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East Africa
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« Hotspot for individual severe weather events
* Vulnerable to seasonal and decadal rainfall variability
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2010/2011 drought
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Extra-tropical weather forecast skill
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I Useful forecast

« A7 day forecast today is as good as a 3 or 4 day forecast in 1980
« Forecast skill has increased by a day per decade

Bauer et al. 2015



Global NWP forecasts of rainfall

Latitude

Longitude Vogel et al. Weather and Forecasting 2020

« Almost no skill relative to climatology over most of sub-Saharan Africa

« Slightly better over East Africa
« Lack of routine observations, type of convective systems



Global NWP forecasts of rainfall
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 In sub-Saharan West Africa, 1-day statistical forecasts outperform
global NWP

« Rainfall is driven by convection within African Easterly Waves, which
models struggle to represent

* Further north in dry outer tropics, NWP performs better



Sparsity of routine observations

Global radiosonde network
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 Africa has some of sparest in-situ observations in the world
* Reliance on satellite products in Africa — retrieved products = errors

* Lack of detailed observations (e.g. radar) for process studies and
model evaluation
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Met Office
model forecasts
6th Feb 2021
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« Higher-resolution allows convective processes to develop independently
without the need for convection parameterisation

« Big improvement in the way storms ‘look’ in forecasts
Met Office



Convective-scale forecasts over East Africa
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"~ |4 More skl o Useful skill > 150km scales

« Convective-scale ensembles hardly
worth the extra computational effort

 Ensembles do not provide enough
spread

e Qverall, skill much lower than in the
extra-tropics
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What next?
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1. Wait for more computing power to run higher resolution models, with

more ensembles and add more processes

« Could add more complexity and noise with limited improvement in skill
* |n wake of convective-scale revolution, smaller gains over longer periods of time

2. Improve routine observation network

« Costly and challenging

« Better observations only improve forecasts for the first 12-24 hours [e.g. van der
Linden et al. 2020]

3. Improve model physics

«  Study rainfall and storm processes in more detalil
Would lead to better parameterisations (but requires detailed observations)

4. Post-process existing model forecasts
« Need to better understand model biases and atmospheric processes
« Use new techniques like machine learning and artificial intelligence



What next?
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1. Wait for more computing power to run higher resolution models, with

more ensembles and add more processes

« Could add more complexity and noise with limited improvement in skill
* |n wake of convective-scale revolution, smaller gains over longer periods of time

2. Improve routine observation network

« Costly and challenging

« Better observations only improve forecasts for the first 12-24 hours [e.g. van der
Linden et al. 2020]

3. Improve model physics
«  Study rainfall and storm processes in more detail -> Woodhams et al. (2019+2021)
Would lead to better parameterisations (but requires detailed observations)

4. Post-process existing model forecasts
« Need to better understand model biases and atmospheric processes
 Use new techniques like machine learning and artificial intelligence
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Lake Victoria
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« Lake Victoria is a hotspot for severe convective storms - occur on average |
175 days per year

« Storm warning service via text message

« Weather forecasts are no skilful enough — storms appear quickly and are
unpredictable

« 200,000 fishermen use the lake
« 3000-5000 deaths each year
* Flooding
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Storm over Lake Victoria 6 7th May 2015

 Past studies have focused on the
mean diurnal cycle of storms

« Storms do not occur every day,
even in the wet season, so the
mean diurnal cycle is not a good
predictor of storms

« A Dbasic, process-based
understanding of what causes
iIndividual storms to initiate,
develop and propagate is lacking
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Woodhams et al. (2019)



Sea breeze circulation
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» Lake-land breeze structures are likely important for triggering
storms over Lake Victoria




Lake Victoria
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1.5km MetUM convective-scale
simulations:
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morning ol the 29th

Woodhams et al. (2019)
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NO storm case



NO storm case

Return flow above

Strong onshore flow
in the afternoon
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Woodhams et al. (2019)
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Bulge of moisture propagates with
leading edge of land-breeze front
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availability




NO storm case

(a) 18:00 LT (b) 22:00 LT

6 km A (d) 18:00 LT (e) 22:00 LT
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Woodhams et al. (2019)
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(c) 02:00 LT | Asymmetry due to
prevailing south-

easterlies

Elevated
moisture bulge
has potential to

initiate
convection (but
didn’t on this
day)

(f) 02:00 LT

Gusty winds at the head of land breeze density current
could pose a hazard to fishermen even on dry days

Atmospheric waves could be excited
through collision of density currents
and initiate convection



Morning glory - Australia
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Storm case



Storm case

Observations
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Woodhams et al. (2019)
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Storm case UNIVERSITY OF LEED

Prevailing southeasterlies Cold pool Storm propagates
accelerate over the lake
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Storm case UNIVERSITY OF LEEDS
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Large-scale controls on storm formation UNIVERSITY OF LEEDS
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« Lake-land breeze convergence occurs regularly

« Large-scale moisture Is a key control on storm formation
Woodhams et al. (2019)



Lake Victoria UNIVERSITY OF LEED

« Controls on storm formation:
= (Near?) persistent lake-land breeze circulation
= Strength and location of lake-land breeze convergence
= Prevailing wind strength and direction
* Downslope mountain winds
= Large-scale moisture availability — varies seasonally and sub-seasonally
= Local moisture availability through evaporation
* Moisture bulge and possibly waves
» Lake-land surface temperature difference
= Storm activity on the previous day — cold pools, moisture

* For accurate forecasts we likely need to simulate all above correctly
« Study based on three case studies in a model

* |dealised modelling needed to study land breeze collision + bulge

« Lack of detailed in-situ observations to evaluate models



Research flights
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3 research flights
through HyVic pilot
field campaign, part of
HIGHWAY and Africa
SWIFT project
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Research flights
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« 26" January 2019 Evening flight: sample lake breeze
« 271" January 2019 Morning flight: sample land breeze and lake BL

Woodhams et al. 2021



Research flights
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* Clear conditions = lucky!
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Research flights
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Evening flight
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Research flights
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Research flights UNIVERSITY OF LEED

Evening flight

300m model data + dropsonde observations
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Research flights
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27 Jan 2019 (observations: 0712-0855 LT, model: 0800 LT)
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Research flights
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 First in-situ observations of the Lake Victoria lake-land breeze circulation
« First observational evidence of elevated moisture bulge over lake

« Can the model represent the key controls on storm formation?
= Prevailing wind strength and direction v
= Large-scale moisture variability v
= Downslope mountain winds v/
= (Near?) persistent lake-land breeze circulation v
= Strength and location of lake-land breeze convergence ?
= Moisture bulge ?
= Local moisture availability through evaporation X
= Lake temperature X
= Storm activity on the previous day — cold pools, moisture X

« Storm days are more complicated to model, observe and understand



Research flights
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* HyVic Pilot Field Campaign
— Extremely successful

— Extensive modelling prior to the field campaign allowed us to target the
correct time of day and vertical levels to sample, with only three flights

— Luck with the dry conditions
— Shown that a field campaign over Lake Victoria is feasible
— Shown how useful in-situ observations are for model evaluation

* Much larger field campaign in the future



Summary
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« Forecast skill in the tropics remains limited, especially over Africa
* Regular severe weather in East Africa
» Forecast communication methods exist
* More detailed, in-situ observations and process studies needed
to:
— better understand the controls on storm formation
— allow more statistical studies
— diagnose model biases, leading to improved forecasts

— develop better parameterisations for global models
— understand ways to post-process forecasts to in order to improve skill

 Better routine observation network
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