12 (at 25°C and atmospheric pressure).

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Reaction</th>
<th>E_0 (V)</th>
<th>E_h @ pH 7 (V)</th>
<th>E_h @ pH 12 (V)</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$ Depletion*</td>
<td>O$_2$ + 4H$^+$ + 4e$^-$ = 2H$_2$O</td>
<td>1.230</td>
<td>0.816</td>
<td>0.510</td>
<td>P_{O_2} = 0.2 bar</td>
</tr>
<tr>
<td>Nitrate reduction to nitrite*</td>
<td>NO$_3^-$ + 2H$^+$ + 2e$^-$ = NO$_2^-$ + H$_2$O</td>
<td>0.845</td>
<td>0.431</td>
<td>0.135</td>
<td>$[NO_3^-] = [NO_2^-]$</td>
</tr>
<tr>
<td>Nitrite reduction to nitric oxides</td>
<td>NO$_2^-$ + 2H$^+$ + e$^-$ = NO + H$_2$O</td>
<td>1.192</td>
<td>0.484</td>
<td>-0.106</td>
<td>$[NO_2^-] = 100$ µmol L$^{-1}$, $P_{NO} = 10^{-6}$ bar</td>
</tr>
<tr>
<td>Nitric oxide reduction to nitrous oxides</td>
<td>NO + H$^+$ + e$^-$ = $\frac{1}{2}$N$_2$O + $\frac{1}{2}$H$_2$O</td>
<td>1.588</td>
<td>0.996</td>
<td>0.700</td>
<td>$P_{NO} = P_{N_2O} = 10^{-6}$ bar</td>
</tr>
<tr>
<td>Nitrous oxide reduction to nitrogens</td>
<td>$\frac{1}{2}$N$_2$O + H$^+$ + e$^-$ = $\frac{1}{2}$N$_2$ + $\frac{1}{2}$H$_2$O</td>
<td>1.769</td>
<td>1.180</td>
<td>0.884</td>
<td>$P_{N_2O} = 10^{-6}$ bar</td>
</tr>
<tr>
<td>Mn reduction*</td>
<td>Mn$_3$O$_4$ + 2H$^+$ + 2H$_2$O + 2e$^-$ = 3Mn(OH)$_2$</td>
<td>0.480</td>
<td>0.066</td>
<td>-0.230</td>
<td>-</td>
</tr>
<tr>
<td>Fe reduction*</td>
<td>Fe(OH)$_3$ + 3H$^+$ + e$^-$ = Fe$^{2+}$ + 3H$_2$O</td>
<td>0.975</td>
<td>0.014</td>
<td>-0.453</td>
<td>$[Fe^{2+}] = 18$ µmol L$^{-1}$</td>
</tr>
<tr>
<td>Fe(III) to Fe(II)</td>
<td>Fe$^{2+}$ + H$^+$ + e$^-$ = Fe(OH)$_2^-$ + 3H$_2$O</td>
<td>0.308</td>
<td>-0.106</td>
<td>-0.402</td>
<td>$[Fe(OH)_2^-] = [Fe(OH)_3]$</td>
</tr>
<tr>
<td>Fe reduction*</td>
<td>Fe(OH)$_4^-$ + H$^+$ + e$^-$ = Fe(OH)$_3^-$ + H$_2$O</td>
<td>0.308</td>
<td>-0.106</td>
<td>-0.402</td>
<td>$[Fe(OH)_3^-] = [Fe(OH)_4]$</td>
</tr>
<tr>
<td>Sulfate reduction*</td>
<td>SO$_4^{2-}$ + 10H$^+$ + 8e$^-$ = H$_2$S + 4H$_2$O</td>
<td>0.301</td>
<td>-0.217</td>
<td>-0.587</td>
<td>$[SO_4^{2-}] = [H_2S]$</td>
</tr>
<tr>
<td>S(VI) to S(0)</td>
<td>2CO$_3^{2-}$ + 11H$^+$ + 8e$^-$. = CH$_3$COO$^-$ + 4H$_2$O</td>
<td>0.340</td>
<td>-0.292</td>
<td>-0.648</td>
<td>$[CO_3^{2-}] = [CH_3COO^-] = 20$ mmol L$^{-1}$</td>
</tr>
</tbody>
</table>

* after Langmuir (1997)
* calculated using thermodynamic data from Stumm and Morgan (1996)
s calculated using thermodynamic data from Latimer (1952)
x calculated using thermodynamic data from Thauer (1977)
Table 2: Composition of soil samples from HH1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth cm</th>
<th>Description</th>
<th>Predominant minerals</th>
<th>TOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1-9</td>
<td>6.7</td>
<td>Tufa deposit</td>
<td>calcite</td>
<td>-</td>
</tr>
<tr>
<td>HH1-8</td>
<td>10.5</td>
<td>Tufa deposit</td>
<td>calcite</td>
<td>-</td>
</tr>
<tr>
<td>HH1-6</td>
<td>19.3</td>
<td>Brown soil</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>HH1-5</td>
<td>23.3</td>
<td>Brown soil</td>
<td>calcite, quartz</td>
<td>6.4</td>
</tr>
<tr>
<td>HH1-4</td>
<td>27.5</td>
<td>Brown soil</td>
<td>-</td>
<td>3.4</td>
</tr>
<tr>
<td>HH1-3</td>
<td>31.0</td>
<td>Brown soil</td>
<td>calcite, quartz</td>
<td>4.6</td>
</tr>
<tr>
<td>HH1-2</td>
<td>34.8</td>
<td>Brown soil</td>
<td>-</td>
<td>3.8</td>
</tr>
<tr>
<td>HH1-1</td>
<td>38.8</td>
<td>Grey gravel</td>
<td>calcite, quartz</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 3: Major elements in fused HH1 and nearby soil samples (A and B) measured by XRF (corrected for loss on ignition at 1000°C).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth cm</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe$_2$O$_3$</th>
<th>TiO$_2$</th>
<th>MnO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>P$_2$O$_5$</th>
<th>SO$_3$</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topsoil A</td>
<td>12.5</td>
<td>13.63</td>
<td>7.14</td>
<td>32.07</td>
<td>0.69</td>
<td>2.65</td>
<td>0.265</td>
<td>0.062</td>
<td>0.05</td>
<td>0.421</td>
<td>0.121</td>
<td>n.d.</td>
<td>44.10</td>
</tr>
<tr>
<td>Topsoil B</td>
<td>17.5</td>
<td>17.59</td>
<td>9.49</td>
<td>31.75</td>
<td>0.77</td>
<td>3.43</td>
<td>0.345</td>
<td>0.055</td>
<td>0.04</td>
<td>0.533</td>
<td>0.092</td>
<td>0.029</td>
<td>37.45</td>
</tr>
<tr>
<td>HH1-9</td>
<td>6.7</td>
<td>0.14</td>
<td>n.d.</td>
<td>55.32</td>
<td>0.22</td>
<td>0.01</td>
<td>0.002</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>HH1-6</td>
<td>19.3</td>
<td>11.09</td>
<td>5.17</td>
<td>35.19</td>
<td>0.42</td>
<td>2.94</td>
<td>0.217</td>
<td>0.034</td>
<td>0.02</td>
<td>0.439</td>
<td>0.155</td>
<td>0.008</td>
<td>44.36</td>
</tr>
<tr>
<td>HH1-5</td>
<td>23.3</td>
<td>12.80</td>
<td>6.07</td>
<td>36.31</td>
<td>0.51</td>
<td>2.74</td>
<td>0.247</td>
<td>0.040</td>
<td>0.04</td>
<td>0.499</td>
<td>0.146</td>
<td>n.d.</td>
<td>41.20</td>
</tr>
<tr>
<td>HH1-1</td>
<td>38.8</td>
<td>9.14</td>
<td>4.90</td>
<td>44.11</td>
<td>0.51</td>
<td>1.46</td>
<td>0.180</td>
<td>0.029</td>
<td>n.d.</td>
<td>0.227</td>
<td>0.083</td>
<td>n.d.</td>
<td>40.16</td>
</tr>
</tbody>
</table>

n.d. – not detected
Figure 1: Sketch map of Brook Bottom area affected by alkaline waters, near Harpur Hill, Derbyshire, UK, showing core locations and location of the alkaline spring. Area of carbonate precipitate shown in white. Highly alkaline water (up to pH 13.1) pools behind the ledge 1 and is diluted by mixing below that ledge with natural runoff water (pH 7-8) that issues from the brick culvert. At times of low water flow, however, no water issues from the culvert and alkaline water can be found flowing across the whole site. (Sketch redrawn from a Google Earth image of the site).
Figure 2: Digital photograph of core HH1 and log of sediment types found.
Figure 3: Vertical geochemical profile from porewater recovered from core HH1. Position of the brown soil layer in the profile is shown by grey shading.
Figure 4. Phylogenetic diversity of 16S rRNA gene sequences extracted from sample HH1-5 (20-25 cm below surface). Key shows the number of operationally defined taxonomic units within each phylum.
Figure 5. Two-dimensional configuration from the MDS analysis of the pair-wise sequence dissimilarity scores (distance scale within this Euclidean space is an arbitrary function of dissimilarity). The stress (lack of fit) associated with this two dimensional representation decreased marginally from 0.31 to 0.28 when the number of dimensions was increased to three, which suggests that two dimensions adequately represent the dissimilarities in the data.
Figure 6: Phylogenetic tree showing the relationship between a representative sequence from OTU A6 (HH1-5-8N) and other members of the order Burkholderiales of β-proteobacteria. Geobacter metallireducens (δ-proteobacteria) is included as an out-group. The scale bar corresponds to 0.1 nucleotide substitutions per site. Bootstrap values (from 1000 replications) are shown at branch points.
Supplementary Information for:

Biogeochemical reduction processes in a hyper-alkaline affected leachate soil profile

Ian T. Burke1*, Robert J.G. Mortimer1, Shanmugam Palani2#, Robert A. Whittleston1, Cindy L. Lockwood1, David J. Ashley1 and Douglas J. Stewart2*

1 Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
2 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
*Corresponding Author e-mail: i.burke@see.leeds.ac.uk / d.i.stewart@leeds.ac.uk
Present address: Central Leather Research Institute, Chennai, India
Supplementary Table A: Assignment of the 16S rRNA gene sequences obtained from sample HH1-5 (determined using the RDP Classifier[1] in August 2010).

<table>
<thead>
<tr>
<th>ID</th>
<th>Accession number</th>
<th>Sequence length</th>
<th>OTU</th>
<th>Classification using the RDP classifier (95% Confidence threshold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH1-5-1N</td>
<td>JF827038</td>
<td>527</td>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>HH1-5-3N</td>
<td>JF827039</td>
<td>546</td>
<td>A1</td>
<td>Verrucomicrobia</td>
</tr>
<tr>
<td>HH1-5-4N</td>
<td>JF827040</td>
<td>527</td>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>HH1-5-5N</td>
<td>JF827041</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-6N</td>
<td>JF827042</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-7N</td>
<td>JF827043</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-8N</td>
<td>JF827044</td>
<td>515</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-9N</td>
<td>JF827045</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-10N</td>
<td>JF827046</td>
<td>527</td>
<td>A9</td>
<td>Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Petrimonas</td>
</tr>
<tr>
<td>HH1-5-11</td>
<td>JF827047</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-12N</td>
<td>JF827048</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-13N</td>
<td>JF827049</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-14</td>
<td>JF827050</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-15N</td>
<td>JF827051</td>
<td>505</td>
<td>A2</td>
<td>Firmicutes, Clostridia, Clostridiales, Ruminococcaceae</td>
</tr>
<tr>
<td>HH1-5-17</td>
<td>JF827052</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-18</td>
<td>JF827053</td>
<td>527</td>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>HH1-5-20</td>
<td>JF827054</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-21</td>
<td>JF827055</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-22</td>
<td>JF827056</td>
<td>494</td>
<td>A5</td>
<td>-</td>
</tr>
<tr>
<td>HH1-5-23</td>
<td>JF827057</td>
<td>519</td>
<td>A7</td>
<td>Firmicutes</td>
</tr>
<tr>
<td>HH1-5-25</td>
<td>JF827058</td>
<td>527</td>
<td>A8</td>
<td>Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Parabacteroides</td>
</tr>
<tr>
<td>HH1-5-26</td>
<td>JF827059</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-28</td>
<td>JF827060</td>
<td>525</td>
<td>A10</td>
<td>Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae</td>
</tr>
<tr>
<td>HH1-5-29</td>
<td>JF827061</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-30</td>
<td>JF827062</td>
<td>494</td>
<td>A11</td>
<td>Chloroflexi, Anaerolineae, Anaerolineales, Anaerolineace</td>
</tr>
<tr>
<td>HH1-5-32</td>
<td>JF827063</td>
<td>527</td>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>HH1-5-34</td>
<td>JF827064</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-35</td>
<td>JF827065</td>
<td>527</td>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>HH1-5-36</td>
<td>JF827066</td>
<td>518</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-37</td>
<td>JF827067</td>
<td>504</td>
<td>A4</td>
<td>Thermotogae, Thermotogae, Thermotogales, Thermotogaceae, Petrotoga, Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Parabacteroides</td>
</tr>
<tr>
<td>HH1-5-38</td>
<td>JF827068</td>
<td>527</td>
<td>A8</td>
<td>Thermotogae, Thermotogae, Thermotogales, Thermotogaceae, Petrotoga, Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Parabacteroides</td>
</tr>
<tr>
<td>HH1-5-39</td>
<td>JF827069</td>
<td>503</td>
<td>A4</td>
<td>Thermotogae, Thermotogae, Thermotogales, Thermotogaceae, Petrotoga, Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Parabacteroides</td>
</tr>
<tr>
<td>HH1-5-40</td>
<td>JF827070</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-43</td>
<td>JF827071</td>
<td>503</td>
<td>A4</td>
<td>Thermotogae, Thermotogae, Thermotogales, Thermotogaceae, Petrotoga, Bacteroidetes, Bacteroidia, Bacteroidales, Porphyromonadaceae, Parabacteroides</td>
</tr>
<tr>
<td>HH1-5-45</td>
<td>JF827072</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-46</td>
<td>JF827073</td>
<td>517</td>
<td>A6</td>
<td>Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae</td>
</tr>
<tr>
<td>HH1-5-48</td>
<td>JF827074</td>
<td>519</td>
<td>A7</td>
<td>Firmicutes</td>
</tr>
</tbody>
</table>

Supplementary Figure A: Rarefaction curve for sequences from HH1-5. The curve is derived from a MOTHUR analysis using furthest neighbour assignment to OTUs for a distance level of 0.02. Error bars represent the 95% confidence interval.
Supplementary Figure B: Phylogenetic tree showing the relationship between a representative sequence from OTU A4 (HH1-5-39) and other members of the family Thermotogaceae family of phylum Thermotogae. Geobacter metallireducens (β-proteobacteria) is included as an out-group. The scale bar corresponds to 0.1 nucleotide substitutions per site. Bootstrap values (from 1000 replications) are shown at branch points.