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Observations of increased tropical rainfall preceded
by air passage over forests
D. V. Spracklen1, S. R. Arnold1 & C. M. Taylor2

Vegetation affects precipitation patterns by mediating moisture,
energy and trace-gas fluxes between the surface and atmosphere1.
When forests are replaced by pasture or crops, evapotranspiration
of moisture from soil and vegetation is often diminished, leading
to reduced atmospheric humidity and potentially suppressing
precipitation2,3. Climate models predict that large-scale tropical
deforestation causes reduced regional precipitation4–10, although
the magnitude of the effect is model9,11 and resolution8 dependent.
In contrast, observational studies have linked deforestation to
increased precipitation locally12–14 but have been unable to explore
the impact of large-scale deforestation. Here we use satellite
remote-sensing data of tropical precipitation and vegetation,
combined with simulated atmospheric transport patterns, to assess
the pan-tropical effect of forests on tropical rainfall. We find that
for more than 60 per cent of the tropical land surface (latitudes 30
degrees south to 30 degrees north), air that has passed over extens-
ive vegetation in the preceding few days produces at least twice
as much rain as air that has passed over little vegetation. We
demonstrate that this empirical correlation is consistent with
evapotranspiration maintaining atmospheric moisture in air that

passes over extensive vegetation. We combine these empirical rela-
tionships with current trends of Amazonian deforestation to
estimate reductions of 12 and 21 per cent in wet-season and dry-
season precipitation respectively across the Amazon basin by 2050,
due to less-efficient moisture recycling. Our observation-based
results complement similar estimates from climate models4–10, in
which the physical mechanisms and feedbacks at work could be
explored in more detail.

To explore the links between vegetation and rainfall, we analysed
combined satellite data on precipitation from the Tropical Rainfall
Measuring Mission (TRMM) and other satellites15 (TRMM3B42)
and data on leaf area index (LAI) from the Moderate Resolution
Imaging Spectroradiometer16 (MODIS). In these data positive spatial
correlations exist between annual mean precipitation and annual
mean LAI (Fig. 1a, d; Pearson correlation coefficient, r 5 0.81), high-
lighting the role of precipitation in controlling large-scale vegetation
patterns. In this study, our aim was to investigate a causal effect of
vegetation on tropical (30u S to 30uN) rainfall in subsequent days on a
regional scale (over distances of hundreds to thousands of kilometres).
To do this, we calculated the origin and atmospheric transport of air
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Figure 1 | Annual (2001–2007) mean vegetation, precipitation and evaporation. a, Leaf area index (LAI) from MODIS. b, Example 10-d back-trajectories
arriving daily during 2001. Boxes illustrate the four domains analysed in detail in this study. c, Mean cumulative exposure of back-trajectories to LAI over the
preceding 10 d. d, Precipitation reported by TRMM and other satellites (TRMM3B42). e, Evapotranspiration computed as the mean of the four GLDAS models.
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masses to determine the prior exposure of air to vegetation. This
allowed us to evaluate whether air that had passed over more vegeta-
tion produced more rainfall.

To calculate air-mass histories, we used a Lagrangian atmospheric
transport model. Such back-trajectory methods have been used previ-
ously to identify the transport of atmospheric moisture to continental
regions17,18. We calculated atmospheric back-trajectories arriving daily
at the centre of all continental 1u3 1u grid squares over the tropical
domain for 2001–2007. The trajectories were calculated using opera-
tional analysis data from the European Centre for Medium-Range
Weather Forecasts (ECMWF), and are hence consistent with the
large-scale atmospheric flow from the assimilated observations. We
tested the sensitivity of our analysis to the length, arrival height and
arrival time of the back-trajectories and found consistent results across
a broad range of choices (Supplementary Figs 1, 2 and 3). Here we
present results for ten-day back-trajectories arriving at the surface at
12:00 UT. Figure 1b shows example back-trajectories arriving at four
tropical locations.

For each individual trajectory, we calculated the cumulative LAI
(
P

LAI) encountered by the air mass during the last ten days of atmo-
spheric transport. The resulting climatology of

P
LAI (Fig. 1c) is very

similar to the in situ LAI, although important differences are apparent.
For example, there are regions surrounding the Amazon and Congo
basins where in situ LAI is relatively low but

P
LAI is high owing to

exposure of air to large amounts of vegetation as it travels across
forested regions upwind.

We analysed relationships between the daily variability in
P

LAI and
the daily variability in precipitation. Figure 2a shows these relation-
ships for air masses arriving in a ,1,000 km 3 1,000 km region of
Minas Gerais, Brazil, near the Amazon basin. To reduce the influence
of the initial state of the air mass on our analysis, we stratified the data
into that from the wet season and that from the dry season and then
further according to the initial specific humidity of the trajectory, on
the basis of the ECMWF analyses. We found a strong positive and
significant (Student’s t-test, P , 0.01) relationship between the expo-
sure of air masses to vegetation and the precipitation those air masses
produce (Fig. 2b). For air masses with low to medium exposure to
precedent vegetation (

P
LAI ,10 m2 m22 d), mean dry- and wet-

season rainfall increases by 0.25 mm d21 and, respectively, 0.4 mm d21

for every additional unit of exposure to LAI that is encountered in the
preceding 10 d. The impact of vegetation exposure tends to saturate,
especially during the wet season, with less sensitivity of rainfall where
P

LAI . 10 m2 m22 d. Although we find that the initial specific humid-
ity of the air mass does affect precipitation, with moister air masses
typically producing more precipitation, the positive trend between
precipitation and exposure to LAI is similar for all subsets of the data.
Qualitatively similar results are found in a 1,000 km 3 1,000 km region
south of the tropical forests of the Congo basin (Fig. 2b). Over the
moist tropical forests themselves, differences in rainfall between air
masses with low and high exposures to LAI are notably smaller
(Fig. 2b), although for the Congo basin the differences are significant
in the dry season (P , 0.01). We note that the positive relationships
found between precipitation and

P
LAI are not due to the length of

time the trajectories have spent over land, with distance travelled and
P

LAI often poorly correlated (Supplementary Table 1), or to the aver-
age topographic height the trajectory has crossed. When we repeated
our analysis using the distance travelled by the trajectory over land or
the average elevation of the topography crossed by the trajectory (in
place of

P
LAI), the relationships were substantially weaker and in

some cases negative (Supplementary Figs 4 and 5).
We extended this regional analysis to explore relationships between

precipitation and vegetation across the tropics (Fig. 2c). For more than
60% of the tropical land surface, precipitation is a factor of at least two
greater in air masses that have been exposed to extensive vegetation in
the preceding days (defined as the top decile of

P
LAI), relative to air

masses that have been exposed to little (defined as the bottom decile of

P
LAI). Significant (P , 0.01) positive correlations between precipita-

tion and
P

LAI are common features for much of the year in areas
surrounding the Amazon (southern Brazil and Paraguay) and Congo
(southern and eastern Africa) forests, matching where previous studies
have found large continental precipitation recycling ratios18. We find
few tropical regions with significant negative correlations, although the
relationships between vegetation and precipitation are typically
weaker in moist tropical forests. The weaker signal at the centre of
extensive forests is probably due to the lack of variability in air-mass
exposure to vegetation (Supplementary Fig. 6); however, saturation of
the MODIS LAI retrievals for dense tropical forest canopies19 may
have a role.

This analysis demonstrates that there are strong positive relation-
ships between the cumulative exposure of air to vegetation and the
amount of precipitation that air will produce, suggestive of a water-
cycle feedback. To explore potential mechanisms underlying these
relationships, we evaluated the change in atmospheric moisture that
occurs along our back-trajectories. To do this we calculated the net
change in specific humidity (Dq) that occurred during continental
transport in the ECMWF humidity analyses along the 10-d back-
trajectories (Fig. 3a). In general, air becomes drier during atmospheric
transport over land, owing to lower continental evaporation rates as
compared with the oceans. Figure 3a demonstrates that air masses that
have been exposed to more vegetation remain significantly moister
(P , 0.01), and in some cases air can actually moisten when crossing
densely vegetated regions. Analysis of the latter cases indicates that
typically 70–90% of increases in q occur during the hours of daylight,
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Figure 2 | Relationships between daily precipitation and cumulative
exposure of 10-d back-trajectories to vegetation LAI (

P
LAI) for 2001–2007.

a, Plot for air masses arriving in Minas Gerais, Brazil (10–20u S, 40–50uW).
Data binned into deciles of

P
LAI and stratified by initial specific humidity (q).

Lines show fit to data (solid, wet season; dotted, dry season) and error bars
indicate estimation of error in precipitation (Methods Summary).
b, Comparison of daily precipitation for air masses that have been exposed to
small and large amounts of vegetation (significant (P , 0.01) differences
indicated by squares at top of panel) during atmospheric transport to the
Amazon basin (AB; 10–0u S, 60–70uW), Minas Gerais (MG), the Congo basin
(CB; 5uN–5u S, 15–25uE) and south of Congo (ZA; 10–20u S, 20–30uE) (mean,
star; median, line; 25th and 75th percentiles, box; 5th and 95th percentiles,
whiskers). c, Number of calendar months with significant (P , 0.01; red,
positive; blue, negative) relationships between precipitation and

P
LAI.

Stippling denotes regions where precipitation is a factor of at least two greater in
air with large exposure to vegetation than in air with small exposure. Green
contour delimits areas with .3 m2 m22 annual mean LAI. Black boxes mark
the four regions in b.
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consistent with a dominant forcing from evapotranspiration
(Supplementary Fig. 7).

To quantify the contribution of evapotranspiration to the air-mass
water budget, we used output from four global land surface models
that use the best available estimates of meteorological forcing (those
from the Global Land Data Assimilation System20 (GLDAS)) (Fig. 1e).
Figure 3b shows significant (P , 0.01) positive relationships between
the multi-model mean cumulative surface evaporation (

P
ET) and

P
LAI in all four regions examined. Figure 3c shows rainfall as a func-

tion of
P

ET for the Minas Gerais region, demonstrating that additional
moisture from evapotranspiration emitted into air masses with large
exposure to vegetation is substantially greater than the additional pre-
cipitation observed in these air masses. Indeed, for all four regions the
extra

P
ET emitted into air masses with large vegetation exposure

exceeds the observed additional precipitation by a factor of at least
four (Supplementary Table 2).

Our analysis explores the role of regional-scale vegetation patterns
on precipitation. Through evapotranspiration, forests maintain atmo-
spheric moisture that can return to land as rainfall downwind. These
processes operate on timescales of days over distances of 100–1,000 km
(ref. 18) such that large-scale land-use change may alter precipitation
hundreds to thousands of kilometres from the region of vegetation
change. Land-use patterns and small-scale deforestation may also alter
precipitation locally, through changes in the thermodynamic profile
and the development of surface-induced mesoscale circulations21,22.
Natural and pyrogenic emissions from vegetation can also have a role
in rainfall initiation over tropical forest regions23. The impact of cloud
microphysical processes on precipitation is highly uncertain24, and
biogenic emissions could contribute to our observed relationship
between rainfall and exposed vegetation. However, our water-balance
calculations imply that cumulative increases in evapotranspiration
over upstream forested regions more than account for the increase
in downstream rainfall.

Rapid land-use change is occurring across large regions of the
tropics: 40% of the Amazon is predicted to be deforested by 2050 under
a business-as-usual scenario25. We used this scenario to explore the
potential sensitivity of rainfall to changes in moisture recycling as a
result of deforestation. We combined the deforestation scenario with
present-day LAI to produce a new spatial distribution of LAI

(Supplementary Fig. 8) and then used our trajectories to calculate
P

LAI under the deforested scenario. We then applied our empirical
relationships between

P
LAI and rainfall (Fig. 2b) to estimate

the change in rainfall that might occur as a result of this extensive
deforestation. In this calculation, we implicitly assumed there to be
no change in the large-scale circulation and that the local effects of
deforestation on rainfall were negligible downstream. Despite these
assumptions, our estimates are broadly consistent with estimates of
basin-wide deforestation from climate models4–10. Using this method,
we estimated a 12% reduction in wet-season precipitation and a 21%
reduction in dry-season precipitation across the Amazon basin
(Fig. 4). This sensitivity is not restricted to the region of deforestation,
and we estimate a 4% decrease in annual total precipitation for the Rio
de la Plata basin. Through comparison with TRMM3B42 data, we
calculate that the estimated reduction in precipitation is equivalent
to the basin-wide drought experienced across the Amazon in 2010.
Such a reduction in precipitation may have consequences for the
future of remaining Amazonian forests26,27 and for rainfall-reliant
industries both within and outside the Amazon basin, including
agriculture and hydroelectric power generation, which contribute sub-
stantially to South American economies. The successful efforts to curb
Amazon deforestation that have been applied in recent years28 must be
maintained if large-scale clearance of the Amazon and the resulting
impacts on regional rainfall are to be avoided.

METHODS SUMMARY
Remote-sensed data. We used precipitation retrievals from the 3B42 3-h 0.25u
3 0.25u product of TRMM and other satellites15 to calculate daily accumulated
(24-h) rainfall. We used monthly mean LAI from MODIS16 using the
MOD15_BU_V5 product available at 0.25u3 0.25u resolution. We spatially
averaged both products to 1u3 1u resolution. We apply this temporal and spatial
averaging to the precipitation data to reduce random error29. We estimate the total
error to be the random error, estimated according to ref. 28, plus a systematic error
estimated as 0.2 times the absolute precipitation30, combined in quadrature.
Land surface models. We used 1u3 1u monthly mean evaporation from four
global land surface models archived on GLDAS20. The models are forced by a
combination of meteorological data sets including atmospheric analysis, and
precipitation from merged gauge–satellite products.
Atmospheric transport. We calculated kinematic atmospheric back-trajectories
arriving four times daily (00:00, 06:00, 12:00 and 18:00 UT) on a 1u3 1u grid for the
period 2001–2007 using the OFFLINE trajectory model. The position of each
trajectory is calculated every 30 min and output every 6 h. We calculated 3-,
5- and 10-d trajectories arriving at the surface and three altitudes above the surface
(corresponding to air pressures of 900, 800 and 700 hPa) that are likely to be within
the deep tropical boundary layer.
Analysis. For each trajectory, we calculated the total distance travelled over land,
the cumulative exposure to LAI (

P
LAI), the average elevation of the topography

over which the trajectory travelled and the cumulative evapotranspiration (
P

ET;
specified by GLDAS). We fitted rainfall data with a function of the form
f(x) 5 aebx 1 c (Supplementary Table 2). We calculated

P
LAI regardless of

trajectory pressure. Restricting the calculation to when trajectory pressure is
greater than 850 hPa gives similar results (Supplementary Fig. 9).

–0.010

–0.005

0.000

0.005

0.010

Δq
 (
k
g

 m
–
3
)

Dry season
Wet season

1st decile ΣLAI
10th decile ΣLAI

0

1

2

3

4

5

ΣE
T

 (
k
g

 m
–
2
 d

–
1
)

Dry season
Wet season

1st decile ΣLAI 
10th decile ΣLAI 

0 10 20 30 40

ΣET (kg m–2)

0

5

10

15

20

R
a
in

fa
ll 

(m
m

 d
–
1
)

Dry season

Wet season

Upper q
Mid q
Lower q

AF MG CB ZA AF MG CB ZA

a b

c

Figure 3 | Atmospheric water-budget components along back-trajectories.
a, Same as Fig. 2b, but for net change in atmospheric specific humidity (Dq) as a
function of

P
LAI. b, Same as Fig. 2b, but for cumulative surface evaporation

(
P

ET) as a function of
P

LAI. c, Same as Fig. 2a, but for precipitation as a
function of

P
ET.
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Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Remote-sensed data. We used precipitation retrievals (from the Tropical Rainfall
Measuring Mission (TRMM; http://trmm.gsfc.nasa.gov/) and other satellites) in
the 3B42 3-h 0.25u3 0.25u product15 to calculate daily accumulated (24 h) rainfall.
This product reports precipitation from microwave sensors on board polar-
orbiting satellites, combined with more frequent cloud-top temperature data,
surface rain gauge analysis and the precipitation radar on TRMM. We used
the monthly mean leaf area index (LAI) from the Moderate Resolution
Imaging Spectroradiometer (MODIS; http://modis.gsfc.nasa.gov/data/dataprod/
dataproducts.php?MOD_NUMBER515)16 using the MOD15_BU_V5 product
available at 0.25u3 0.25u resolution.

The precipitation product includes both systematic and random error29,30.
Systematic biases of 0.5–1 mm d21, or 0.2 times the mean precipitation, have been
estimated30. To reduce the random error we spatially averaged the precipitation
product to 1u3 1u resolution and temporally averaged to give daily accumulated
(24 h) precipitation. This temporal and spatial averaging applied to TRMM3B42
means that each data point in our analysis (which corresponds to a single trajectory)
is the average of 128 TRMM3B42 data points. This substantially reduces the
random error that is present in the TRMM3B42 product29. We estimate the random
error using the method of ref. 29 and assume a systematic error of 0.2 times the
mean precipitation30. We combine the random and systematic errors in quadrature
to give an estimate of the total error, which in any case is substantially smaller than
the large effect of vegetation on precipitation. We spatially averaged the LAI data to
the same resolution as the precipitation product.
Land surface models. We used 1u3 1u monthly mean evaporation from four
global land surface models (Community Land Model (CLM), Variable Infiltration
Capacity model (VIC), NOAH and MOSIAC) archived on the Global Land Data
Assimilation System (GLDAS; http://disc.sci.gsfc.nasa.gov/services/grads-gds/
gldas)20. The models are forced by a combination of meteorological data sets
including atmospheric analysis, and precipitation from merged gauge–satellite
products.
Atmospheric transport. We calculated kinematic atmospheric back-trajectories
arriving daily (00:00, 06:00, 12:00 and 18:00 UT) on a 1u3 1u grid for the period
2001–07 using the OFFLINE trajectory model31. The position of each trajectory is
calculated every 30 min, and output every 6 h. We calculated 3-, 5- and 10-day
trajectories arriving at the surface and 3 levels above the surface (900, 800 and
700 hPa) that are likely to be within the deep tropical boundary layer. We demon-
strate that our results are robust to the back-trajectory length (Supplementary
Fig. 1), arrival pressure (Supplementary Fig. 2) and arrival time (Supplementary
Fig. 3) of the trajectory. Throughout the Letter we report analysis of 10-day back-
trajectories arriving at the surface at 12:00 UT.
Analysis. For each trajectory we calculated (1) total distance travelled over land
(
P

dist), (2) cumulative exposure to LAI (
P

LAI), (3) average elevation of the
topography (specified by the Climate Research Unit CRU CL 2.0 database, 109

resolution) over which the air mass travels, and (4) cumulative evapotranspiration
(specified by GLDAS;

P
ET). We calculate

P
LAI regardless of trajectory pressure

but show that restricting the calculation to when trajectory pressure is greater than
850 hPa gives similar results (Supplementary Fig. 9).

We analysed relationships between daily precipitation and the variables calcu-
lated from air mass history (

P
dist,

P
LAI and

P
ET). We stratified trajectories into

dry season and wet season and according to the initial specific humidity (q) of the
back-trajectory (taken from the ECMWF analyses). The timings of wet and dry
season are location dependent. For the purpose of this analysis we defined the dry
season at any location as calendar months with below annual average precipitation
for that location and the wet season as calendar months with above average
precipitation (as observed by TRMM3B42; Supplementary Table 2). We demon-
strated that this stratification results in large variability in initial q of the back-
trajectory (Supplementary Table 2). We conducted detailed analysis over 4 large
(10u3 10u, ,1,000 km 3 1,000 km) domains. Our pan-tropical analysis was con-
ducted at a horizontal resolution of 2.5u3 2.5u. For our 7-year analysis each 10u
3 10u grid box represents 255,000 trajectories whereas each 2.5u3 2.5u grid box
represents 15,968 trajectories.

We binned trajectories into deciles of
P

LAI. We then compared back-
trajectories with small exposure to vegetation (lowest decile of

P
LAI) to back-

trajectories with large exposure to vegetation (largest decile of
P

LAI) and used the
Student’s t-test to determine the significance of any differences. Accounting for the
stratification described above means that each data point (for example, data point
in Fig. 2a, box-plot in Fig. 2b) represents 3,650 trajectories. We fitted relationships
between precipitation and

P
LAI with functions of the form y(x) 5 aexp(bx) 1 c

(see Fig. 2a). Supplementary Table 2 gives the fitted variables for the 10u3 10u
domains. Using a linear fit (y(x) 5 ax 1 c), which does not capture the nonlinear
behaviour of the data well, altered our estimated impacts of deforestation on
annual mean Amazon basin rainfall from 214% to 210%.

To estimate the impact of Amazonian deforestation on precipitation we
combined the functions we fitted above with projected LAI distributions after
deforestation. We created an LAI distribution for the year 2050 (see
Supplementary Fig. 8) by combining a business-as-usual deforestation scenario25

with the present-day LAI distribution from MODIS. We assumed that deforested
areas are maintained as pasture with a LAI of 1 m2 m22 (ref. 32). We then ran our
present-day trajectories over the projected LAI to calculate the

P
LAI that would

occur in the deforestation scenario. We used our empirical relationships (calcu-
lated at a resolution of 2.5u3 2.5u) along with

P
LAI to estimate the rainfall that

would occur after deforestation. We estimated both wet season and dry season
rainfall. Our approach only estimates the change in rainfall due to changes in water
recycling. It makes the implicit assumption that there is no change in the large-
scale circulation, and that the local impacts of deforestation on rainfall are neg-
ligible downstream. Calculation of the full impacts of deforestation on rainfall
would require a climate model.

We compared the estimated changes in rainfall due to deforestation with pre-
sent-day (1998–2010) rainfall recorded by TRMM3B42. We make comparisons
for both the wet season and the dry season.

31. Methven, J. Offline Trajectories: Calculation and Accuracy Technical Report 44,
(UK Universities Global Atmospheric Modelling Programme, University of
Reading, 1997).

32. Aragão, L. E. O. C., Shimabukuro, Y. E., Santo, F. D. B. E. & Williams, M. Landscape
pattern and spatial variability of leaf area index in Eastern Amazonia. For. Ecol.
Mgmt. 211, 240–256 (2005).
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