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Abstract

Droughts and flooding over East Africa produce large scale humanitarian disasters
such as famine. The recent 2010-11 drought led to an estimated 250,000 deaths in
the region, whilst flooding also causes deaths, population displacement, and damage to
infrastructure. A better understanding of East African rainfall variability, leading to

improved seasonal forecasts, could drastically reduce the impact of these events.

The most widely used operational seasonal forecast in the region is the consensus based
Greater Horn of Africa Climate Outlook Forum (GHACOF) forecast, produced using
a combination of dynamical and statistical model forecasts alongside local knowledge.
In this thesis, for the first time, East African rainfall forecasts from GHACOF are
compared directly to dynamical seasonal forecasts from the UK Met Office Unified
Model, and both are evaluated against observations. Both forecasts appear to show
good skill at forecasting the short rains, whilst poor skill in forecasting the long rains

is found.

The drivers of variability in the long rains are studied, linking the long rains to zonal
winds over the Congo basin on both inter-annual and decadal timescales, with westerly
anomalies leading to more rainfall over East Africa. A source of variability in these
zonal winds is found to be the North Atlantic Oscillation (NAO). A Rossby wave
response to pressure changes during NAO events propagates equatorward, eventually
reaching the Congo basin. The Met Office seasonal forecast model is able to represent
both the connection between zonal winds over the Congo and rainfall, as well as the
NAO Rossby wave mechanism, in its ensemble members. However, the NAO amplitude
in the ensemble mean is too small, and so the teleconnection linking the NAO and the
long rains in the ensemble mean is hidden by noise, but these results offer hope for

future skilful dynamical predictions of the long rains.
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Chapter 1.

Introduction

1. Motivation

East Africa is a region highly vulnerable to severe weather, climate change, and climate
variability. From the arid lowlands near the Indian Ocean coast, to the steep highlands
further inland, as well as several large lakes, the large contrasts in geography over
relatively short distances provides a challenge to forecasting on all time scales. The East
Africa region (shown in Figure [I.1j) consists of a number of developing countries, with
the region having one of the most rapid population growths in the entire planet. This
means that the impact of weather and climate extremes can often be exacerbated by
socio-economic and political factors, and also that the region is particularly vulnerable
due to a relative lack of technology and infrastructure. Many countries within the East
African region have been identified by the International Monetary Fund (IMF) World
Economic Outlook Database (International Monetary Fund|[2020)) as having some of the
fastest real gross domestic product (GDP) growth rates in the world; 4 out of the top
10 fastest GDP growth rates in the world in 2018 were located in East Africa (World
Bank! 2020). However, they are also some of the countries with highest proportion of
GDP coming from the agricultural sector (CIA World Factbook||2020), for example, in
2017, in Kenya 34.5% of GDP was from the agricultural sector, compared to a world
average of 6.4%, whilst in Somalia in 2013, 60.2% of GDP comprised of agriculture.

This renders the economies of these countries particularly susceptible to extreme events.

Of the severe weather and climate events, the Global Facility for Disaster Reduction
and Recovery (GFDRR) has identified that droughts and floods are the most damaging
natural disasters in the region (GFDRRJ2020)). For example the 2011 drought, caused

by the failure of two consecutive rainfall seasons, resulted in widespread famine. It is
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Figure 1.1.: a) Map showing geographic features and topography of East Africa. Eleva-
tion data come from the Global Land One-kilometer Base Elevation (GLOBE) project
database (Hastings and Dunbar|[1999). b) Annual cycle of rainfall over different re-
gions of East Africa, with colours matching up to the boxes in a. Dashed lines show
unimodal rainfall cycles, whilst solid lines show bimodal rainfall cycles with long rains
and short rains seasons. Rainfall data is taken from the Tropical Rainfall Measuring
Mission (TRMM; Huffman et al.2007).

estimated that there were over 250,000 deaths as a result of lack of food availability
caused by the drought, with Somalia in particular experiencing widespread famine
(FAO and FEWS NET]2013). This crisis was also exacerbated by political factors,

such as the prevention of aid reaching the local population by militant groups that

controlled affected regions. Meanwhile, during the long rains in 2018, heavy rainfall
caused widespread flooding (Kilavi et al.[2018), in Kenya 186 lives were lost and 300,000
people were displaced (UN Office for the Coordination of Humanitarian Affairs (OCHA)|
2018). Further, drought and flood events can occur in quick succession
, for example much of East Africa having experienced widespread droughts in
2017 before the flooding in 2018.

Due to the seasonal nature of rainfall in the region, these events can be driven by the
seasonal timescale, meaning that seasonal forecasts can be an invaluable tool for miti-
gating and preventing humanitarian disasters related to the events. Seasonal forecasts
have been used to reduce the potential impact of natural disasters, or to take advantage
of good conditions to provide an economic boost to the region. For example, in 2009, af-
ter forecasts issued by the Greater Horn of Africa Climate Outlook Forum (GHACOF)

predicted normal to above normal rainfall, the Kenya Red Cross distributed seeds to

70,000 Kenyan farmers, resulting in a bumper harvest (Graham et al.||[2012). However,

use of seasonal forecasts can still be improved. A briefing paper by [Oxfam and Savel
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the Children (2012) looking at the 2010-11 famine revealed that despite accurate pre-
dictions of below normal rainfall for the 2010 short rains, that led to Kenya Red Cross
issuing appeals in early 2011 (Graham et al.[2012)), and FEWS NET warning of a crisis
in the case of the failure of the long rains, little response was taken until near the end
of the long rains season in May 2011, by which time the famine was well underway. A
similar pattern was also noted for the Kenyan drought of 2005-06 (Oxfam and Save the
Children| 2012).

Meanwhile, tropical regions have been identified by the Intergovernmental Panel on
Climate Change (IPCC|2018)) as likely to experience some of the most disproportionate
consequences of anthropogenic climate change, with East Africa being one area likely
to first feel the impacts. In fact, several recent climate events have been identified
as having been caused or exacerbated by anthropogenic climate change. For example
Lott et al. (2013)) performed event attribution on the rainfall seasons preceding the 2011
drought, finding that human influence increased the probability of the long rains being
as dry as in 2011, although there was no evidence of human influence on the 2010 short
rains. Meanwhile Uhe et al.| (2018) identified that the likelihood of the La Nina event of
2016 that led to Kenyan drought was increased due to human-induced climate change.
Under climate change, it is widely expected that throughout the tropics rainfall will
become less frequent but more intense (Seneviratne et al.[2012). This will have negative
impacts, such as increased stress on agriculture, increased frequency of flooding and
landslides, more people displaced from their homes, and damage to transport links and
infrastructure. As well as increased water stress, rising sea levels also threaten many

in coastal areas.

East Africa is also currently facing a long term decline in its main rainfall season,
the long rains (e.g. [Funk et al.[[2005] [2008, Lyon and Dewitt [2012]), which contrasts
with wetter conditions predicted by many climate projections (e.g. Shongwe et al.|2011]
Anyah and Qiul[2012). This has been termed the East African Climate Paradox (Rowell
et al.2015), and this uncertainty poses problems for long-term planning and adaptation
to climate change as it is unclear whether to expect wetter or drier conditions in the

future, as well as undermining user confidence in the climate projections.

All of these factors mean that reliable, accurate, seasonal forecasts, underpinned by
knowledge and understanding of the mechanisms influencing variability of rainfall on
this timescale, are critical for the well-being and development of the region. Un-
derstanding of longer term variability of seasonal rainfall, particularly under climate

change, is also essential for the long term planning needed to mitigate large scale dis-
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asters. Seasonal forecasting is key for planning, however, it remains a huge challenge
with little forecasting ability for many regions and seasons. This thesis looks to make
progress in improving the current state of understanding to improve seasonal forecasting
for East Africa.

2. East Africa

2.a. Climatology of East Africa
2.a.1. Annual cycles of rainfall

East Africa is located within the tropics and so experiences seasonal rainfall cycles as
a result of the motion of the Intertropical Convergence Zone (ITCZ). The ITCZ is a
band of enhanced convection, driven by trade winds from the southern and northern
hemispheres converging, leading to upwards motion. The water vapour in the air
forced upwards condenses, forming clouds. This upward motion is part of the Hadley
Cell, a circulation that involves low level air moving towards the equator and rising
through the troposphere, before travelling away from the equator. It then descends at
approximately 25° north or south. This descending branch of the Hadley Cell leads to
many of the major deserts being located at approximately these latitudes, including
the Sahara and Arabian deserts in the northern hemisphere (Webster|2020).

The ITCZ moves meridionally throughout the year, following the region of most in-
tense heating from the Sun. It passes over the equator twice per year, leading to two
distinct rainfall seasons in equatorial regions, whilst further north and south close to
the limits of movement of the ITCZ, there is a singular rainfall season per year. In the
equatorial East Africa region (Kenya, northern Tanzania, southern/ coastal Somalia,
southern Ethiopia, eastern Uganda), the ITCZ passes over twice per year, giving two
rainfall seasons. These are commonly referred to as the long rains (also known as Gu in
Somalia, Belg in Ethiopia or Masika in Tanzania) and the short rains (Deyr in Somalia,
Vuli in Tanzania). The short rains season occurs roughly from October to December
(OND), whilst the long rains occur from March to May (MAM), seen in boxes d, e, and
f in Figure[I.1] Further north and south are unimodal wet seasons; in southern Tanza-
nia the Tanzania unimodal rains, occurring approximately from November through to
April (Figure box a) in South Sudan the South Sudan rains from April to October
(Figure box b), and over the Ethiopian highlands the Kiremt rains, occurring from
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Figure 1.2.: Bimodal and unimodal rainfall regions calculated by considering the domi-
nant Fourier harmonic of the rainfall cycle, with ¢o the semi-annual, and ¢; the annual,
harmonic. Values of log, |c2/c1]| > 0 (colours) have two rainfall seasons per year, whilst
log, |c2/c1| < 0 have one rainfall season per year. The 0 line is shown as a white con-
tour. Figure adapted from [Yang et al.| (2015a) FIG. 3. Rainfall data used to calculate
the harmonics is taken from TRMM.

June to September (Figure box c). Figure adapted from [Yang et al. (2015a)),

uses Fourier harmonics of the precipitation annual cycle to determine where unimodal

or bimodal peaks in rainfall occur. The semi-annual, ¢o, and annual, ¢;, harmonics are
calculated, then the ratio of semi-annual to annual, c3/cq, is found. The base-2 loga-
rithm, logy |ca/c1], is then taken. Areas where this is positive (or ca > ¢1) suggest the
area experiences two rainfall seasons, whilst areas where this is negative (or ca < ¢1)
have one rainfall season per year. This method does however exclude the possibility
of capturing regions with more than two rainfall peaks per year, and
, using a method of determining onset and cessation of rainfall seasons, showed
that there were small areas within the East Africa region that undergo three rainfall

seasons per year.
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2.a.2. Topography

A map of the topography of East Africa is seen in Figure [[.Ia. The dominant features
of the region are related to the Great Rift Valley. Two main mountain ranges, the
Ethiopian highlands (located at 15°N to 5°N, 35°E to 43°E), in central Ethiopia, and
the East African highlands (located at 3°N to 5°S, 28°E to 37°E), covering western
Kenya, northern Tanzania, Uganda, Rwanda and Burundi, have a large influence on

the weather experienced within the region.

There are also several large lakes within the region, together referred to as the Rift
Valley Lakes. Of these the most significant is Lake Victoria, in the centre of the
East African highlands. Lake Victoria is the second largest freshwater lake in the
world by surface area, at approximately 68,800km? (Bengtsson et al|[2012), and a
great number of the East African population (approximately 40 million, African Great
Lakes Information Platform!2020) reside upon its shores, whilst the lake itself provides
a livelihood for many, including approximately 200,000 fishermen. The lake is large
enough to have a great influence on the weather in the region immediately surrounding
it, with much recent research focused on understanding and predicting storms that
form over the lake (e.g. (Chamberlain et al.|2014, Williams et al.[2015, Woodhams et al.
2018, 2019). These storms, and associated impact on the surface water conditions claim
approximately 5,000 lives per year (Atieno et al. 2017), and so being able to predict
and give warnings of these storms is of great importance. The majority of water within
Lake Victoria is provided by rainfall (Piper et al.[[1986), whilst the lake outflows into the
River Nile. Due to this, the water level of Lake Victoria is highly sensitive to rainfall
totals. For example after record-breaking rainfall in 1961, the level of the lake jumped
by over a metre (Kite|[1981} |1982), the largest jump on record, as well as the highest
recorded level of the lake. As the lake outflows into the Nile, the lake level is important
in providing water downstream, where many depend upon it as a water source. Aside
from Lake Victoria, several other lakes of note include Lake Malawi, Lake Tanganyika,
and Lake Turkana. Furthermore, the topography influences the climatology of the low

level circulation in the region.

2.a.3. Circulation features

Within the lower troposphere over East Africa there is a distinct annual cycle within
the circulation. Figure [I.3]shows monthly climatologies of winds at 850hPa. One of the

key features at 850hPa is a jet from over the southern Indian Ocean, flowing in to East
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Africa from the south east, before curving towards India in a southeasterly direction.
This is known as the Somali Jet, and was first observed by [Findlater, (1966, 1969} 1977)).
This jet occurs from approximately May to October, at which point it breaks down,
and the northern part of the jet reverses direction by December, travelling from over
India towards East Africa. The second reversal then occurs approximately in March.
As noted by |Okoola; (1999al), East Africa therefore lies under two monsoon systems,
the northeast (NE) and southeast (SE), the NE occurring during southern hemisphere
summer, and the SE during northern hemisphere summer. The twice annual reversals
of the Somali Jet coincide with the short and long rains seasons respectively. The
transition between the two monsoons lead to weak convergence over East Africa, with
air masses moving equatorward from both hemispheres, moving onshore and forced to

ascend by coastal friction and topography (Nicholson|/1996)).

A smaller scale, low-level jet that occurs throughout the year is also present in Figure
located in northwest Kenya. This jet forms in the valley between the East African
highlands and the Ethiopian highlands, known as the Turkana channel. This jet is
called the Turkana jet and was first observed by Kinuthia and Asnani| (1982) and
Kinuthia, (1992). The jet has been found to be responsible for the arid climate within
the northwestern Kenya, southwestern Ethiopia, and southern Somalia region, with
strongly divergent flow over this region at low levels as the wind enters the Turkana
channel (Nicholson [2016a).

The upper and lower tropospheric zonal winds across the equator form the Walker
circulation (Bjerknes||1969)), a series of closed circulation cells analogous to the Hadley
Cells oriented zonally around the equator. This leads to regions of low level conver-
gence/ divergence, with the reverse at upper level, and upward/ downward motion,
impacting on the levels of convection seen in these regions. In the climatology, East
Africa is frequently considered to be under a descending branch of the Walker circula-
tion. The Walker circulation is formed due to the pressure gradient force: there is a
high-pressure region over the eastern Pacific Ocean, near the coast of South America,
with a low-pressure region over Indonesia. This leads to low level easterly winds across
the Pacific Ocean. These easterly winds impact the ocean, causing upwelling of cool
water off the coast of South America. In contrast, low level westerly winds are present
across the Indian Ocean, drawing moisture away from East Africa. The combination of
circulation features over East Africa lead to the region experiencing divergence or weak
convergence throughout the year, contributing to the arid climate observed within the
region (Lyon |2014)).
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Figure 1.3.: Monthly climatology of 850hPa winds (vectors) and wind speeds (colours).
Wind data are taken from the European Centre for Medium-range Weather Forecasts
(ECMWF) interim reanalysis (ERA-Interim; |Dee et al.[2011]).
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Figure 1.4.: Monthly sea surface temperature (SST) climatology in the tropics. SST
data taken from the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST)
dataset (Rayner et al.2003).
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2.b. Climate and rainfall characteristics

Much of East Africa is classified as being either arid or semi-arid under the Képpen-
Geiger climate classification (Koppen! (1900, (1936, Peel et al.|2007). This is notable
as East Africa is equatorially located, and the majority of the rest of the land mass
around the equator is categorised as tropical. Several explanations have been proposed
for the aridity. As discussed above, there is generally divergent large-scale flow over
East Africa (Lyon/|2014), preventing the formation of deep convection, whilst Nicholson
(1996) suggested that the orography also played a role, as it controls features of the
circulation. Nicholson| (1996) suggested that the chain of mountains within the East
African and Ethiopian highlands effectively redirect the low level jet, leading it to run
approximately parallel with the coastline, minimising the flux of moisture into the
region. The frictional contrast between the shore and water also induces subsidence
(Bryson and Kuhn|1961)). The chain of mountains also effectively blocks moist, unstable
air from the Congo airmass from entering into East Africa (Okoolal{1999a/b)). Nicholson
(1996) also suggests that the NE and SE monsoons are associated with thermally stable,
dry air, and that moist air streams are relatively shallow. Also likely to play a role are
the relatively low sea surface temperatures (SSTs) off the coast of Somalia, as shown

in Figure in comparison to other tropical SSTs, further reducing rainfall amounts.

An alternative, thermodynamic explanation to East Africa’s aridity was proposed by
Yang et al. (2015al), describing a ventilation mechanism. The annual cycle of rainfall
over the region is dominated by the moist static energy (MSE): the atmosphere over
East Africa is found to be convectively stable due to the import of low MSE near-
surface air from over the Indian Ocean, from the winter hemisphere, whilst the rainfall
seasons occur during rises in the local SSTs (seen in Figure[1.4)), causing the import of
less stable air. The ventilation (import of low MSE air) depresses local convection and

precipitation, leading to the dry climate.

2.c. Interannual variability of rainfall: short rains season

The short rains season, occurring from October to December, is the rainfall season
with the largest interannual variability (Hastenrath et al.[[1993, |Camberlin and Okoola;
2003), and correspondingly correlates well with the annual rainfall total of the region
despite contributing less rainfall than the long rains (Nicholson (1996, [Camberlin and
Wairoto||1997)).

10
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Figure 1.5.: Locations of indices used to measure El Nino-Southern Oscillation and
the two poles of the Indian Ocean Dipole; western tropical Indian Ocean (WTIO) and
southeastern tropical Indian Ocean (SETIO).

2.c.1. El Nino-Southern Oscillation

The largest source of interannual variability in the tropics is El Nino-Southern Oscilla-
tion (ENSO; Rasmusson and Carpenter|[1982). A coupled atmosphere-ocean mode of
variability, El Nino refers to the oceanic part, which consists of a warming off the Pacific
coast of equatorial Peru in boreal winter. The Southern Oscillation is the atmospheric
part, a periodic oscillation in the pressure gradient between the western and eastern

Pacific Ocean.

The Southern Oscillation was first observed in the 1920s (Walker (1928 Walker and
Bliss [1932), during research into how the pressure over the Pacific Ocean influenced
the Indian Monsoon. Walker (1925 1928) noticed that the pressure “seesawed” be-
tween the western Pacific Ocean close to the Indian Ocean, and the eastern Pacific
Ocean. Specifically, the most common index for the Southern Oscillation, the Southern
Oscillation Index (SOI; |Chen [1982) considers the pressure difference between weather
stations at Darwin, Australia, and on the island of Tahiti (locations shown on Figure
. A negative (positive) SOI value implies higher (lower) than usual pressure over

Darwin and lower (higher) than usual pressure over Tahiti.

Meanwhile, the oceanic part of ENSO was first observed as warming of the waters off
the Pacific coast of South America every few years, negatively impacting fishing. It
was observed to occur in boreal winter, or around Christmas, leading to the name “El
Nifio”, meaning the boy child. An inverse event, with cooler waters off the Pacific
coast was also observed to occur, and is called “La Nina”, meaning the girl child. In
particular, the SST anomaly of several regions of the Pacific Ocean have since been
determined to monitor and define the occurrence of ENSO events. Four Nifio regions
were originally defined (labelled Nino 1 through 4 shown on Figure throughout

the Pacific Ocean, reflecting the life cycle of an El Nino event, based on ship tracks

11
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studied by Rasmusson and Carpenter| (1982), starting off the coast of Peru and moving
westwards into the central equatorial Pacific. Later, Barnston et al. (1997) identified
and defined the Nifio3.4 region, lying halfway between the Nino3 and Nifio4 regions, as
being the most appropriate measure of strength of ENSO. This covers a region of the
Pacific Ocean from (170°W to 120°W, 5°S to 5°N).

It was later found by Bjerknes| (1966, [1969)) that El Nino and the Southern Oscillation
were a coupled system, with a negative SOI coinciding with El Nifio, and positive SOI
coinciding with La Nina. A more complete picture of the physical processes of ENSO
is as follows. Under normal conditions, low level trade winds travel in an easterly
direction across the equatorial Pacific Ocean, pushing warm water westwards, causing
cool upwelling off the coast of Peru. Under the surface exists a thermocline, a sudden
change in temperature of the water with depth. In usual conditions, due to the cool
upwelling, the thermocline is shallow in the east, and deep in the west. A reduction
in the pressure gradient across the Pacific Ocean, with higher pressure further west,
slackens the low level winds. This reduces the cool upwelling off the coast of South
America, reducing the gradient of the thermocline, and leading to an increase in SST's
off the coast of South America. The warmer SST then leads to a lower atmospheric
pressure directly above the ocean here, partly due to increased convection caused by the
warmer SSTs, further reducing the pressure gradient. This leads to a positive feedback
loop (known as a Bjerknes feedback), whereby the anomalies sustain and enhance each
other. |Wyrtki (1975) further proposed that El Nino events are actually a response to
excessively strong easterly trade winds. These strengthen the westward current, causing
an east to west gradient in sea level by pushing water to the western Pacific. When the
wind stress relaxes, the sea level gradient then causes the warm surface water to move
eastwards, leading to the El Nino event. Figure shows a composite of typical SST

and low level winds during an El Nino and La Nina.

Whilst El Nino was originally observed around Christmas, it has since been found that
the direction of the El Nino/ La Nina event will begin to develop in boreal summer
(from around June onwards), peak near the beginning of winter, and decay late into
winter (usually January to February). In very strong cases, the event can persist into
boreal spring (March to May). The blue line in Figure[L.7shows the standard deviation
of the Nino3.4 index throughout the year, with a clear rise into boreal summer, and
decay from boreal winter into spring. The minimum in variance of the Nino3.4 index
occurs during the boreal spring, and this is generally considered the transitional period
for events. It has also been found that predictability of ENSO is limited by this spring

transitional period (Webster and Yang|1992), this is commonly referred to as the spring

12
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Figure 1.6.: Composite plot of SST (colours) and 925hPa wind (arrows) anomalies
during El Nifio and La Nina years. SST data are from HadISST (Rayner et al.|2003),
and winds are from ERA-Interim (Dee et al.[2011]).

predictability barrier (Torrence and Webster|[1998). It means that forecasts that rely
on the predictability and time persistence of ENSO cannot pass over this time of the
year, ie forecasts for the peak of ENSO (in the winter) in a certain year, cannot be made
earlier than approximately May. This can be seen in Figure [I.7] where the persistence
of the Nino 3.4 region is low during spring months even at short lead times. It is found
that ENSO is quasi-periodic, with a period of roughly 3 to 7 years (Trenberth||1997)).
It has also since been determined that the impacts on weather of this mode of climate
variability are seen around the globe (Rasmusson and Carpenter||1982), e.g. India
(Bhalme et al./[1983), Australia (McBride and Nicholls [1983), New Zealand (Gordon
1986)), South America (Aceituno|/1988), and the Sahel (Folland et al.|1986).

ENSO has been found to have strong links to interannual variability of East African
rainfall, particularly the short rains season. El Nino events lead to increased seasonal
rainfall totals, whilst La Nina events cause decreased seasonal rainfall (Nicholson and
Selato|[2000). Early evidence of this was found by Rodhe and Virji (1976)) and Ogallo
(1979), who identified periodicities in the short rains interannual variability that were
similar to those of ENSO. Rodhe and Virji (1976 suggested that determining the

13
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Figure 1.7.: Persistence of the Nino 3.4 region, by month and lead time, measured by
calculating the correlation coefficient between the SST of each month and the following
11 months for lead times 1 to 12 (colours). A high correlation coefficient indicates high
persistence between months. Blue line shows standard deviation of Nino 3.4 region over
each month, with inverted y-axis. SST data taken from HadISST (Rayner et al.[2003).

physical processes responsible for the periodicities could be used to estimate years with
rainfall above or below certain limits, an early suggestion that forecasting on a seasonal
timescale may be possible. , based on this study, found that across many
rain gauges in East Africa there existed a significant zero-lag correlation between the
monthly SOI and the monthly rainfall total for the months coinciding with the short
rains, finding correlation values up to around 0.6 over the period 1923-1984, whilst
also noting that there also existed significant lagged correlations between monthly SOI
and rainfall during the short rains, extending as far back as July. Several studies since
have investigated and confirmed this relationship (e.g. |Ogallo |1989, Hutchinson| 1992,
Nicholson and Kim!/|1997, [Indeje et al.|2000, |Camberlin et al.|[2001)).

Ogallo| (1988]) also noted however that some extreme wet and dry episodes during the
short rains were not related to the Southern Oscillation, whilst Rodhe and Virji| (1976])

also observed other periodicities than the one connected to ENSO, in particular, one
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with a period of approximately 2 years.

2.c.2. Indian Ocean Dipole

Another, more recently discovered, mode of variability exists in the Indian Ocean.
This is most often termed the Indian Ocean Dipole (IOD), or in some cases the Indian
Ocean Zonal Mode (I0ZM). It was first observed by [Saji et al.| (1999) and |Webster et al.
(1999). [Saji et al. (1999) identified a pattern of variability with above normal SSTs in
the western Indian Ocean off the coast of East Africa alongside below normal SSTs in
the eastern Indian Ocean around Indonesia, alongside wind and rainfall anomalies. In
particular, Saji et al. (1999) demonstrated a very strong link between surface equatorial
zonal winds across the Indian Ocean basin, and an index defined as the difference
in SST anomaly between the western tropical Indian Ocean (50°E to 70°E, 10°S to
10°N; WTIO) and the south-eastern tropical Indian Ocean (90°E to 110°E, 10°S to 0°;
SETIO), both shown on Figure This index is referred to as the dipole mode index
(DMI). Several other studies since have investigated and confirmed this relationship
(e.g. Black et al. 2003, Owiti et al. 2008, Ummenhofer et al.|[2009). Figure shows

composites of typical SST and wind anomalies during 10D events.

Later work identified the mechanism through which the IOD influences rainfall. By
comparing events, [Black et al. (2003) identified that the rainfall anomalies over East
Africa are driven by the easterly wind anomalies, weakening the climatological westerly
flow that transports moisture away from the African continent. This also leads to
reduced rainfall over the central and eastern Indian Ocean. Black et al. (2003) also
suggested that this time of year is most susceptible to changes in SST gradient as
climatologically the west to east gradient is at its minimum, meaning small changes
can reverse the direction of the gradient and have large impacts on the circulation.
This mechanism also lines up well with the observation of [Saji et al. (1999) that the
low level zonal wind strength is strongly tied to the rainfall, which was also confirmed
by [Hastenrath| (2007). [Ummenhofer et al.| (2009) found that in simulations, the western

pole of the IOD is more important in controlling rainfall.

These mechanisms are consistent with that observed by |[Hastenrath et al.| (1993) prior
to the discovery of the IOD. They proposed a link with ENSO; in the case of a high SOI
(equivalent to La Nina), there is high pressure over the western Indian Ocean, and low
pressure over the eastern Indian Ocean, causing cool waters off the coast of East Africa,

and strong westerlies across the Indian Ocean. This produces a positive feedback loop
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Figure 1.8.: Composite plot of SST (colours) and 925hPa wind (arrows) anomalies
during positive and negative IOD years. SST data are from HadISST (Rayner et al.
2003), and winds are from ERA-Interim (Dee et al. 2011)).

leading to increased divergence over East Africa. Hastenrath| (2000) found the opposite
occurs when the zonal circulation is weak. This mechanism is related to the Walker
circulation cell over the Indian Ocean, and the alterations are analogous to that of
ENSO in the Pacific Ocean.

2.c.3. Independence of IOD and ENSO

Both IOD and ENSO influence weather patterns through changes in the Walker circula-
tion. They occur at a similar time of year, and often the positive and negative phases of
IOD and ENSO occur simultaneously. This has led many authors to question whether
the IOD is indeed an independent mode of variability or whether it is an extension of
ENSO (Marchant et al. 2007, Meyers et al.[[2007)). Work prior to the identification of
the IOD attributed changes over the Indian Ocean basin to ENSO (Hastenrath et al.
1993)).
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Black et al. (2003) stated that IOD should not be viewed in isolation from ENSO, and
suggested that strong ENSO forcing sets up the IOD event that then impacts East
African rainfall. However [Saji et al| (1999) and |Saji and Yamagata (2003) suggest
that IOD is indeed an independent mode of variability, as demonstrated by the fact
that there are years where a strong IOD occurs and impacts East African rainfall, in
absence of an ENSO event. The key example of this is the year 1961 (Saji et al.|1999),
which saw record-breaking rainfall, and a strong positive IOD, whilst ENSO conditions
were neutral. [Yamagata et al. (2004) suggested that only approximately one third of
IOD events are associated with ENSO. Yamagata et al. (2004) and Behera et al.| (2005])
produced composites of the short rains in years where IOD was positive but ENSO
neutral, and years where IOD was neutral but ENSO positive. From this it was seen
that IOD acting alone produced excess rainfall over East Africa. However, when ENSO
acted alone, no significant change in the short rains was observed. [Bahaga et al.| (2015)
and Wenhaji Ndomeni et al. (2018)) also found similar results, and demonstrated that
both IOD and ENSO acting together also produced a strong response in the rainfall.
Yamagata et al.|(2004]), and |Behera et al.| (2005) also showed that correlations between
ENSO and the short rains disappeared when the influence of IOD is removed, whilst in
the opposite case, correlations between IOD and the short rains were still strong after

the influence of ENSO is removed.

2.c.4. Nonstationarity in teleconnections

Whilst the mechanisms behind both the IOD and ENSO’s ability to control rainfall
over East Africa are relatively well understood, and therefore mean they are fairly reli-
able tools for seasonal forecasting, several authors have proposed that the relationship
between the short rains and these teleconnections could be nonstationary over longer
timescales. This could present complications in using them for forecasting. For ex-
ample, it has been suggested that the IOD control on the short rains has increased
in strength in recent decades (e.g. |Clark et al|2003, Manatsa et al. 2012, Manatsa
and Behera [2013, Nicholson| 2015)). There is also evidence of climate shifts, and low

frequency oscillations in strength of teleconnections.

However there are issues with these studies. Firstly, both IOD and ENSO undergo
fluctuations in their activity on longer timescales: it is likely that if fewer strong ENSO
or IOD events occur in a certain time period, then the typical measures of strength of
relation used in these studies (such as correlation) between these and rainfall will appear

to weaken. This does not necessarily mean that how an individual IOD or ENSO event
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impacts East African rainfall has changed. These measures also fail to account for other
processes that may be impacting rainfall totals, that also have their own fluctuations
in activity. Additionally, several papers report abrupt changes in correlation values
when applying a sliding window technique onto time series of data, however, these are
likely to occur naturally when an outlying year in the data enters into the window. For
example in |[Manatsa and Behera, (2013), an abrupt change is reported in the year 1961,
however, this is simply adding an outlying point into the data: the year 1961 is one of
the wettest years on record, lying several standard deviations above the mean. This
causes a jump change in the correlation, but this change is mostly reversed when the
outlying point exits the window 30 years later. It is also unsurprising that these studies
report lower correlations when there are few active events in a period, as it is only when
the conditions in these climate phenomena shift away from normal conditions that they
have a control on the weather: in years where for example IOD or ENSO conditions are
near normal, there will still be variability in the short rains due to other factors, but
the signal coming from IOD/ENSO would be relatively smaller than usual, and so the

correlation between IOD/ENSO and rainfall would naturally be lower in these cases.

Despite these issues, longer term variability in teleconnections should not be ignored,
as they could be indicative of changes in lower frequency modes of variability, but care

should be taken in the methods used to determine such changes.

2.d. Interannual variability of rainfall: long rains season

The long rains, although generally considered less variable, and more consistent than
the short rains, still contain substantial year to year variability in total rainfall amounts.
This has wide impacts as the main crop-growing season, so being able to predict this
variability is of great importance. Whilst the short rains season has been found to
be linked to global scale modes of variability such as ENSO and 10D, little evidence
for this has been found for the long rains (e.g. |Ogallo||1988, Camberlin and Wairoto
1997, Pohl and Camberlin/|2006b). This is partly linked to the time of year at which
the long rains occurs; during the transition period for ENSO, where the inter-annual
variance in the SSTs in this region of the Pacific is lowest (Torrence and Webster||1998)).
Hastenrath et al.| (1993) also demonstrated that in boreal spring surface pressure is low
across the Indian Ocean, ruling out the mechanism of the IOD and ENSO altering the
Walker circulation. Hastenrath et al.|(2011]) assigned the lack of a zonal circulation cell

over the Indian Ocean in boreal spring to winter cooling.
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Several of the phenomena discussed in this section are also relevant for the short rains
season, however their influences are small compared to the previously discussed tele-
connections of ENSO and I0OD.

2.d.1. Madden-Julian Oscillation

The Madden-Julian Oscillation (MJO) is an eastward propagating oscillation in the
tropical atmosphere, first observed and described by [Madden and Julian (1971} |1972]
1994). Madden and Julian (1971) observed an opposing oscillation in zonal wind anoma-
lies in the lower and upper troposphere (around 850hPa and 150hPa respectively).
Madden and Julian| (1972)) further noted that a disturbance in the surface pressure fol-
lowed the zonal wind anomalies, and suggested that the MJO is linked to a concurrently
observed area of enhanced large-scale convection driven by low level convergence, fol-
lowed by an area of suppressed convection. This can be seen in the rainfall composites

in Figure [1.9] resembling a shift of the Walker circulation.

Wheeler and Hendon| (2004) proposed a system for describing the activity and loca-
tion of the MJO. It uses a system of 8 phases, which determine the location, and an
amplitude for determining how active the event is. These are derived using empirical
orthogonal functions (EOFs). The two leading modes are referred to as Real-time Mul-
tivariate MJO series 1 and 2, or RMM1 and RMM2. Using the values of these in a
polar system, an amplitude and phase can be determined, where the amplitude is the
distance from 0 (y/(RMM1)2 + (RMM2)2), and the phase related to the angle. These
are visualised in a Wheeler-Hendon diagram, as seen in Figure The angles are

labelled as phases from 1 to 8, with phase 1 meaning that the enhanced convection is
over Africa, and the phases move eastwards around the equator, for example phases 2
and 3 mean the centre of enhanced convection is over the Indian Ocean. The MJO is

considered active if the amplitude is greater than 1 (marked by the inner circle).

The MJO is the primary source of intraseasonal variability within the tropics (Mad-
den and Julian/[1994). Pohl and Camberlin! (2006a) studied the intraseasonal influence
of the MJO on East African rainfall during both rainfall seasons. They found that
intraseasonal wet events in East Africa occur alongside large scale anomalies in zonal
circulation patterns around the equator. The wet events were found to preferentially
occur during certain phases of the MJO. A west/ east split in the behaviour was also
noted. Phases 1 to 3 of the Wheeler-Hendon indices lead to wet spells over the west-

ern highlands region of East Africa, with dry spells observed over the coastal region.
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Figure 1.9.: Composite maps of rainfall anomaly compared to climatology, by MJO
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Figure 1.10.: An example of the Wheeler-Hendon diagram (Wheeler and Hendon|[2004)).
The MJO amplitude is the square root of the distance from the centre. Amplitude less
than 1 is considered as a weak/ inactive MJO, marked by the centre circle. The MJO
phases and corresponding locations are labelled within the sections.

Inversely, phases 5 to 7 corresponded to dry spells over the western highlands with
wet spells over the coast. This can be seen in Figure Over the highlands the wet
spells during these phases were linked to deep convection, caused by low-level westerly
anomalies, whilst MJO induced wet spells over the coastal region were linked to sup-
pressed convection over East Africa and the western Indian Ocean. However, [Pohl and
Camberlin| (2006a) suggested that during these phases the suppressed convection in-
duces increased moisture advection from over the Indian Ocean. [Berhane and Zaitchik
(2014)) also found that the MJO affected wet and dry spells within both rainfall seasons,
with results generally consistent with the previous studies, however, they found differ-
ent results dependent on which month was being considered. They suggested a variety
of different ways the MJO influences rainfall, including through modulating the Somali
Jet early and late in the rainfall seasons, as well as those suggested previously. [Hogan
et al.| (2015) investigated the MJO in the Met Office Unified Model (MetUM; Walters
et al.[2011). They found in agreement with previous studies that in observations phases
2-4 lead to increased rainfall over the highlands with suppression over the coast, and
the inverse occurs during phases 6-8. They also found that the MetUM could replicate
these patterns with up to 5 days lead time.

Further to this, studies have been performed examining the inter-annual impact of
the MJO on the long rains season. |[Pohl and Camberlin (2006b) found that the MJO
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amplitude alone, regardless of the phase of the MJO, can explain up to 44% of the
variance in seasonal totals of the long rains. They also found that higher MJO ampli-
tude leads to an early onset of the long rains, although, as demonstrated by |Camberlin
et al. (2009), the onset date of the season and total rainfall are strongly correlated, and
could account for this. More recently Vellinga and Milton (2018) also demonstrated
the link between MJO amplitude and the long rains, and proposed an explanation for
this. Intuitively, one would expect that in a season with higher MJO amplitude, on
average, for the phases conducive to rain to be cancelled out by those that suppress
rain. However, |Vellinga and Milton, (2018)) demonstrated that the anomalous ascent or
descent caused by active MJO of their respective phases, is asymmetric. Anomalous
ascending motion has a larger impact on the absolute total rainfall experienced than
anomalous descending motion. This is partially due to the fact that rainfall amounts
cannot sink below 0, so the relationship between rainfall amounts and MJO amplitude

is not linear.

2.d.2. Quasi-Biennial Oscillation

Another source of inter-annual variability is the Quasi-Biennial Oscillation (QBO).
This is a highly periodic change in stratospheric winds (approximately between 10 and
70hPa) from westerlies to easterlies, with a period of approximately 26-28 months, first
observed by |[Ebdon| (1960) and Reed et al.| (1961). The transition in wind direction
propagates downwards, meaning that the wind direction in the upper (10hPa) and
lower (70hPa) levels are regularly out of phase (Baldwin et al.2001). It has been
found to have a teleconnection to the North Atlantic Oscillation (NAO), which is of
importance for seasonal predictability within the extra-tropics (Scaife et al. 2014]). A
common measure of the QBO, and often referred to as the QBO-index, is the zonally

averaged zonal winds over the equator at pressure levels around 50hPa.

Few studies have considered how the QBO influences East African rainfall, however a
study by |Indeje and Semazzi| (2000) demonstrated remarkably high correlations between
a the QBO-index at 30hPa and the long rains, including at up to 3 seasons ahead of
the rainfall season. A mechanism however is not clear, and the correlations were not
cross-validated. The long rains do appear to fluctuate with an approximately 2 year
period, however, given, the phasing of the QBO depends on the height considered,
selecting the correct height that happens to be in phase with the long rains may lead to
an inflated correlation. More recently [Vellinga and Milton| (2018) utilised a QBO-index

when constructing a multiple linear regression equation for producing forecasts of the
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long rains, suggesting that it may modify the large-scale subsidence over East Africa,
however they noted that the QBO alone provides only a small amount of the predictive
information. Recent studies have, however, demonstrated that the QBO may play a
role in modulating the MJO (Yoo and Son/|[2016, Son et al.[ 2017/, Klotzbach et al.[2019),
although this is currently understood to mainly occur during boreal winter (December

to February).

2.d.3. Congo airmass and zonal winds

To the west of East Africa lies the Congo basin, containing the second largest rainforest
in the world after the Amazon. In the lower troposphere above the rainforest sits the
so-called Congo airmass. This is an airmass with a very high moisture content, as
shown by considering relative humidity (RH) as in Figure taken from Finney et al.
(2019). Its position adjacent to East Africa means that incursions of the airmass could
provide more moisture to enhance rainfall amounts. An early study by Nakamura| (1968)
suggested that the western highlands region of East Africa in particular experiences
abundant rainfall when westerly winds were present. It was noted that when westerly
winds were observed the relative humidity within the lower troposphere was much
greater. However, Nakamural (1968) also noted that westerlies are observed most often
during the summer, and least often during the peak months of the two rainfall seasons
(November and April). |(Okoola (1999b) notes that stronger than average easterly winds
over East Africa coincide with dry spells, whilst (Okoola; (1999a) found that during the
long rains alternating westerly and easterly patterns were observed, with westerlies
leading to wet spells. However they also noted that the frequency of westerly winds
were likely reduced due to the orography of the western side of East Africa. |[Pohl
and Camberlin| (2006bla) and [Berhane and Zaitchik (2014) noted that phases of the
MJO coinciding with enhanced rainfall over East Africa also produce a westerly wind

anomaly to the west.

A comprehensive study of the Congo airmass and its influence on East African rainfall
was performed by [Finney et al. (2019)), motivated by the excessively wet long rains
of 2018 (Kilavi et al|2018)). It was first demonstrated that wet spells in the 2018
long rains coincided with westerly incursions from the Congo airmass. [Finney et al.
(2019) then corroborated some of the results initially found by Nakamura; (1968). By
considering westerly events to be a westerly column integrated moisture flux, it was
found that westerly days were linked to more abundant rainfall, although they were least

frequent during the two rainfall seasons. It was noted however that westerly days were
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Figure 1.11.: Maps of 925hPa relative humidity over Africa and the Indian Ocean,
for the seasons January-February, March-May, June-September and October-December
(colours). Grey shading shows regions where seasonal mean surface pressure is less than
925hPa. Taken from Finney et al.|(2019) Figure 4.
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Figure 1.12.: Pressure-longitude cross-section composites of specific humidity (colours),
relative humidity (contours; black, grey, and white mark 85%, 80%, and 75% RH
respectively), and zonal wind (arrows), for a) easterly days, b) weak easterly days, c)
weak easterly minus easterly days d) westerly days, e) westerly minus easterly days.
Grey shading shows regions where seasonal mean surface pressure is less than 925hPa.
Taken from [Finney et al.| (2019) Figure 5.

more frequent during the long rains than the short rains, highlighting their potential

importance for the long rains season. Further, Finney et al.| (2019) demonstrated a

strong correlation between the number of westerly days in a long rains season and the
rainfall total for the season. It was proposed that on westerly days, moisture from
the Congo airmass was imported over East Africa, increasing the specific humidity
(SH) on these days, supplying additional moisture to enhance rainfall, demonstrated in
Figure taken from Finney et al. (2019). Further it was suggested that days with

weaker easterlies than usual also lay between easterly and westerly days in terms of its

response, suggesting that the overall strength of the wind profile matters, rather than

simply the overall direction.

Finally, it was suggested that the MJO may play a role in driving the westerly winds.
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As noted before, the MJO in phases 2-4 leads to enhanced rainfall over East Africa (e.g.
Pohl and Camberlin|[2006a)), however, this is when the convective core of the MJO is
over the Indian Ocean rather than Africa, suggesting the rainfall enhancement is not a
direct effect of the MJO. It is likely that the observed westerlies are part of the Matsuno-
Gill response (Matsuno||1966, |Gill 1980, Finney et al. (2019) also linked the MJO to
an increase in tropical cyclones, and noted that during the 2018 long rains season
several tropical cyclones occurred in the Indian Ocean to the east of Madagascar, and
were found to drive the westerly winds over East Africa that led to abundant rainfall.
Meanwhile in 2019, a tropical cyclone that tracked into the Mozambique channel, to
the west of Madagascar, caused a delay in the 2019 long rains, again due to its effect

on the large scale flow over Africa.

2.e. Recent and future trends in rainfall

2.e.1. Observed trends

A recent topic, with ever longer observational datasets becoming available, is long term
trends in seasonal rainfall totals. One of the most striking recent trends is that of the
long rains. Many authors (e.g. [Funk et al. 2005, |2008, Lyon and Dewitt| 2012, Viste
et al.|2013, |Liebmann et al.[2014] [Hoell and Funk/2014} |[Nicholson|2016b], |Ongoma and
Chen|[2017) have identified a declining trend in the observed long rains rainfall totals,
from approximately the 1980s. [Tierney et al. (2015), from studying tree rings, suggest
that the observed drying trend is unusual within the context of the last 2,000 years,
implying links to anthropogenic climate change. It has also recently been identified by
Wainwright et al.| (2019) that it is possible that the long rains rainfall totals may have

begun to recover, from approximately 2011 onwards.

Several authors have sought explanations for the observed long rains drying trend,
with much focus being on the Pacific and Indian Oceans, the Indo-Pacific region, and
linking the two. [Funk et al.|(2008]) suggested that a warming Indian Ocean is influencing
East Africa by setting up a Walker cell-like circulation anomaly. Meanwhile Williams
and Funk| (2011)) suggest that the rapid warming of the Indian Ocean has extended
the tropical warm pool, producing a westward extension of the ascending branch of
the Walker circulation, suppressing convection over East Africa. [Lyon and Dewitt
(2012)), [Lyon et al.| (2014), and |Lyon/ (2014) identified the decline as an abrupt change
from approximately 1999 onwards, linked to the Pacific Decadal Oscillation (PDO;
Mantua et al. [1997). Yang et al. (2014) meanwhile suggests that the SST anomaly
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pattern is La Nina like. Hoell and Funk (2014) identified Indo-Pacific SSTs as the

main driver, suggesting that warming over the Indo-Pacific region as well as decadal

variability are the causes of more frequent drought. |Liebmann et al.| (2014), by using

simulations, identified an increased zonal gradient in SST between Indonesia and the
central Pacific Ocean. [Funk and Hoell (2015) furthered this by using EOF analysis to
identify a western Pacific “V” pattern, with the point of the “V” over the Maritime

continent, and the two legs stretching northeast and southeast into the Pacific Ocean.

Funk and Hoell| (2015)) suggested this was driven by radiative forcing and not natural

variability. [Wainwright et al. (2019) meanwhile find that the long rains decline is down

to a reduction in the length of the season rather than a change in intensity of rainfall.

A secondary argument related to the long rains decline is the question of the relative

contribution of natural decadal variability versus anthropogenic climate change. Sev-

eral authors argued for natural variability (e.g. [Lyon and Dewitt| 2012 Lyon et al|
2014} Lyon| 2014, [Yang et al. 2014} Bahaga et al.|2019)), whilst others suggest human
factors (e.g. [Funk et al|2008| [Williams and Funk 2011} [Funk and Hoell 2015, Tier-|
mey et al. 2015)), or a combination of the two (Hoell and Funk 2014). Hoell et al.|
tried to reconcile the two main theories: human induced climate change caus-
ing warming of Indo-Pacific region SSTs, and natural change due to ENSO-like Pacific

decadal variability, warming the western Pacific whilst cooling the central Pacific. By
comparing simulations both with and without human influences, they suggest that its
likely the interplay of global warming and decadal variability together could enhance
drying trends relative to natural variability alone. However, they note that these are

speculative results, and so the ultimate cause of the decline is uncertain.

Meanwhile, less work has considered trends in the short rains season, however
et al. (2014), Rowell et al.[(2015)), and Tierney et al|(2015]) also identified an increasing
trend in rainfall in this season. This was linked to western Indian Ocean warming
(Liebmann et al|[2014), and a weakening of the Walker circulation
015).

2.e.2. Future climate projections

‘Shongwe et al| (2011), |Otieno and Anyah (2013), Kent et al. (2015), and
(2018)) all looked at East African rainfall in the Coupled Model Intercomparison
Project version 5 (CMIP5; [Taylor et al.|[2012). Shongwe et al. (2011) found a positive

shift across both rainfall seasons, indicating increase in mean precipitation and high
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intensity rainfall, and less severe droughts. Ongoma et al. (2018) showed that both
rainfall seasons are projected to increase, but the short rains moreso than the long rains,
whilst Otieno and Anyah| (2013) and Kent et al. (2015 note a high uncertainty in the
projections, particularly over the long rains. |Anyah and Qiu (2012) reported similar
results in the Coupled Model Intercomparison Project version 3 (CMIP3; Meehl et al.
2007). Yang et al.| (2014) demonstrated that the Atmospheric Model Intercomparison

Project (AMIP) models meanwhile project a decrease in rainfall during the long rains.

Several studies have also used regional climate models (RCMs) to investigate future
climate projections. |Vizy and Cook| (2012)) suggest that the number of wet days over
East Africa is projected to decrease, primarily during the long rains, whilst [Cook and
Vizy| (2013) found that the long rains are reduced, related to an increase in rainfall over
the Congo basin, whilst the length of the short rains increases. Endris et al.| (2018)
found that the long rains are projected to have a stronger ENSO teleconnection in the
future, although also see a decrease in rainfall during this season. Overall, there exists

a large uncertainty in the future direction of long rains rainfall totals.

2.e.3. The East African climate paradox

The fact that the long rains is observed to be drying, whilst coupled model projections
suggest that the long rains will experience more rainfall in the future has attracted
much attention. This is commonly termed the East African climate paradox (Rowell
et al. 2015). It leads to uncertainty over the future of East Africa, and questions
the reliability of climate models. Such contradictory information makes it much more
difficult for decision makers to take actions, as it is unclear whether preparations should
be made with the expectation that the long rains season will keep getting drier, with
the implication of more frequent drought and food insecurity, or whether to trust the
projections and prepare for a wetter future, which may lead to more efficient crop

growth, but also comes with risks such as increased flooding.

Rowell et al.| (2015) proposed several hypotheses to reconcile this issue. The first is that
the observed trend is due to poor quality observations, however they discount this. A
second is simply that the projection cannot be trusted. Other proposed hypotheses
include: the past or future trends are linked to natural variability, a balance between
competing anthropogenic forces is changing (e.g. aerosol versus carbon emissions), or
the balance between mechanisms that determine the response to anthropogenic forcing

is changing. Several other authors also highlight the fact that coupled climate models
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fail to correctly capture the annual cycle of rainfall over East Africa; having a wetter
short rains season than long rains (e.g. [Yang et al.||2014 Tierney et al.|2015, Yang
et al.[2015Db)), and suggest therefore that caution should be used when considering these

projections.

3. Seasonal forecasting

This section provides a brief overview of the history of seasonal forecasting. Extensive
in-depth literature exists on this topic through the following book: [Troccoli et al.| (2008);
and several review papers (Palmer and Anderson/1994, Troccoli|2010, and Doblas-Reyes
et al.[2013).

3.a. Early methods of seasonal forecasting

The first attempts at seasonal forecasting can be traced back to the Indian Meteo-
rological Department (IMD). In the 1870s, following drought related famines, studies
were undertaken to try to predict the Indian Monsoon, through surface pressure data
from countries around the Indian Ocean (Troccoli2010). Through these studies it was
identified that droughts in India often aligned with droughts in Australia, the first
observation of a teleconnection. Blanford (1884)), in a study linking snow over the Hi-
malayas and drought in India, identified that during a famine in India that took place
over 1876-77, an extensive region of abnormally high pressure was present. It has since
been found that this was connected to a particularly strong El Nino event. Further work
by [Walker| (1925] 1928]), and Walker and Bliss| (1932) identified links between seasonal
variations in centres of action of pressure oscillations, and found in particular a link
between the Southern Oscillation and the Indian Monsoon rainfall amounts. [Walker

and Bliss (1932) developed forecasts for the Indian monsoon using regression models.

Following the dawn of aviation, from approximately the 1930s, a major shift of focus to
advancing forecasting on short timescales was made, leading to a stagnation in progress
on developing seasonal forecasts. Attention turned back towards seasonal forecasting
upon the identification of the coupling between El Nino and the Southern Oscillation
(Bjerknes 1966, 1969). In particular |Charney and Shuklal (1981)) realised that tropical
predictability is related to surface boundary conditions such as SST's and demonstrated
the potential for predictability on timescales of months, with a focus on the Indian

Monsoon.
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3.b. Statistical predictions

Shortly after the study by |[Charney and Shukla (1981), a very strong El Nino took
place, during 1982-83, the effects of which, alongside lack of early warning (Kirtman
and Pirani|2008), brought the phenomenon into widespread media attention for the first
time (Caviedes||1984). It was also noted that many of the widespread global impacts
could be matched to similar impacts of previous El Nifio events. The combination of new
understanding and newfound interest prompted the true dawn of seasonal forecasting

in the form of statistical models.

Several early models were based primarily on measures of ENSO, using techniques
such as linear regression. For example Gray| (1984) used ENSO and the QBO to pre-
dict Caribbean hurricane activity, and |[Farmer| (1988) for the East African short rains
used the SOI. Folland et al| (1991) also used Atlantic and Indian Ocean anomalies to
predict Sahel rainfall, whilst Nicholls (1989) used both the Pacific and Indian Ocean
for predictions of Australian winter rainfall. Statistical forecasts are still regularly used
operationally today, alongside dynamical model forecasts, although in many cases have

since increased in complexity (Doblas-Reyes et al.|[2013]).

The general principle behind statistical prediction is to identify a set of predictors:
climate variables that are monitored and observed (for example SSTs or indices of
climate modes such as ENSO), that are known to have a relation to the predictand,
i.e. the thing to be predicted, often seasonal rainfall total. Past observations of the
predictors and predictand are then used to develop an equation or model linking the
two. The most simple, common method used for this is a linear regression model.
To make a forecast for an upcoming season the observed values of the predictors are
then placed into the model to give a prediction of the predictand. The most simple
methods may use only predictors for which the physical mechanism linking them to the
predictand are understood, such as using a metric for the IOD for predicting the short
rains in East Africa. However, more complex statistical tools can systematically search
for linkages between predictors and the predictand, such as checking global SST data

for connections to be used in the model.

The risk with using predictors without a physical basis however is that the tools may
find correlations that occur by chance throughout the past observational data, and may
not actually improve predictions, but improve the closeness of fit of the model over the
past. This can lead to inflated estimates of the skill of the statistical model, known as

model overfitting. To avoid, or minimise this, past observational data can be split into
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training and test data. Some portion of the past observations are used to generate the
model, these are the training data. The rest of the past observations are then fed into
the model, to test how well it predicts past observations of the predictand over a set
of observations that have not been used to generate it. These are the test data. This
method gives a much better estimate of how well the model performs, as the model is

not tested on information already used to define the model.

An advantage of using statistical forecasts is that in places where processes driving
predictability are clear and well understood a relatively useful forecast can be made
with little computational expense in comparison to using a dynamical model. New

knowledge and understanding can also be quickly applied to statistical models.

3.c. Dynamical seasonal forecast models

In the late 1980s and 1990s research began on filling the gap between the numeri-
cal weather prediction (NWP) models used operationally for forecasting weather on
timescales of a few days, and the long term climate models (Palmer and Anderson
1994])). Initial focus of these dynamical models was to predict ENSO events (Doblas-
Reyes et al.|2013)), the first of these to successfully forecast the onset of an ENSO event
was |Cane et al. (1986). Progress was then made towards forecasting the global atmo-
sphere using the Pacific Ocean only (|, Kirtman et al.|[1997)) before a first global coupled
model forecasting precipitation was developed in the late 1990s (Stockdale et al.|1998)).
Since this time, many of the Global Producing Centres (GPCs) around the world have

formulated and produce operational dynamical seasonal forecast models.

The majority of modern dynamical seasonal forecast systems are run as coupled ocean-
atmosphere models. A more detailed description of the structure of a dynamical sea-
sonal forecast model will be given in Section describing the dynamical model used
for the work within the thesis.

Dynamical seasonal forecast models attempt to forecast the conditions of the climate
system months ahead by using initial conditions from observations around the Earth to
computationally solve equations describing the evolution of the Earth’s climate system.
They perform this by splitting the ocean and atmosphere up into grids, and solving
these equations at each grid point. Consequently, dynamical models are computation-
ally very expensive to run. There are several causes of errors common within these
models. Three major ones are: 1) uncertainty in the observations used to initialise

the models. Due to the nonlinear form of the equations this can lead to large errors,
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and drastically different results from small changes in the observations (Troccoli et al.
2008). 2) The finite resolution of models. Due to limits on computational power, each
grid cell can be of the scale of 100km, and there are many processes that occur on scales
smaller than this. 3) The tendency of models to drift away from reality. Models also
display biases, some of which are common amongst models, such as the double ITCZ
problem (e.g. Doblas-Reyes et al.|[2013] |Li and Xie|2014, [Richter et al.[2016)).

These errors could render dynamical forecasts as unusable, however, methods have
been developed to tackle or reduce the impact on forecasting ability caused by these
problems. 1) An ensemble of models is run for each forecast, with a range of starting
conditions to capture some of the uncertainty in the observations and give a range of
probable outcomes. 2) Some of the key subgrid processes are parameterised, such as
convection (Troccoli et al. (2008). Additionally, with increased computational power,
models can be run with increasingly high resolution. 3) To tackle model biases, a set of
hindcasts is created for the model. These are forecasts using the same model, but run
over historical periods. This allows for a comparison of the model behaviour against
observations, and means that a model climatology is built. Forecasts can then be based
upon the difference from the model climatology rather than the observed climatology
e.g. if a model rainfall forecast has a wet bias in a certain location then by comparing
to observations a wetter than average season will be forecast too frequently, and often
incorrectly. However, if the forecast is compared against the model climatology for this
location, the bias can be removed, and it can be determined whether the forecast is
wetter or drier than usual. There are, however, other biases in addition to shifts from
mean (e.g. distributions with incorrect standard deviation or shape), which can also

be corrected for after the model is run (Troccoli et al.|2008)).

Despite these errors, and the fact that statistical models can offer reasonably good
skill for predicting a field of interest with much less computational power, dynamical
models offer a wealth of additional information beyond simply the value of interest. For
example, a full spatial and temporal picture of global or atmospheric conditions over
the period of interest, estimates of uncertainty, and the ability to study how certain

prevailing conditions may be causing changes in the field of interest (Troccolil[2010)).
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4. Seasonal prediction methods for East Africa

4.a. Statistical models
4.a.1. Short rains season

The earliest attempts at forecasting seasonal rainfall totals over East Africa involved
using simplistic statistical models. Farmer| (1988)), furthering the work from |Behrend
(1987)) and (Ogallo| (1988) (who observed lagged correlations between the SOI and East
African rainfall), used the SOI averaged over the meteorological seasons, defined as De-
cember to February (DJF), March to May (MAM), June to August (JJA) and Septem-
ber to November (SON), to forecast the short rains rainfall anomalies over the Kenyan
coast region over the period 1901-1984. The method used was a simple linear regres-
sion with the SOI with the lag of interest as the predictor and rainfall totals as the
predictand. It was found that whilst simultaneous correlation between rainfall and
SOI was the highest, there is a strong persistence in the SOI from the summer to the
autumn (JJA against SON) with a correlation between the two of 0.74, allowing for a
strong correlation between SOI at one season lag and short rains rainfall (0.51). By
splitting the period into two sub-periods (1901-42 and 1943-84) and generating a linear
regression based on the JJA SOI data from the first sub-period to predict East African
rainfall, a realistic expectation of the skill of a seasonal forecast using this method can
be estimated. Splitting the observations into a training set and a test set in this way
avoids the potential problem of overfitting a model. This method yielded correlations
up to 0.6 with the observations, implying the potential for being able to operationally

forecast rainfall totals during the short rains using only the SOI as a predictor.

A more complex statistical model for forecasting of the East African short rains was
developed by |[Mutai et al.| (1998). They demonstrated that July to September SST's
contain relationships to short rains seasonal rainfall totals. They used EOFs to find
SST patterns in the Pacific (related to ENSO), the Indian Ocean (detecting the 10D
before its formal definition), and also in the Atlantic Ocean. Two types of statistical
model were tested, multiple linear regression (MLR) and linear discriminant analysis.
For the MLR, the SST data was split into two periods 1945-1966 and 1967-1988, with
one used as a training period and the other a testing period, then repeating with
the periods switched, to avoid model overfitting. With the 1967-1988 test period a
correlation of 0.78 with the entire region was found, whilst with the periods reversed a

lower correlation of 0.56 was obtained. It was also found that forecast correlations at
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individual locations were substantially lower than the correlation of the entire region.

Philippon et al. (2002) also developed a statistical model for the short rains. They
looked to develop the work of Mutai et al.| (1998), and included atmospheric variables
as well as SSTs. Focusing on a region covering Kenya and Uganda, they produced
a similar MLR model, achieving a correlation of 0.8, using a cross-validation method
over the period 1968-1997. Their model used indices representing Indian monsoon
dynamics that are linked to the SSTs in the western Indian Ocean, 200hPa meridional
winds over Southern Africa which are linked to SST anomalies in the Atlantic Ocean,

and a principal component representing the Walker cell over the western Indian Ocean.

Several more recent studies have further investigated the idea of utilising atmospheric
variables as well as SST's, or used more complex approaches. These studies have mostly
focused on trying to predict the long rains season, and so are discussed in the next
section, although some have considered both the short and long rains (Nicholson [2014],
Chen and Georgakakos|2015)). Nicholson| (2017) notes that forecasts using atmospheric

variables can outperform those using purely SST based predictors, in both seasons.

4.a.2. Long rains season

Forecasting over the long rains season has been less well pursued, partially due to the
lack of historical links to major modes of SST variability allowing for predictions to be
made. However, motivated by the increase in recent droughts over East Africa, |Funk
et al. (2014) considered the western Pacific Ocean gradient in the long rains found to
be partially responsible for the decline in the East African long rains (Williams and
Funk|2011)). They constructed a regression using SSTs from January over this western
Pacific region, finding that it explained approximately 50% of the variance of the first
principle component of rainfall over East Africa. Funk et al.|(2014) however notes that
this is only a recently emerging trend and so caution must be taken when such a forecast
is used. |Chen and Georgakakos| (2015) developed a method to detect dipoles in SST
anomalies in the global SST field to rainfall in East African regions divided into 5° x 5°
boxes, over 1980-2011. Significant dipoles are used to develop linear regression models,
with the number of dipoles used determined by minimising the mean absolute error
of the forecast, although is generally around 20. Cross-validation is used, and highly
overlapping dipoles are removed from selection, to try and reduce overestimation of
skill. High skill is found in predicting most regions across East Africa for both seasons.

In particular high skill is found for the long rains, with correlations up to 0.72 with the
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observations, in some cases with up to 11 months lead time. Dipoles identified in the
short rains largely coincide with the IOD regions, whilst for the long rains poles are
found in the southwest Indian Ocean and southern Atlantic and the Arabian Sea. A
concern for this study however is that despite the precautions, these forecasts may be
overestimating the level of real skill to be expected. Mechanisms linking the identified
poles in the long rains are not clear, although SSTs over the Arabian Sea have been
highlighted as a possible control on long rains rainfall in other studies (Vellinga and
Milton| 2018, |Wainwright et al.[2019).

As discussed in the previous section, the idea that atmospheric variables may be used to
produce statistical forecasts renewed some efforts to predict the long rains. |[Nicholson
(2014) developed multiple linear regression models to forecast both the short and long
rains using both atmospheric fields and SST's as predictors. For the long rains, predic-
tors from January and February were used, with correlations up to 0.76 for February,
but dropping to 0.63 when cross-validation was used. The predictors included zonal
and meridional wind boxes from north Africa, off the south coast of South Africa, the
northern tip of Madagascar, as well as SST's in the Indian and Pacific Oceans. For the
short rains, sea level pressure (SLP) fields were also used, finding correlations of up
to 0.8 with observations. Again, linkages between these selected fields and rainfall are
not always clear and so may still demonstrate inflated skill levels. |Nicholson (2015)
furthered this study by splitting the long rains into individual months (March, April,

May) and found that this generally increased prediction scores.

Vellinga and Milton! (2018]) developed a multiple linear regression model for the long
rains over March and April using three predictors: The MJO amplitude over February
and March, the 30hPa QBO index from the preceding September to November, and
SSTs from the northwest Indian Ocean. The regression was tested over a number of
observation and reanalysis datasets, with fairly consistent results, with correlations up
to 0.77. [Vellinga and Milton| (2018) suggests that all three predictors affect the long

rains through changes to the large-scale subsidence over East Africa.

4.b. Dynamical model capability

4.b.1. Short rains season

A small number of authors have previously assessed the capabilities of certain dynamical

models, that at the time of their assessment were cutting-edge, at predicting seasonal
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rainfall over East Africa. The ENSEMBLES project multimodel ensemble seasonal
forecasts demonstrated good skill over East Africa during the short rains due to covari-
ance with the Pacific and Indian Oceans (Batté and Déqué 2011). Meanwhile Dutra
et al. (2013) showed that the European Centre for Medium-range Weather Forecasts
(ECMWF) System 3 and 4 seasonal forecasts also achieved high anomaly correlation
coefficients with 3 months lead time. |Bahaga et al.| (2016) investigated the ability of
a multimodel ensemble constructed from North American and Asian seasonal forecast
models. He found that the multimodel ensemble performed reasonably well in fore-
casting the short rains, but was outperformed by several individual models. However
selecting only skilful models led to much better results for the multimodel ensemble.
It was also demonstrated that these models skilfully predicted the IOD, and the mul-
timodel ensemble captured the teleconnection between the IOD and the short rains

well.

4.b.2. Long rains season

In contrast to the short rains season, where dynamical models have demonstrated useful
prediction skill even at coarse resolutions, dynamical models have had a difficult time in
predicting variability in seasonal rainfall within the long rains. As discussed in previous
sections, this is largely down to a lack of any known connection to large scale sources
of seasonal predictability such as ENSO (Ogallo|[1988, Camberlin and Wairoto|1997)).
The studies of previous generations of dynamical models such as the ENSEMBLES
project (Batté and Déqué| 2011)), and ECMWF System 3 and 4 (Dutra et al. [2013,
Mwangi et al.|2014)) have little skill in predicting the long rains, although Dutra et al.
(2013)) demonstrated that System 4 displayed some limited skill for forecasts initialised
in March.

Despite not being able to directly predict precipitation, there is still some promise for
being able to use dynamical models for forecasting over the long rains. For example,
the models still possess skill in predicting tropical SSTs, which, given the emerging
relationship with Nino3.4 and relationship with the Pacific gradient displayed by [Funk
et al.| (2014), could then be used to produce hybrid models, using forecast SSTs to
statistically predict rainfall as demonstrated by [Shukla et al.[ (2014).
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4.c. Greater Horn of Africa Climate Outlook Forum (GHACOF)
forecasts

An initiative led by the World Meteorological Organization (WMO) in the late 1990s
produced a method of generating and disseminating seasonal forecasts, known as Re-
gional Climate Outlook Forums (RCOFSs), in several regions around the world, which
have since expanded to cover most of the globe (Ogallo et al.[|2008, |World Meteorolog-
ical Organization [2020). One of the first of its kind was the Greater Horn of Africa
Climate Outlook Forum (GHACOF), which began producing forecasts in 1998. GHA-
COF is organised by the Intergovernmental Authority on Development (IGAD) Climate
Prediction and Applications Centre (ICPAC).

GHACOF events takes place 3 times per year, preceding the long rains, short rains, and
summer rainfall season. The format has changed several times throughout the years,
however the event generally takes place in two stages. Firstly a pre-COF workshop,
where forecasters representing each country attend to generate the forecast, and to
receive training. The second stage is the forum itself. The seasonal forecast is presented
to users from around the region. Representatives from a wide variety of industries
attend, including health, agriculture, water resource management and disaster risk
management. The forum also includes breakout sessions encouraging users to consider
plans based on the forecast, and allows users to interact with regional forecasters and

climate experts from around the world.

The forecast is described as a consensus forecast. To construct the forecast, a wide va-
riety of sources are used, including statistical models, dynamical forecasts from various
WMO Global Producing Centres (GPCs), seasonal Weather Research and Forecast-
ing (WRF; [Skamarock et al. 2008 model runs performed by ICPAC themselves, and
analogue years of similar conditions. Forecasters then use these various sources of infor-
mation to generate a single forecast based on their own knowledge, giving the consensus
aspect. The forecast is then presented as a map split into zones, for each zone probabil-
ities are issued for the likelihood of total rainfall being within tercile categories (above
normal, near normal, below normal) compared to the climatological rainfall total. An
example of a GHACOF forecast is shown in Figure
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5. Methods

5.a. Met Office Global Seasonal Forecast System Version 5 (GloSea5)

The primary dynamical seasonal forecast model used within this work is the UK Met
Office Global Seasonal Forecast System Version 5 (GloSea5, or GloSea, MacLachlan
et al.[2015]). GloSeab is a global coupled ocean-atmosphere model. The core of GloSea5
is the Hadley Centre Global Environmental Model version 3 (HadGEM3; Hewitt et al.
2011). It consists of an atmospheric component (MetUM Global Atmosphere 3.0), land
surface component (Joint UK Land Environment Simulator (JULES) Global Land 3.0;
Best et al|[2011)), ocean component (Nucleus for European Modelling of the Ocean
(NEMO) Global Ocean 3.0; Madec|2016|), and sea-ice component (The Los Alamos Sea-
Ice Model (CICE) Global Sea-Ice 3.0; Hunke and Lipscomb|2010). The atmospheric
horizontal resolution is 0.833° x 0.556° with 85 vertical levels. The oceanic horizontal

resolution is 0.25° x 0.25° with 75 vertical levels.

The forecast system comprises of two parts, the forecast, and a set of hindcasts. The
model is run for 210 days from initialisation. The forecast is run as an ensemble, with 2
members initialised each day, and members from the past 3 weeks used for the forecast,

generating an ensemble of 42 members.

The hindcast is run for the purpose of bias correcting and assessing the skill of the
model, and has been used for Chapters 2 and 4 of this thesis. For the results in
Chapter 2, 3 members were initialised on 4 fixed days per month (1st, 9th, 17th,
25th) and covered 23 years (1993-2015). For the results in Chapter 4, following an
upgrade to GloSeab, 7 hindcast members were initialised on each of the 4 fixed days,
giving an ensemble of 28 members in a month, and covered 24 years (1993-2016).
Ensemble members initialised on the same date differ by using a stochastic physics
scheme to perturb the initial conditions (Bowler et al.|[2009)), to capture some of the
uncertainty within the observations. These later hindcasts are made available through
the Copernicus Climate Change Service (C3S) Climate Data Store (C3S/2020)).

5.b. Forecast verification techniques

The main purpose of a forecast is to provide information to a user to help them make
a decision. However, not all forecasts are useful, and a forecast should not be used

without some understanding of how well it performs. For example, if a forecast is no
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better than guesswork, then there is no advantage to using the information from it in

order to make a decision.

There are a wide array of methods of verifying seasonal forecasts. Presented in this
section are those used within Chapters 2 to 4 of this thesis. These are by no means
an exhaustive list of verification measures, however, they provide a good overview of
how well the seasonal forecast performs, and provide complementary information to
each other, giving information of different aspects of the seasonal forecast performance,
without too much redundancy, or generating lists of repetitive numbers that provide
little extra information. The methods chosen here were also chosen due to their use in
the WMO Standard Verification System for Long Range Forecasts (SVSLRF; Mason
2013). Wilks| (2011) provides information on all the verification methods discussed
in this section and many more besides. In particular, some methods for evaluating

probabilistic forecasts are presented in this section.

Evaluating probabilistic forecasts is more complex than evaluating the performance of
a yes or no forecast, also known as a deterministic forecast. For example, consider a
forecast predicting whether it will rain today or not. If the forecast says yes, and it
subsequently rains, we can say the forecast has done well. However, if a probabilistic
forecast predicts a 40% chance of rain on a certain day, and it subsequently rains on that
day, has the forecast done well or poorly? To get around this, probabilistic forecasts
are not considered individually, but are considered over a large sample of forecasts. In
this way, it is possible to determine to what extent a probabilistic forecast provides
useful information, which can help in understanding what decision to make based upon

its predictions.

Whilst it may intuitively seem that a deterministic forecast is better and easier to
use than a probabilistic forecast, a deterministic answer fails to capture the inherent
uncertainty in forecasting a complex system such as the atmosphere. No forecast is
perfect, as the atmosphere is simply too complex and chaotic to perfectly predict its
evolution. Therefore there are often times when even the most skilful deterministic
forecast will be wrong, whilst a probabilistic forecast gives an idea of the confidence
that an event might happen, and represents the fact that even in cases where there is

a high confidence of the event occurring, there is still the probability that it does not.
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Observed
Above | Below
Forecast | Above | a b a+b
Below | ¢ d c+d

a+c b+d n=a+b+c+d

Table 1.1.: Example 2x2 contingency table for above or below mean rainfall.

5.b.1. Contingency tables

A contingency table shows the joint distribution of forecasts and observations by count-
ing the number of events in each category (Wilks 2011)). An example of a 2 x 2 con-
tingency table is seen in Table for above or below mean rainfall. The 4 cells in
the table have different meanings. Taking above normal rainfall as the “event”: a is
a “hit”, a correctly forecast event; b is a “false alarm”, a forecast event that did not
occur; ¢ is a “miss”, an event that occurred but was not forecast; d is a “correct neg-
ative”, a non-event that was correctly forecast not to occur. Each forecast in the set
to be evaluated is placed into one of the cells in the table based on the prediction and

subsequent observation.

There are a large number of statistics that can be calculated from these tables, giving
useful information about the forecasts. Those to be used in this work will be introduced.

The proportion correct (PC; Finley|1884) is given by:

a+d

n

PC =

(1.1)

this is simply the proportion of forecasts that were in the same category as the ob-
servations. A perfect score is 1, suggesting all forecasts were in the correct category.
However this score can be misleading if an event or non-event is a very likely out-
come. For example in the forecasting of tornadoes by [Finley| (1884)), never forecasting

a tornado to occur results in a very high PC' as it is a rare occurrence.

The hit rate is given by:
a

a-+c

this is the fraction of above events that occurred that were correctly forecast. This can

H =

(1.2)

also be calculated for below events. A perfect score is 1, implying that all above events

were correctly forecast.
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The false alarm rate is given by:

b

F=— 1.
b+d (1.3)

this is the fraction of non-events that were incorrectly forecast as events. A perfect score
would be 0, suggesting that an above event forecast was never given for an observed

below event.

A common skill score used for contingency tables is the Heidke skill score (HSS; |Heidke
1926). This is given by:

2(ad — be)

HSS5 = (a+c)c+d)+ (a+b)(b+d)

(1.4)

This measures the ratio between the fraction of correct forecasts minus the fraction of
correct forecasts obtained by chance, and, the fraction of correct forecasts obtained by
a perfect forecast minus the fraction of correct forecasts obtained by chance. A perfect
score is 1, whilst a score of 0 suggests that the forecast is no better than a biased

random prediction.

For multi-category forecasts, contingency tables can be extended to any size, for exam-
ple Table shows a 3 x 3 contingency table for a 3 category rainfall forecast. Many
of the statistics for 2 x 2 tables can be adapted for larger tables. For example the

proportion correct is given by:

PC = # (1.5)

The hit rate and false alarm rate can be found for each category separately by forming
a 2 x 2 contingency table for that category, collapsing the 2 other categories into a

single non-event category.

For a k x k contingency table the Heidke skill score can be generalised to:

k k k k
an' - Z sz'j iji
i=1 i=1 \j=1 j=1
HSS = (1.6)
k k k
1 - Z Dij iji
i=1 \j=1 j=1

where p;; is the probability of the ¢’th row and j’th column of the contingency table.
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Observed
Above Near Below
Forecast | Above | a b c a+b+c
Near | d e f d+e+ f
Below | g h 1 g+h+i

a+d+g b+e+h c+f+i n

Table 1.2.: Example 3x3 contingency table for 3 categories of rainfall.

This can be rewritten as: PC—E
HSS = ——— 1.7
T % (1.7)
where F is the expected proportion correct for a random forecast. This is calculated by
taking the sum of the probability of a forecast of event ¢ multiplied by the probability

of observing event i, for each 1.

5.b.2. Relative operating characteristic (ROC) curves

Relative operating characteristic (ROC) diagrams have been used in meteorology since
their first use by Mason| (1982)), however the origins of the diagram come from signal
detection theory, and is commonly used in medicine (Green and Swets|1988|). They are
often used to determine a decision threshold for action, and show the hit rate against

false alarm rate for a number of decision thresholds.

To construct a ROC curve, first a set of decision thresholds must be decided. These
are a set of probability values at which, when a forecast predicts a greater likelihood of
the event occurring than the threshold value, the forecast is treated as predicting the
event. For example if a threshold for acting upon an above normal rainfall is 40%, and
the forecast predicts a 50% chance of above normal rainfall, then this is treated as the
forecast predicting the event to occur. For evaluating ensemble forecasts, where the
probability of an event is determined by the number of ensemble members forecasting
the event, these thresholds will be decided based upon ensemble size. If there are many
more thresholds than ensemble members then multiple thresholds will have the same
hit rate and false alarm rates. Meanwhile if too few are used then the resolution of the

ROC curve will be low, and estimates of the ROC score will be inaccurate.

By considering each threshold in turn, the probabilistic forecasts can be split into
forecasting 