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Abstract. We use a global aerosol microphysics model to
estimate the effect of particle formation through activation
nucleation in the boundary layer (BL) on cloud droplet num-
ber concentration (CDNC) on global and regional scales.
The calculations are carried out for years 1850 and 2000
using historical emissions inventories for primary particles
and aerosol precursor gases. Predicted CDNC in 2000 are
in good agreement with in-situ observations when activa-
tion nucleation is included. We find that BL particle for-
mation increases global annual mean CDNC by approxi-
mately the same relative amount in both years (16.0% in
1850 and 13.5% in 2000). As a result, global mean changes
in cloud albedo are similar with and without BL particle for-
mation. However, there are substantial regional effects of up
to 50% enhancement or suppression of the 1850–2000 albedo
change. Over most modern-day polluted northern hemi-
sphere regions, including BL particle formation scheme sup-
presses the 1850–2000 increase in CDNC and cloud albedo
because BL particle formation is already large in 1850. Over
the Arctic the albedo change is suppressed by 23% in the
annual mean and by 43% in summer when BL particle for-
mation is taken into account. The albedo change of the per-
sistent stratocumulus cloud deck west of Chile is enhanced
by 49%.

1 Introduction

Cloud droplet number concentration (CDNC) is controlled
by the concentration of aerosol particles large enough to act
as cloud condensation nuclei (CCN) (Lohmann and Feichter,
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2005; Dusek et al., 2006). The CDNC depends on the con-
centration, size distribution and chemical properties of CCN
and on the updraft velocity defining the maximum supersat-
uration in a cloud parcel (Nenes and Seinfeld, 2003). Higher
CDNC leads to an enhanced cloud albedo (Twomey, 1991).
This effect is known as the first indirect effect, and its magni-
tude is one of the most poorly quantified factors in assessing
human impacts on climate (IPCC, 2007). Estimates of the
aerosol indirect effect obtained from different global climate
models (GCMs) vary from−0.3 Wm−2 to −1.8 Wm−2, and
the main cause of the spread in results is the difference in pre-
dicted aerosol concentrations between different models given
a fixed set of sources (Penner et al., 2006).

Observations from several locations around the world sug-
gest that formation of new aerosol particles by nucleation is
a frequent phenomenon (Kulmala et al., 2004a). These par-
ticles can be first detected in the 3–10 nm diameter range,
and their subsequent growth to CCN sizes can be followed.
Locally, particle formation has been observed to contribute
significantly to CCN (Lihavainen et al., 2005; Kerminen et
al., 2005; Laaksonen et al., 2005). Although the fundamental
formation mechanism of secondary particles is not well un-
derstood, extensive observations in the atmospheric bound-
ary layer (BL) show that the rate of new particle formation
is proportional to the sulfuric acid concentration to power 1
(activation nucleation) or 2 (kinetic nucleation) (Weber et al.,
1995, 1997; Sihto et al., 2006; Riipinen et al., 2007; Kuang et
al., 2008). Measurements also indicate that the main growth
mechanics of the newly formed particles is the condensation
of secondary organics together with sulfuric acid (O’Dowd
et al., 2002). A different mechanism appears to occur above
the BL, which is often represented in models as binary homo-
geneous nucleation of sulfuric acid-water particles (Kulmala
et al., 1998; Spracklen et al., 2005a,b; Adams and Seinfeld,
2002).
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CDNC is controlled by the number of CCN-sized particles
that originate from emissions of primary particles or from at-
mospheric particle formation. In a previous study we used a
global aerosol microphysics model to demonstrate that par-
ticle formation through activation nucleation in the BL in-
creases the global mean CCN (0.2% supersaturation) concen-
trations by 3−20% and CCN (1%) by 5−50% (Spracklen
et al., 2008). The uncertainties in these values are related
to uncertainties in particle formation and growth rates. Thus
BL particle formation is an important, though still quite un-
certain, source of CCN in the present atmosphere. But the
important question for climate is whether the contribution of
BL particle formation to CCN has changed over the indus-
trial period, which would affect the calculated aerosol indi-
rect forcing. There are reasons to suspect that it might have
changed. InSpracklen et al.(2006) we showed that changes
in primary emissions could lead to non-linear changes in par-
ticle number: primary emissions are a source of particles
but also a sink for nuclei. We showed that the total num-
ber of particles initially goes down as primary emissions are
reduced, but as they are reduced further particle number goes
up again because BL particle formation becomes enhanced.
Gaydos et al.(2005) andJung et al.(2006) also showed a
non-linear response of nucleation to SO2 emissions in a box
model. But the impact of long-term changes in nucleating
vapours and primary particles is likely to be complex and
regionally variable because of the non-linear response of nu-
cleation to production and loss processes.

The importance of activation nucleation in the BL has been
recently studied also with other global models.Makkonen et
al. (2009) used ECHAM5-HAM to show that activation nu-
cleation is likely to enhance global present day CDNC signif-
icantly, but also noted that the uncertainties in the mechanism
lead to large uncertainties in the obtained CDNC.Wang and
Penner(2009) studied the effect of activation nucleation on
present day and pre-industrial CCN and on the first indirect
effect. They found that this mechanism increased present
day global boundary layer CCN by 31.4% when no primary
emitted sulfate was included and 5.3% when primary sulfate
was included. Overall, activation nucleation reduced the an-
thropogenic fraction of CCN and decreased the first aerosol
indirect effect. In another recent model study,Pierce and
Adams(2009) also obtained a 5% increase in global CCN
due to activation nucleation, but also pointed out that the sen-
sitivity of CCN to different nucleation scenarios depended on
the selected primary emission and secondary organic aerosol
schemes.

Here, we extend our model simulations of present day
CCN to quantify the effect of BL particle formation on
CDNC and cloud albedo under pre-industrial (1850) and
present-day (2000) conditions. We use a mid-range estimate
for the BL particle formation rate leading to a 10–20% in-
crease in global present-day CCN. Our aim is not to calcu-
late a new value for the indirect forcing, but to demonstrate
that while work is in progress to improve the representation

of aerosol in GCMs, BL particle formation should be consid-
ered due to its sizable contribution to CDNC and to estimates
of the cloud albedo change.

2 Model description

We use the global aerosol microphysics model GLOMAP,
which is an extension of the offline 3-D chemical transport
model TOMCAT (Chipperfield, 2006). Full details of the
model microphysics scheme are described inSpracklen et
al. (2005a). GLOMAP treats two externally mixed aerosol
distributions described by a two-moment sectional scheme
with 20 sections spanning 3 nm to 25 µm dry diameter. One
of the distributions is partly hydrophyllic including sulfate,
sea-salt, black carbon (BC) and organic carbon (OC). The
other distribution representing freshly emitted primary car-
bonaceous particles contains BC and OC and is assumed to
be hydrophobic. The hydrophobic OC and BC particles are
transferred to the hydrophyllic distribution through coagula-
tion and condensation of soluble gas-phase species. These
species include gaseous H2SO4 and the first-stage oxida-
tion products of monoterpenes (Guenther et al., 1995), which
form hydrophilic secondary organic aerosol material with an
assumed yield of 13% (Spracklen et al., 2006). The model
has a horizontal resolution of∼ 2.8◦ by ∼ 2.8◦ with 31 ver-
tical levels between the surface and 10 hPa and is forced
by analyses from the European Centre for Medium-Range
Weather Forecasts for the year 2000. The same meteorology
and oxidants are used both for 1850 and 2000 runs.

New particle formation is modelled with the cluster activa-
tion theory (Kulmala et al., 2006). According to this scheme,
nucleation rate of 1 nm clustersJ1 [cm−3 s−1] is given by

J1 = A[H2SO4], (1)

whereJ1 is the,[H2SO4] is the gas phase sulfuric acid con-
centration in cm−3 andA is the activation coefficient. Here
we have usedA = 2× 10−6 s−1, which is based on empir-
ical calculations (Sihto et al., 2006) and on our previous
comparisons with ground level observations (Spracklen et
al., 2006, 2008). Calculated A-factors for observed nucle-
ation events vary temporally and regionally betweenA =

10−8
−10−4 s−1 (Riipinen et al., 2007). However, reasons

for the variations in A-factor are not known.
The effective formation rate of 3 nm particles added to the

first size bin is obtained with the parameterization ofKermi-
nen and Kulmala(2002), expressed as

J3 = J1exp

(
−0.153

CS′

GR

)
, (2)

where CS′ is the reduced condensation sink and GR (nm h−1)
is the cluster growth rate, assumed to be constant between
1 nm and 3 nm and given by 0.73· 10−7

[H2SO4]. In re-
ality, the growth rate may depend on the concentration of
secondary organics and on the particle size (Kulmala et al.,
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2004b; Hirsikko et al., 2005). However, a large body of ex-
perimental evidence supports the idea that particle formation
rates depend mainly on the interplay between the sulfuric
acid concentration and condensation sink, as in the above pa-
rameterization.

The above particle formation mechanism is confined to the
BL in our model runs. Aircraft observations suggest that the
total particle concentration has a minimum just above the BL
(Schroder et al., 2002). The concentrations increase again
in the free and upper troposphere, where homogeneous bi-
nary H2O−H2SO4 or ternary H2O−H2SO4−NH3 particle
formation mechanisms are the most likely sources of new
particles (see e.g.Kulmala et al.(1998); Merikanto et al.
(2007)). Above the boundary layer we use the parameter-
ized H2O−H2SO4 particle formation rates ofKulmala et al.
(1998), which we have previously shown to reproduce the
observed particle number concentrations in the upper tropo-
sphere (Spracklen et al., 2005a). However, in this study we
focus only on the effects of BL particle formation.

The cloud drop number concentration (CDNC) is calcu-
lated from the time-averaged hydrophyllic particle distribu-
tion using the iterative scheme ofNenes and Seinfeld(2003)
andFountoukis and Nenes(2005). The application of this
scheme in GLOMAP is described inPringle et al(2009). The
schemes take into account the fraction of soluble material in
the particles and the number of ions released into the solu-
tion, and are capable of predicting the observed CDNC with
good accuracy (Meskhidze et al., 2005). The calculations
are carried out for every grid box regardless of the presence
of clouds at 300–1000 m above ground level. The CDNC
are calculated as a diagnostic and are not fed back into the
aerosol microphysics. Cloud droplet activation in clouds is
modeled using a constant activation dry diameter of 50 nm.
In an earlier GLOMAP study the 50 nm activation diameter
was found to correspond to a minimum updraft velocity of
approximately 0.4 m/s in theNenes and Seinfeld(2003) pa-
rameterization both in polluted and clean conditions (Fig. 8
in Korhonen et al., 2008).

The changes in aerosol, and hence in cloud drop number,
are quantified using emissions for 1850 and 2000. The an-
thropogenic sulfur emissions, accounting also for changes
in wildfires, are taken from the inventory ofSmith et al.
(2004). According to this inventory, the global sulfur emis-
sions have increased from 1.4 to 59.4 Tg(S)a−1 between
1850 and 2000. We emit 2.5% of sulfur directly as partic-
ulate sulfate with mode diameters of 60 nm (50% of ground
level sulfate emissions), 150 nm (50% of ground level sulfate
emissions), 150 nm (50% of elevated sulfate emissions) and
1500 nm (50% of elevated sulfate emissions). The remain-
ing 97.5% of athropogenic sulfur is emitted as SO2. The
marine dimethylsulfide emissions and sulfur emissions from
constantly erupting volcanoes are assumed to be the same for
both years, accounting for 17.7 Tg(S)a−1 and 13.0 Tg(S)a−1

respectively. We use the inventory ofBond et al.(2007) for
energy related emissions of BC and OC, and further separate

Table 1. Comparison of modelled 2000 CDNC [cm−3] to CDNC
observed in in-situ measurement campaigns. Model calculations are
carried out with typical updraught velocities (w) [ms−1] observed
during the campaigns. Results are shown with (BLPF) and without
(no BLPF) boundary layer particle formation.

Location w no BLPF BLPF Observed

Beaufort sea (April) 0.4 70 86 90a

Key West (July) 2.0 409 631 836±727b

Monterey (July) 0.2 274 298 378±72b

Cleveland (August) 0.4 566 763 881±285c

a Gultepe and Isaac(2002, 2004); b Meskhidze et al.(2005);
c Fountoukis et al.(2007).

these emissions into biofuel and fossil fuel components using
the database ofFernandes et al.(2007). Monthly wildfire BC
and OC emissions are fromDentener et al.(2006), where the
values for 1850 are obtained by taking a population weighted
average of 1750 and 2000 emissions. The total global BC
particulate emissions are 2.1 Tga−1 and 8.0 Tga−1 for 1850
and 2000, respectively, and 20.5 Tga−1 and 49.2 Tga−1 for
OC. The sea-salt emissions are calculated usingGong(2003)
and are identical for both years. Emissions of monoterpenes
are fromGuenther et al.(1995) and are assumed to be iden-
tical for both years.

3 Results

3.1 Evaluation of model cloud droplet number

As a basic check on model-predicted CDNC we have com-
pared our results against in-situ observations from four air-
craft measurement campaigns carried out over the Arctic
ocean and in US (Gultepe and Isaac, 2002, 2004; Meskhidze
et al., 2005; Fountoukis et al., 2007) (Table 1). The up-
draft velocitiesw during the aircraft measurements have been
recorded for each of these campaigns. In our calculations we
have used a representative average values ofw correspond-
ing to in-situ measurements. The CDNC values with par-
ticle formation are in reasonably good agreement with ob-
servations while the mean CDNC is slightly underestimated.
The model without BL particle formation clearly underesti-
mates the mean CDNC in all cases. Given the uncertainties
in updraft velocity, particle composition and size distribution
these differences cannot be used to demonstrate that the BL
particle formation model is correct, but overall the model-
observation agreement gives confidence in predicted CDNC
for present-day conditions.

www.atmos-chem-phys.net/10/695/2010/ Atmos. Chem. Phys., 10, 695–705, 2010



698 J. Merikanto et al.: Particle formation, cloud droplet number and change in cloud albedo 1850–2000

Fig. 1. Upper panels: The ratio of annual mean 2000 and 1850 values for condensation sink (CS) and gas-phase sulfuric acid concentration
at 300–1000 m above ground level. Lower panels: The difference in concentrations of 3 nm–10 nm particles with (N) and without (N’)
boundary layer particle formation in 1850 and 2000 at 300–1000 m above ground level.

3.2 Changes in aerosol and condensation sink

The formation rate of 3 nm particles depends primarily on
the sulfuric acid concentration and the magnitude of the
condensation sink. Figure1 shows the ratio of 1850 and
2000 yearly mean condensation sinks and the ratio of sul-
furic acid concentrations, and the concentrations of 3–10 nm
particles resulting from BL particle formation. Already in
the relatively clean atmosphere in 1850 BL particle forma-
tion has produced significant amounts of new particles. Con-
sidering that the anthropogenic sulfur emissions in 1850 are
only 1.4 Tg(S)a−1 compared to Tg(S)a−1 TgS/yr from natu-
ral sulfur emissions most of the formation in 1850 must be
driven by natural sulfur sources. The gaseous sulfuric acid
concentration has increased from 1850 to 2000 mainly over
continental regions where anthropogenic emissions have in-
creased from 1850 to 2000. Over the continents typical
changes in condensation sink are smaller in magnitude than
the changes in sulfuric acid concentration. Therefore, the
average continental BL particle formation rates are larger in
2000 than in 1850. On the other hand, in many marine re-
gions especially in the northern hemisphere, the condensa-
tion sink has grown due to increased shipping and outflow of
aged particles causing the formation rates in these regions to
decrease or to stay constant. A smaller proportion of newly
formed marine particles is able to grow to large sizes in 2000

than in 1850 because the changes in condensation sink are
larger than changes in condensing sulfuric acid as shown in
Fig. 1.

3.3 Changes in cloud droplet number

Figure2 shows the predicted CDNC for 1850 and 2000 with
activation-type BL particle formation. Here, we have used a
typical value of 0.4 m/s for the cloud updraft velocity, which
approximately corresponds to the constant cloud activation
nuclei dry diameter of 50 nm used in the simulations. Mea-
sured updraft velocities in BL clouds vary greatly but range
typically between 0.3–0.5 m/s (Nenes et al., 2001). The in-
crease in anthropogenic emissions from 1850 to 2000 has
clearly had a profound effect on the CDNC. In both 1850
and 2000 particle formation increases CDNC substantially,
as shown in the lower panels of Fig.2. Surprisingly, the glob-
ally averaged contribution of particle formation to CDNC
has been quite similar in both years regardless of changes
in emissions. BL Particle formation increases global mean
CDNC by 16.0% in 1850 and 13.5% in 2000, indicating that
the global relative contribution to CDNC has been quite sim-
ilar. This is in line with the result ofPierce and Adams
(2009), who found that the sensitivity of cloud condensation
nuclei to activation particle formation was similar in their
pre-industrial and present day simulations.
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Fig. 2. Upper panels: Annual mean cloud droplet number concentration at 300–1000 m above ground level with BL particle formation.
Results are shown for 1850 and 2000. Lower panels: The difference in cloud droplet number concentration with and without activation-type
BL particle formation in 1850 and 2000. The updraft velocity is taken to bew = 0.4m/s in all cases. Grey boxes show marine regions with
persistent stratiform cloud formation.

In both years CDNC is higher over continents than ma-
rine areas, but the marine-continent contrast is much larger in
2000 than in 1850. Large differences in continental CDNC
can also be seen in less industrialized regions, like over the
equatorial Africa and South America. These differences are
mostly due to increases in particulate emissions from bio-
fuel and forest burning. However, BL particle formation still
accounts for a significant proportion of CDNC in these areas
regardless that the in-situ particle formation rates are negligi-
ble. This can be seen by comparing the lower panels of Fig.2
to the original locations of BL particle formation shown in
the lower panels of Fig.1. The differences in the patterns in
these figures are due to long range transport of particles: the
effect of BL particle formation on CDNC spreads to remote
regions where particle formation does not take place in-situ.

Changes in CDNC are summarized in Table2 for several
continental regions and marine regions with persistent strat-
iform cloud formation, indicated in Fig.2 by gray boxes in
the upper two panels. A clear increase in CDNC can be seen
in all cases when particle formation is included. The glob-
ally averaged fractional changes in CDNC are quite similar
in the runs with and without BL particle formation (66.1%
and 68.7% respectively, see Table2). However, there are
large regional differences in the relative importance of BL
particle formation. Particularly, in many parts of the north-

ern hemisphere the relative contribution of BL particle for-
mation in 2000 is less than in 1850. This is particularly the
case in modern-day polluted regions. On the other hand, in
the southern hemisphere the relative contribution of BL par-
ticle formation to CDNC is greater in 2000 than 1850, prob-
ably due to assumed increase in SO2 emissions by wildfires
in Amazonian, West African and Australian regions. This re-
sult could be reversed if global wildfires were more abundant
in 1850 than in 2000 as suggested byMarlon et al.(2008),
contrary to AEROCOM predictions (Dentener et al., 2006).
It appears that already in 1850 BL particle formation made
a substantial contribution to Arctic CDNC both through par-
ticle transport and in-situ formation. In the Arctic, BL par-
ticle formation suppresses the 1850–2000 change in CDNC.
Overall, 1850–2000 increase in CDNC with BL particle for-
mation shows a very different pattern than 1850–2000 in-
crease in CDNC if BL particle formation is omitted.

3.4 Changes in cloud albedo

The change in cloud albedo1Rc during the period is related
to the relative change in cloud droplet number. If we assume
that there have been no significant changes in the cloud liquid
water content or cloud height we can write (Twomey, 1991)
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Table 2. Summary of yearly average CDNC [cm−3] and1Rc obtained from model runs at 300–1000 m above ground level. Primed values
indicate results without BLPF. CDNC is calculated with an updraft velocityw = 0.4 m/s.1Rc is the corresponding change in albedo for an
initial albedo of Rc= 0.35 The last column shows the correction from BLPF to albedo change,(1Rc−1Rc′)/1Rc′. The marine regions
refer to west of North America (NAM), west of South America (SAM), west of North Africa (NAF), west of South Africa (SAF), and East
of North-East Asia (NEA) (see Fig. 2).

1850 2000
Region CDNC′ CDNC CDNC′ CDNC 1Rc′ % 1Rc % d1Rc

|1Rc′|
%

Total Global 125 145 211 240 3.97 3.85 −3.0
Arctic 54 81 86 116 3.60 2.72 −24.3
North temperate zone 139 173 325 374 6.47 5.85 −9.6
Northern tropics 141 161 250 274 4.33 4.03 −6.7
Southern tropics 167 178 217 243 1.97 2.35 19.4
South temperate zone 88 101 104 125 1.30 1.64 25.8
Antarctic 56 64 56 64 0.027 0.053 94.5

Total Marine 102 117 155 176 3.13 3.09 −1.2
NAM 99 114 214 236 5.81 5.52 −5.0
SAM 107 116 127 149 1.30 1.94 49.2
NAF 92 113 199 241 5.82 5.76 −0.9
SAF 142 151 165 186 1.17 1.58 34.7
NEA 127 168 352 389 7.77 6.34 −18.4

Total Continental 186 219 362 413 5.04 4.81 −4.7
Europe 232 291 562 621 6.73 5.75 −14.6
Africa 233 263 377 419 3.65 3.52 −3.6
N. America 170 215 330 419 5.05 5.05 0.1
S. America 250 274 408 466 3.72 4.02 8.1
N.‘Asia 117 152 280 336 6.63 6.00 −9.5
SE Asia 203 245 558 598 7.65 6.75 −11.8
Oceania 219 243 287 352 2.05 2.80 36.1

1Rc= Rc(1−Rc)/3ln

(
CDNC(2000)

CDNC(1850)

)
, (3)

where Rc is the cloud initial albedo. The difference in cloud
albedo change with and without BL particle formation is
given by

d1Rc = 1Rc−1Rc′ (4)

= Rc(1−Rc)/3ln


(

CDNC(2000)
CDNC(1850)

)
(

CDNC′(2000)
CDNC′(1850)

)
,

where the primed values indicate results without BL parti-
cle formation. The logarithmic term in the above equation,
the ratio of CDNC ratios between runs with and without BL
particle formation, shows that BL particle formation has an
effect on albedo change only if its relative contribution to
CDNC has changed over time. A schematic representation
of the effects of particle formation is shown in Fig.3. It
shows that particle formation can both enhance and suppress
the obtained albedo changes. To calculate1Rc we assume
an initial albedo of 0.35. Although the 1850–2000 changes
in albedo are affected by the assumed initial albedo, the as-

sumption does not alter the calculated relative impact of BL
particle formation.

Figure 4 shows the resulting changes in1Rc with and
without BL particle formation. The figure shows the av-
eraged full year and northern hemisphere summer values.
The regional patterns of1Rc are quite strongly affected by
particle formation. For example, during the northern hemi-
sphere summer BL particle formation completely suppresses
the albedo change over large parts of the Arctic region. The
full year regional changes are summarized in Table2. The
global mean albedo change is predicted to be 3.97% with BL
particle formation and 3.85% without, so the globally aver-
aged impact of BL particle formation is negligible. How-
ever, the negligible effect of BL particle formation on aver-
age global albedo change may be coincidental and related
to the selected representation of emissions, as discussed in
Introduction. Using different but plausible combinations of
emissions could lead to both increase or decrease in the av-
erage global albedo change due to BL particle formation.

Figure 5 shows the impact of including BL particle for-
mation in the model on the 2000/18501Rc for four north-
ern hemisphere seasons. The impact on1Rc is given by

Atmos. Chem. Phys., 10, 695–705, 2010 www.atmos-chem-phys.net/10/695/2010/



J. Merikanto et al.: Particle formation, cloud droplet number and change in cloud albedo 1850–2000 701

d1Rc/ | 1Rc′
| and is independent of the initial albedo. We

note that results are similar with different updraft velocities,
although the regional differences are more pronounced with
higher updrafts. This is because the importance of activation
BL nucleation on CDNC decreases with smaller updrafts due
to increasing cloud droplet activation radius. Clouds that are
most susceptible to albedo change may have smaller charac-
teristic updrafts than 0.4 m/s, but larger impact of BL nucle-
ation on high updraft clouds would partly compensate this.

Blue areas in Fig.5 indicate regions where the 1850 to
2000 changes in CDNC or1Rc are reduced by including BL
particle formation, and red areas indicate where the changes
are increased. It can be seen that BL particle formation has
a substantial regional impact on calculated1Rc. In large
parts of the globed1Rc/ | 1Rc′

| exceeds 50%. The results
show a large north-south contrast: BL particle formation re-
duces the calculated albedo change in the north and increases
it in the south. Results show relatively high seasonal varia-
tion, and the largest regional changes are obtained during the
northern hemisphere summer. During the summer the posi-
tive albedo change in the northern hemisphere is greatly re-
duced, except in North America where BL particle formation
results in a larger positive albedo change. In the south tropics
BL particle formation enhances the obtained albedo change
during all seasons. The changes in the Antarctic region are
not statistically significant since the obtained albedo change
is negligible in all cases.

In their recent studyWang and Penner(2009) found
that BL particle formation through activation nucleation de-
creases the first aerosol indirect effect especially over north-
ern hemisphere oceans. Also in our simulations the albedo
change is decreased in these regions. Over northern hemi-
sphere land regionsWang and Penner(2009) found a modest
decrease in the first indirect effect due to BL particle for-
mation when primary sulfate was included, or a modest in-
crease in the first indirect effect when primary sulfate was
not included. According to our results the albedo change is
decreased over most northern hemisphere land areas (except
spring and summer seasons in Canada and Siberia due to re-
ductions in wildfire emissions since 1850 in these regions).
Our results suggest an enhanced albedo change over most of
the southern hemisphere, whileWang and Penner(2009) ob-
tained a modest decrease or no change at all in this region
depending on the applied primary sulfate scheme.

Our model simulations show that BL particle forma-
tion has a regionally variable impact on CDNC and albedo
changes between 1850 and 2000. In some regions the in-
creases in albedo are enhanced when BL particle formation is
included, while in other regions it is suppressed. The regional
differences arise because the relative contribution of BL par-
ticle formation to aerosol in 1850 and 2000 has changed (il-
lustration in Fig.3). In regions where albedo changes are
suppressed, BL particle formation had a greater proportional
effect on aerosol in 1850 than in 2000, and vice versa in re-
gions where albedo changes are enhanced. A greater pro-

1850 2000 1850 2000

Aerosol number

Cloud drop
number

cloud reflectivity

(a) (b)
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out n

ucleatio
n

with
 nucleatio
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out n

ucleatio
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n

Fig. 3. Schematic showing how the inclusion of boundary layer nu-
cleation can either increase or decrease the change in cloud albedo
(1Rc) between 1850 and 2000.(a) Nucleation increases1Rc: the
fractional impact of nucleation on aerosol number, cloud drop num-
ber and cloud albedo is less in 1850 than in 2000.(b) Nucleation
decreases1Rc: the fractional impact of nucleation on aerosol num-
ber, cloud drop number and cloud albedo is greater in 1850 than
in 2000. Note that fractional changes in CDNC are always smaller
than fractional changes in aerosol number, and fractional changes
in Rc are smaller still. So although the change in aerosol between
1850 and 2000 is much larger than any effect of activation-type BL
particle formation, this is not the case for changes in albedo. The
effect is exaggerated in the diagram.

portional effect in 1850 can be explained in two ways: that
industrial emissions of precursor gases and primary aerosol
in 2000 have acted to suppress BL particle formation, imply-
ing that increases in the condensation sink have outweighed
increases in the nucleating H2SO4 vapour, or that a greater
fraction of CDNC are due to primary particles in 2000.

4 Conclusions and discussion

We have used a global aerosol model to explore the effect of
activation-type BL particle formation on global and regional
CDNC. The obtained CDNC with particle formation are in
good agreement with in-situ observations at marine and con-
tinental sites, while those without BL particle formation tend
to underestimate CDNC. The effect on CDNC can be seen
on most parts of the globe, but the relative contribution of
particle formation to regional CDNC varies greatly. Further-
more, this contribution is nonlinear to in-situ particle forma-
tion rates. Particle formation can greatly enhance CDNC also
in regions where in-situ formation rates are negligible due to
long range transport of aerosol.

Our study suggests that BL particle formation could have
significant consequences for the calculation of cloud albedo
changes. Model simulations using emissions for 1850 and
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Fig. 4. The 1850–2000 change in cloud albedo with and without boundary layer particle formation at 300–1000 m above ground level.
Results are shown for an initial albedo Rc= 0.35 assuming cloud updraft velocityw = 0.4ms−1.

2000 show that particle formation made a nearly equal con-
tribution (16%–13.5%) to global CDNC in both years. How-
ever, there are distinct regional differences in the historical
contribution of BL particle formation to CDNC that can af-
fect albedo changes by more than 50%. We find that there is
a strong north-south contrast in the obtained albedo changes
due to BL particle formation. With some exceptions, BL par-
ticle formation decreases the albedo changes in the polluted
regions of northern hemisphere and increases the albedo
changes in the southern hemisphere. In the Arctic BL particle
formation appears to suppress the 1850 to 2000 summertime
albedo change by as much as 43%. Thus, BL particle for-
mation was a much more important source of CDNC in the
Arctic in 1850 than today. The explanation is that the sulfur
pollution in the modern-day Arctic exists as sulfate aerosol,
which act as a sink for new particles, rather than SO2, which
would act as a source for particle formation.

Of importance for the pattern of radiative forcing is that
BL particle formation enhances the long term increase in
CDNC in the persistent stratocumulus regions to the west
of Africa and west of South America. Without BL parti-
cle formation, the CDNC change west of South America is
predicted to be 18.7% but with BL particle formation it is
29.0%. This leads to an estimated 49% enhancement in the
1850–2000 change in cloud albedo. New observations com-
bined with high resolution cloud-scale modelling of outflow
of pollutants from South America are needed to improve our

low resolution model estimate. In the persistent stratocumu-
lus region East of North-East Asia the 1850-2000 albedo en-
hancement is particularly strong. With BL particle forma-
tion, the obtained albedo enhancement is reduced by 18.4%.

The impact on climate change needs to be considered in
longer simulations that include a calculation of cloud radia-
tive forcing and the co-location of cloud type and CDNC
change. Substantial changes in cloud albedo are predicted
in regions with persistent low level clouds, but there are also
substantial effects on CDNC in regions where other cloud
types dominate. The substantial suppression of summertime
Arctic indirect effect needs further investigation. Our model
captures Arctic summertime particle size distributions fairly
well (Korhonen et al., 2008) but, given the importance of
Arctic climate change, further work is needed in this area.
We also find that the effect of BL particle formation on
CDNC becomes more pronounced at higher updraft veloci-
ties since smaller particles become activated. Climate model
simulations of the effects of CDNC on high updraft cumulus
clouds are at an early stage (Wu et al., 2007), but nucleation
could have an important influence on long term changes in
CDNC in these clouds.

Recent studies byWang and Penner(2009) and Pierce
and Adams(2009) have showed that historical change in
the impact of BL particle formation on clouds depends on
the selected representation of primary particle emissions.
There are uncertainties in the emitted total mass and size
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Fig. 5. Upper panel: The relative error in calculation of the change in cloud albedo if activation BL particle formation is neglected at
300–1000 m above ground level. Results are shown for four northern hemisphere seasons. The updraft velocity is taken to bew = 0.4m/s.

distribution of primary particles both in 1850 and 2000.
Wildfires represent a major but uncertain component in 1850
continental primary emissions. Recent charcoal records sug-
gest that global wildfire activity was much higher in 1850
than today (Marlon et al., 2008). For 1850 we have used
a population-weighted average of AEROCOM estimates for
years 1750 and 2000 (Dentener et al., 2006) where wildfire
emissions in the high latitudes in the northern hemisphere
(Europe, N. America, Russia) are higher in 1850 than in 2000
due to less fire suppression, but total emissions are lower in
1850 than in 2000 due to changes in population and land
use. We show that the regional contribution of BL particle
formation to CDNC is not the same over the period 1850
to 2000. Therefore, climate model studies that do not ac-
count for BL particle formation are likely to get the regional
climate forcing from anthropogenic aerosol incorrect. Both
this work and that of Pierce and Adams (2009) show that on
a global scale BL particle formation contributes equally, to
CDNC and CCN concentrations respectively, over this pe-
riod. There are significant uncertainties in the emissions of
primary particles and aerosol precursor gases. With differ-
ent emission assumptions historical changes in BL particle
formation may also be important at the global scale.

There are also uncertainties in the BL particle formation
rate that can affect the results. In this study we have as-
sumed a universally constant activation nucleation rate coef-
ficient A = 2×10−6s−1, but observed rate coefficients vary

between 10−8
−10−4s−1 for different nucleation events (Ri-

ipinen et al., 2007). It is not clear if a single rate coeffi-
cient can be applied in different regions. We also assume
the same rate coefficient for 1850 to 2000, but it is possi-
ble that some unknown factors contributing to the rate coef-
ficient have changed since 1850. However, our other work
(Spracklen et al., 2008; Merikanto et al., 2009) has shown
that CCN (and therefore CDN) are fairly insensitive to large
changes in the A-factor. The fundamental mechanism of par-
ticle formation is still poorly understood, and the process
may be limited by the abundance of some other chemical
species beside sulfuric acid as assumed here. For example, it
has been suggested that the neutral activated cluster may con-
stitute ammonia and sulfuric acid (Vehkamaki et al., 2004;
Ortega et al., 2008), which may affect the nucleation rate in
some regions (Gaydos et al., 2005; Jung et al., 2006). It is
also possible that biogenic organic species control BL parti-
cle formation (Bonn et al., 2008).

It may take time before the fundamental mechanism, or
mechanisms, of atmospheric particle formation are resolved.
However, since its contribution to CDNC and total particle
concentrations appears to be large, best available represen-
tations should be utilized when estimating of the effects of
aerosols on climate.
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Räis̈anen, P., Lehtinen, K. E. J., Laaksonen, A., Kerminen, V.-
M., Järvinen, H., Lohmann, U., Bennartz, R., Feichter, J., and
Kulmala, M.: Sensitivity of aerosol concentrations and cloud
properties to nucleation and secondary organic distribution in
ECHAM5-HAM global circulation model, Atmos. Chem. Phys.,
9, 1747–1766, 2009,
http://www.atmos-chem-phys.net/9/1747/2009/.

Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison,
S. P., Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.:
Climate and human influences on global biomass burning over
the past two millennia, Nature Geoscience 1, 697–701, 2008.

Merikanto, J., Napari, I., Vehkam̈aki, H., Anttila, T., and Kulmala,
M.: New parameterization of ternary sulfuric acid-ammonia-
water ternary nucleation rates at tropospheric conditions, J. Geo-
phys. Res.-Atmos., 112, D15207, doi:10.1029/2006JD007977,
2007.

Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and
Carslaw, K. S.: Impact of nucleation on global CCN, Atmos.
Chem. Phys., 9, 8601–8616, 2009,
http://www.atmos-chem-phys.net/9/8601/2009/.

Meskhidze, N., Nenes, A., Conant, W. C., and Seinfeld, J. H.: Eval-
uation of a new cloud droplet activation parameterization with
in situ data from CRYSTAL-FACE and CSTRIPE, J. Geophys.
Res., 110, D16202, doi:10.1029/2004JD005703, 2005.

Nenes, A. and Seinfeld, J. H.: Parameterization of cloud droplet
formation in global climate models, J. Geophys. Res.-Atmos.,
108(D14), 4415, doi:10.1029/2002JD002911, 2003.

Nenes., A., Ghan, S., Abdul-Razzak, H., Chuang, P. Y., and Sein-
feld, J. H.: Kinetic Limitations on Cloud Droplet Formation and
Impact on Cloud Albedo, Tellus, 53B, 133–149, 2001.
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