

Severe weather over East Africa Cathryn Birch^{1,2}

Beth Woodhams¹, John Marsham^{1,2}, Caroline Bain², Stuart Webster², Paul Barrett², Jennifer Fletcher¹, Andrew Hartley², Solomon Mangeni³, Todd Lane⁴

¹University of Leeds, ²Met Office, ³Uganda National Met Authority, ⁴University of Melbourne

East Africa

UNIVERSITY OF LEEDS

- Hotspot for individual severe weather events
- Vulnerable to seasonal and decadal rainfall variability

Extra-tropical weather forecast skill

- A 7 day forecast today is as good as a 3 or 4 day forecast in 1980
- Forecast skill has increased by a day per decade

UNIVERSITY OF LEEDS

Global NWP forecasts of rainfall

- Almost no skill relative to climatology over most of sub-Saharan Africa
- Slightly better over East Africa
- Lack of routine observations, type of convective systems

Global NWP forecasts of rainfall

- In sub-Saharan West Africa, 1-day statistical forecasts outperform global NWP
- Rainfall is driven by convection within African Easterly Waves, which models struggle to represent
- Further north in dry outer tropics, NWP performs better

Sparsity of routine observations

Global radiosonde network

- · Africa has some of sparest in-situ observations in the world
- Reliance on satellite products in Africa retrieved products = errors
- Lack of detailed observations (e.g. radar) for process studies and model evaluation

Convective-scale forecasting

UNIVERSITY OF LEEDS

- Higher-resolution allows convective processes to develop independently without the need for convection parameterisation
- Big improvement in the way storms 'look' in forecasts

Convective-scale forecasts over East Africa

- Useful skill > 150km scales
- Convective-scale ensembles hardly worth the extra computational effort
- Ensembles do not provide enough spread
- Overall, skill much lower than in the extra-tropics

Woodhams et al. 2018; Cafaro et al. 2020

Convective-scale forecasts over East Africa

- ----- Convective-scale deterministic
 - Convective-scale ensemble

Science for Weather Information and Forecasting Techniques

GCRF African

Woodhams et al. 2018; Cafaro et al. 2020

Roberts and Lean (2008)

What next?

- 1. Wait for more computing power to run higher resolution models, with more ensembles and add more processes
 - Could add more complexity and noise with limited improvement in skill
 - In wake of convective-scale revolution, smaller gains over longer periods of time
- 2. Improve routine observation network
 - Costly and challenging
 - Better observations only improve forecasts for the first 12-24 hours [e.g. van der Linden et al. 2020]

3. Improve model physics

- Study rainfall and storm processes in more detail
- Would lead to better parameterisations (but requires detailed observations)
- 4. Post-process existing model forecasts
 - Need to better understand model biases and atmospheric processes
 - Use new techniques like machine learning and artificial intelligence

What next?

- 1. Wait for more computing power to run higher resolution models, with more ensembles and add more processes
 - Could add more complexity and noise with limited improvement in skill
 - In wake of convective-scale revolution, smaller gains over longer periods of time
- 2. Improve routine observation network
 - Costly and challenging
 - Better observations only improve forecasts for the first 12-24 hours [e.g. van der Linden et al. 2020]

3. Improve model physics

- Study rainfall and storm processes in more detail -> Woodhams et al. (2019+2021)
- Would lead to better parameterisations (but requires detailed observations)
- 4. Post-process existing model forecasts
 - Need to better understand model biases and atmospheric processes
 - Use new techniques like machine learning and artificial intelligence

Lake Victoria

- Lake Victoria is a hotspot for severe convective storms occur on average 175 days per year
- Storm warning service via text message
- Weather forecasts are no skilful enough storms appear quickly and are unpredictable
- 200,000 fishermen use the lake
- 3000-5000 deaths each year
- Flooding

Lake Victoria

Storm over Lake Victoria 6-7th May 2015

- Past studies have focused on the mean diurnal cycle of storms
- Storms do not occur every day, even in the wet season, so the mean diurnal cycle is not a good predictor of storms
- A basic, process-based understanding of what causes individual storms to initiate, develop and propagate is lacking

Sea breeze circulation

© 2014 Encyclopædia Britannica, Inc.

 Lake-land breeze structures are likely important for triggering storms over Lake Victoria

Lake Victoria

- 1.5km MetUM convective-scale simulations:
- 1. No storm to understand baseline lake-land breeze
- 2. Storm in wet season
- 3. Storm in dry season

Case	Start Date	Run length	Period of interest	Description
Dry period	0000 UTC 9th July 2015	72h	1200 LT 10th to 1200 LT 11th July 2015	Three-day period with no significant rain over Lake Victoria
Long rains storm	1800 UTC 5th May 2015	72h	1200 LT 6th to 1200 LT 7th May 2015	Storm forms over land on the evening of the 6th and propagates onto Lake Vic- toria overnight
Dry season storm	1800 UTC 27th July 2016	72h	1800 LT 28th to 1200 LT 29th July 2016	Storm forms over Lake Victoria during the early morning of the 29th

No storm case

No storm case

No storm case

UNIVERSITY OF LEEDS

Morning glory - Australia

UNIVERSITY OF LEEDS

Collision of sea breezes of different depths excites waves

Goler and Reeder (2004)

Observations

Model simulation

UNIVERSITY OF LEEDS

UNIVERSITY OF LEEDS

Large-scale controls on storm formation

- Lake-land breeze convergence occurs regularly
- Large-scale moisture is a key control on storm formation

Lake Victoria

- Controls on storm formation:
 - (Near?) persistent lake-land breeze circulation
 - Strength and location of lake-land breeze convergence
 - Prevailing wind strength and direction
 - Downslope mountain winds
 - Large-scale moisture availability varies seasonally and sub-seasonally
 - Local moisture availability through evaporation
 - Moisture bulge and possibly waves
 - Lake-land surface temperature difference
 - Storm activity on the previous day cold pools, moisture
- For accurate forecasts we likely need to simulate all above correctly
- Study based on three case studies in a model
- Idealised modelling needed to study land breeze collision + bulge
- Lack of detailed in-situ observations to evaluate models

3 research flights through HyVic pilot field campaign, part of HIGHWAY and Africa SWIFT project

Views of the Earth, Copyright © 2006 by Christoph Hormann http://earth.imagico.de/

Accessed Associate

.....

- 26th January 2019 Evening flight: sample lake breeze
- 27th January 2019 Morning flight: sample land breeze and lake BL

- January = dry season
- Storms often occur in dry season
- Clear conditions = lucky!
- Ideal to capture baseline lake-land breeze circulation

Maswa Gam

Reserve

shiron Google My Maps Shinyanga

Evening flight 300m model data + -125 -100 -75 -50 -25 25 50 75 100 125 Return flow aloft low-level aircraft (e) along-transect wind (ms⁻¹) 6000 height MSL (m) within prevailing observations 5000 southeasterlies 4000 3000 2000 1000 (f) q (g kg⁻¹) 6000 height MSL (m) 5000 Lake breeze front 4000 3000 2000 1000 Kampala Jinj 33.25 33.50 33.75 34.00 34.25 34.75 33.00 34.50 longitude -13.5 -9.0 -4.5 0.0 4.5 9.0 13.5 8 10 12 14 16 2 q (g kg⁻¹) along-transect wind (ms⁻¹) Serengeti National Pa Mwanza

hiron Google My Maps

Evening flight

300m model data + dropsonde observations

UNIVERSITY OF LEEDS

Woodhams et al. 2021

- First in-situ observations of the Lake Victoria lake-land breeze circulation
- First observational evidence of elevated moisture bulge over lake
- Can the model represent the key controls on storm formation?
 - Prevailing wind strength and direction \checkmark
 - Large-scale moisture variability ✓
 - Downslope mountain winds \checkmark
 - (Near?) persistent lake-land breeze circulation \checkmark
 - Strength and location of lake-land breeze convergence ?
 - Moisture bulge ?
 - Local moisture availability through evaporation X
 - Lake temperature X
 - Storm activity on the previous day cold pools, moisture X
- Storm days are more complicated to model, observe and understand

- HyVic *Pilot* Field Campaign
 - Extremely successful
 - Extensive modelling prior to the field campaign allowed us to target the correct time of day and vertical levels to sample, with only three flights
 - Luck with the dry conditions
 - Shown that a field campaign over Lake Victoria is feasible
 - Shown how useful in-situ observations are for model evaluation
- Much larger field campaign in the future

- · Forecast skill in the tropics remains limited, especially over Africa
- Regular severe weather in East Africa
- Forecast communication methods exist
- More detailed, in-situ observations and process studies needed to:
 - better understand the controls on storm formation
 - allow more statistical studies
 - diagnose model biases, leading to improved forecasts
 - develop better parameterisations for global models
 - understand ways to post-process forecasts to in order to improve skill
- Better routine observation network

Questions?

- Woodhams, B. J., C. E. Birch, J. H. Marsham, T. P. Lane, C. L. Bain, S. Webster, 2019: Identifying Key Controls on Storm Formation over the Lake Victoria Basin, Mon. Weat. Rev., <u>https://doi.org/10.1175/MWR-D-19-0069.1</u>
- Woodhams, B. J., P. A. Barrett, J. H. Marsham, C. E. Birch, C. L. Bain, J. K. Fletcher, A. J. Hartley, S. Webster, S. Mangeni, 2021: Aircraft observations of the lake-land breeze circulation over Lake Victoria, Quart. J. Roy. Meteorol. Soc., in review.
- Cafaro, C., B. Woodhams, T. Stein, C. E. Birch, S. Webster, C. Bain, A. Hartley, S. Clarke, S. Ferrett, P. Hill, 2021: Do convection-permitting ensembles lead to more skilful short-range probabilistic rainfall forecasts over tropical East Africa?, Weat. Forecasting, in review.